

Information and Communication Technologies (ICT)

Programme

Project No: H2020-ICT-2016-1-732105

D6.2: Planetary Exploration

Demonstrator (Final version)

Lead Beneficiary: TASE

Workpackage: WP6

Date: 31-12-2019

Distribution - Confidentiality: Public

Abstract:

This document contains the description of the M36 Planetary Exploration demonstrator.

The description is based on the skeleton defined in D6.1 and includes the scope and

purpose of the demonstrator, its detailed description and the accomplished results.

© 2019 CERBERO Consortium, All Rights Reserved.

Ref. Ares(2020)987025 - 16/02/2020

H2020-ICT-2016-1-732105 - CERBERO

WP26 –D6.2: Planetary Exploration Demonstrator (Final version)

Page 2 of 49

Disclaimer

This document may contain material that is copyright of certain CERBERO beneficiaries,

and may not be reproduced or copied without permission. All CERBERO consortium

partners have agreed to the full publication of this document. The commercial use of any

information contained in this document may require a license from the proprietor of that

information.

The CERBERO Consortium is the following:

Num. Beneficiary name Acronym Country

1 (Coord.) IBM Israel – Science and Technology LTD IBM IL

2 Università degli Studi di Sassari UniSS IT

3 Thales Alenia Space Espana, SA TASE ES

4 Università degli Studi di Cagliari UniCA IT

5
Institut National des Sciences Appliquees de

Rennes
INSA FR

6 Universidad Politécnica de Madrid UPM ES

7 Università della Svizzera Italiana USI CH

8 Abinsula SRL AI IT

9 Ambiesense LTD AS UK

10
Nederlandse Organisatie Voor Toegepast

Natuurwetenschappelijk Ondeerzoek TNO
TNO NL

11 Science and Technology S&T NL

12 Centro Ricerche FIAT CRF IT

For the CERBERO Consortium, please see the http://cerbero-h2020.eu web-site.

Except as otherwise expressly provided, the information in this document is provided by

CERBERO to members "as is" without warranty of any kind, expressed, implied or

statutory, including but not limited to any implied warranties of merchantability, fitness

for a particular purpose and non infringement of third party’s rights.

CERBERO shall not be liable for any direct, indirect, incidental, special or consequential

damages of any kind or nature whatsoever (including, without limitation, any damages

arising from loss of use or lost business, revenue, profits, data or goodwill) arising in

connection with any infringement claims by third parties or the specification, whether in

an action in contract, tort, strict liability, negligence, or any other theory, even if advised

of the possibility of such damages.

The technology disclosed herein may be protected by one or more patents, copyrights,

trademarks and/or trade secrets owned by or licensed to CERBERO Partners. The

partners reserve all rights with respect to such technology and related materials. Any use

of the protected technology and related material beyond the terms of the License without

the prior written consent of CERBERO is prohibited.

http://cerbero-h2020.eu/

H2020-ICT-2016-1-732105 - CERBERO

WP26 –D6.2: Planetary Exploration Demonstrator (Final version)

Page 3 of 49

Document Authors

The following list of authors reflects the major contribution to the writing of the

document.

Name(s) Organization Acronym

Pablo Sánchez de Rojas TASE

Francesca Palumbo UNISS

Tiziana Fanni UNISS

Carlo Sau UNICA

Francesco Regazzoni USI

Eduardo de la Torre UPM

Claudio Rubattu UNISS / INSA

Eduardo Juarez UPM

Leonardo Suriano UPM

Daniel Madroñal UPM

The list of authors does not imply any claim of ownership on the Intellectual Properties described

in this document. The authors and the publishers make no expressed or implied warranty of any

kind and assume no responsibilities for errors or omissions. No liability is assumed for incidental

or consequential damages in connection with or arising out of the use of the information

contained in this document.

Document Revision History

Date Ver. Contributor (Beneficiary) Summary of main changes

21-10-2019 0.1 TASE First draft

15-12-2019 0.2 TASE TASE inputs added

23-12-2019 0.3 UNISS, UPM UNISS and UPM inputs added

23-12-2019 0.4 TASE Final integration

13-01-2020 0.5 TASE Revision and correction

H2020-ICT-2016-1-732105 - CERBERO

WP26 –D6.2: Planetary Exploration Demonstrator (Final version)

Page 4 of 49

Table of contents

1. Executive Summary ... 5
1.1. Structure of Document .. 5
1.2. Related Documents... 5

2. Scope and purpose ... 7

3. Description of the Planetary Exploration demonstrator 10
3.1. Functionalities .. 12
3.1.1. Physical modeling ... 13
3.1.2. Energy modeling ... 15
3.1.3. Trajectory Generation ... 17
3.1.4. Diversity and scalability .. 24
3.1.5. Parallelization and adaptable redundancy.. 27
3.1.6. HW/SW monitoring .. 29
3.1.7. User command and simulation ... 30
3.1.8. Encryption accelerator ... 32
3.2. Integrated and evolved tools ... 32
3.2.1. PREESM and SPIDER .. 34
3.2.2. PAPIFY/PAPIFY VIEWER ... 36
3.2.3. ARTICo3 ... 36
3.2.4. MDC ... 36
3.2.5. Mixed-Grain Adaptivity.. 37
3.3. Development and deployment environment ... 38

4. Tests, results and feedback ... 40
4.1. Tests .. 40
4.2. Test result .. 41
4.2.1. Quantitative results ... 41
4.2.2. End-user results ... 44
4.3. Feedback .. 45

5. Conclusion .. 47

6. References ... 48

H2020-ICT-2016-1-732105 - CERBERO

WP26 –D6.2: Planetary Exploration Demonstrator (Final version)

Page 5 of 49

1. Executive Summary

This document provides a detailed description of the final Planetary Exploration

demonstrator, being one of the three CERBERO use-cases.

1.1. Structure of Document

This document is organized as follows:

• Section 2 presents the scope and purpose of the demonstrator;

• Section 3 includes the description of the developed demonstrator;

• Section 4 outlines the tests that were performed in order to validate the

demonstrator, their results and the feedback obtained;

• Section 5 summarizes the conclusion from the use case leader;

• Section 6 provides the references for the document.

1.2. Related Documents

This document is related to the following CERBERO deliverables:

• D2.1 – Description of Scenarios (Final version)

o The Planetary Exploration demonstrator will be based on the use case

scenario as defined in D2.1

• D2.2 – Technical Requirements (Final version)

o The development of the demonstrator will contribute to satisfy and

validate the requirements listed in D2.2

• D3.1 – Modelling of KPI (Final version)

o The addressed KPIs are based on the generic list of KPIs as defined in

D3.1

• D4.2 – Self Adaptation Manager (Final version)

o The methodology for CERBERO self-adaptation management as applied

in the demonstrator is described in D4.2.

• D5.2 and D5.1 – Framework Components (Final version) and Holistic

Methodology and Integration Interfaces (Final version)

o The framework used for setting up and interfacing CERBERO tools in the

(M36) demonstrator are based on the framework components described in

D5.2 and their point-to-point integrations described in D5.1.

• D6.1 – Demonstration Skeleton (Final version)

o The generic skeleton used to build the smart travelling demonstrator is

described in D6.1

• D6.8 – Planetary Exploration Demonstration (version I)

H2020-ICT-2016-1-732105 - CERBERO

WP26 –D6.2: Planetary Exploration Demonstrator (Final version)

Page 6 of 49

o The first version of this document, describing the status of the

demonstrator in M18

H2020-ICT-2016-1-732105 - CERBERO

WP26 –D6.2: Planetary Exploration Demonstrator (Final version)

Page 7 of 49

2. Scope and purpose

This document is the final version of D6.8, where the status of the Self-Healing System

for Planetary Exploration demonstrator was originally described. In these lines, the M36

demonstrator of the Planetary Exploration use-case is reported in order to validate the

CERBERO tool-chain for deployment in a computational CPS.

The M36 demonstrator provides the second iteration of the demonstrator, where the main

functionalities of the M18 demonstrator have been extended and CERBERO tools and

technologies have been applied both at the design-time and at run-time.

The drivers of demonstration activities have been defined in D2.2. In the following table

an excerpt of Table 4 of D2.2 is provided, where the “planned month” column has been

removed for the sake of simplicity. Moreover, an in-depth analysis of goals accomplished

in M18 and M36 demonstrators is presented in Section 2 of this document.

Table 1. Requirement validation table

User Requirement Technical Requirement(s) Validation Test

H2020-ICT-2016-1-732105 - CERBERO

WP26 –D6.2: Planetary Exploration Demonstrator (Final version)

Page 8 of 49

PE1. Enable Hardware /

Software (HW/SW) co-design

for Rad-Tolerant control of

robotic arm for planetary

exploration using adaptable

COTS FPGAs.

5 (CERBERO

framework/technology

SHOULD provide multi-

viewpoint multi-objective

correct-by-construction high-

level architecture.)

6 (CERBERO

framework/technology

SHOULD ensure energy

efficient and dependable

HW/SW co-design using

cross-layer run-time

adaptation of reconfigurable

HW.)

7 (CERBERO

framework/technology

SHALL define methodology

and SHOULD provide library

of reusable functional and

non-functional KPIs.)

8 (CERBERO

framework/technology

SHALL define methodology

and SHOULD provide library

of reusable energy related

components.)

6 (CERBERO

framework/technology

SHOULD ensure energy

efficient and dependable

HW/SW co-design using

cross-layer run-time

adaptation of reconfigurable

HW.)

Integrate CERBERO tools

and technologies in the Robot

Control Unit in order to

provide HW/SW co-design.

PE2. Develop integrated

“open” toolchain environment

for development of robotic

arms for space missions with

focus on multi-viewpoint

system-in-the-loop virtual

environment.

1 (CERBERO

framework/technology

SHOULD increase the level

of abstraction at least by one

for HW/SW co-design and for

System Level Design.

2 (CERBERO

framework/technology

SHOULD provide

interoperability between

cross-layer tools and

semantics at the same level of

abstraction.)

Use CERBERO

tools/technologies for

development of robotic arm

applications both at design-

time and at run-time.

CERBERO components can

be in principle used stand-

alone or combined and this

composability is particularly

relevant in the space domain.

Moreover, all the platform

deployment tools as

ARTICo3 and MDC are

H2020-ICT-2016-1-732105 - CERBERO

WP26 –D6.2: Planetary Exploration Demonstrator (Final version)

Page 9 of 49

4 (CERBERO

framework/technology

SHOULD provide software

and system in-the-loop

simulation capabilities for

HW/SW co-design.)

compliant with Xilinx

development environment,

one of the de-facto standards

in the Field Programmable

Gate Array domain.

PE3. Development of a (self-

)adaptation methodology with

supporting tools.

6 (CERBERO

framework/technology

SHOULD ensure energy

efficient and dependable

HW/SW co-design using

cross-layer run-time

adaptation of reconfigurable

HW.)

20 (CERBERO

framework/technology

SHALL provide methodology

and tools for development of

adaptive application.)

Extensive use of the

CERBERO self-adaptation

loop and its supporting tools

to adapt the computing

infrastructures for different

purposes (e.g. energy

efficiency, throughput, fault

robustness, etc).

H2020-ICT-2016-1-732105 - CERBERO

WP26 –D6.2: Planetary Exploration Demonstrator (Final version)

Page 10 of 49

3. Description of the Planetary Exploration demonstrator

For the use case Planetary Exploration, the goal was to develop a computing platform

capable of controlling a robotic arm in the uncertain environment of a space mission. A

set of CERBERO tools and technologies are used during both design-time and run-time

in order to address these challenges.

The high level CERBERO requirements related to the Planetary Exploration use case are

(see Table 2 in D2.2) are:

1. (PE1) Enable HW/SW co-design for rad-tolerant control of robotic arm for

planetary exploration using adaptable COTS FPGAs.

2. (PE2) Development of integrated open-source or commercially available

toolchain for development of robotic arms for space missions, with focus on

multi-viewpoint system-in-the-loop virtual environment.

3. (PE3) Development of a self-adaptation methodology with supporting tools.

Three main goals have been derived from these requirements, defining what was

accomplished during the development of M18 and M36 demonstrators (see section 3.2 in

D2.1):

1. Fault tolerance to single event effects that may be produced by the impact of

subatomic radiation particles in the electronic components.

2. Environment adaptation to the harsh physical environment.

3. Capability of run-time metrics (i.e. power and throughput) evaluation to be able to

optimize the the cyber part of the computing platform, by means of a complete

infrastructures including monitoring, decision making, and adaptation elements.

The robotic arm part of the final demonstrator for this use case is composed of two main

processing elements: the Robot Control Unit (RCU) in charge of performing high level

computing and implemented in a Zynq UltraScale+ FPGA; and the Servo Control Unit

(SCU) included in each one of the actuator joints that performs functions of torque limit,

PID regulation, etc. As stated in D2.1, the final demonstrator will focus on the RCU to

provide Adaptive motion Planning and Self-Healing capabilities to the robotic arm.

Up to month 18, HW accelerators in ARTICo3 were implemented in order to accelerate

the execution of the path planning, achieving a fault-tolerant behavior of the algorithm.

Besides, different adaptation strategies were highlighted thanks to ARTICo3 and MDC

integration. During M18-M36, a full exploration of the adaptation potential took place.

In month 36, the design tools were adopted to facilitate adaptive fabric deployment. After

the exploration of Key Performance Indicators (KPI) run-time trade-offs concluded, the

self-adaption loop including SPIDER, PAPIFY, MDC and ARTICo3 was assessed,

providing autonomous complete HW/SW reconfiguration.

As anticipated in D6.1 the PE use case supports different adaptivity types and triggers,

dynamically supporting self-awareness through internal execution monitors (see Section

3.2.2), user-commanded adaptation as the operator may chose the tasks and trajectories

and environmental awareness, which is currently mimicked through the Graphical User

Interface (see Section 3.1.7). Initially, there was the intention to embed also proximity

sensors to capture awareness, but in the end the effectiveness of the demonstrator in

H2020-ICT-2016-1-732105 - CERBERO

WP26 –D6.2: Planetary Exploration Demonstrator (Final version)

Page 11 of 49

supporting diversity of adaptivity types was favored with respect to the work on another

possible triggers for adaptation. With respect to this latter all types of adaptivity are

supported.

• Functional oriented adaptivity is implemented by allowing the switch among two

different Inverse Kinematic algorithms (described in Section 3.1.3) according to

the execution needs (as reported in Section 3.1.4).

• Non-functional oriented adaptivity allows for performance boost by playing with

parallelism of execution (see Section 3.1.5) and for dynamic trade-off executions

(see Section 3.2.4).

• Finally, in the PE use case, the computing fabric may be damaged by radiation

effects. The selected execution target naturally supports on-demand HW

redundancy and exploits HW monitors to check error status and ensure the correct

operation of the system (see Section 3.1.6). Nevertheless, in particular conditions

(i.e. a solar storm or a sand storms are arriving) also complete configurable logic

switch off is also possible, bringing back the computation on the main CPU.

At design-time, basically all the more mature computing level tools are adopted:

PREESM, PAPIFY, MDC and ARTICo3. While at run-time the target executing the

robotic arm controller is an heterogeneous Multi Processor System on Chip (MPSoC),

fully developed and customized using the above-mentioned CERBERO computing-layer

framework components: HW/SW self-adaptation not there by nature, but it is guaranteed

thanks to the adoption of the CERBERO tools, which enrich the deployed system with

monitoring capabilities, decision making capabilities and efficient support of different

types of HW reconfiguration.

The management of this complex computing infrastructure is implemented as part of the

SW application and leverages on SPIDER and ARTICo3 run-time management SW. The

complete description of adopted design-time and run-time support is detained in Section

3.2, while a high-level schematic block diagram of the demonstrator is provided in Figure

1.

Figure 1. PE demonstrator block diagram

H2020-ICT-2016-1-732105 - CERBERO

WP26 –D6.2: Planetary Exploration Demonstrator (Final version)

Page 12 of 49

Due to their very high computational complexity, the embeddability of the studied

reinforcement learning algorithms was difficult. Standalone tests on the arm were not

conclusive enough to justify their integration in the demonstrator.

All the CERBERO use cases are developed according to the CERBERO demonstration

skeleton defined in D6.1. The demonstrator components are identified with the skeleton

parts, helping also for future incremental developments. A graphical mapping between

the use case architecture and the CERBERO skeleton is presented in Figure 2 below:

Figure 2. Planetary Exploration use case - CERBERO skeleton mapping

More details about the implemented functionalities of the demonstrator may be found in

the following sections.

3.1. Functionalities

The implementation of the M36 Planetary Exploration demonstrator splits functionalities

into the following parts, according to set goals and requirements in D2.2:

1. Physical and energy modeling

2. Trajectory computation and generation

3. Diversity, scalability, parallelization and redundancy

4. HW/SW monitoring

H2020-ICT-2016-1-732105 - CERBERO

WP26 –D6.2: Planetary Exploration Demonstrator (Final version)

Page 13 of 49

5. User command and simulation

6. Adaptation manager

7. Encryption

In the context of the tasks of the project, the demonstrator involved integration of results

from WP3, WP4 and WP5; and was developed within WP6. In the following paragraphs

the functionalities of different parts of the demonstrator are described.

3.1.1. Physical modeling

The WidowX robot arm that has been used for the validation of the computing platform;

it has six degrees of freedom, corresponding to each one of its actuator joints as shown in

Figure 2.

Figure 2. Degrees of freedom of robotic arm

The physical model is built based on the Denavit-Hartenberg parametrization

[DH1][DH2], which provides a standard way of attaching reference frames from the

physical links of a robot manipulator. The joints are selected depending on the degrees of

freedom of the arm and constructional constraints. For the elaboration of the model, five

joints are identified:

• Joint 1: Servo 1

• Joint 2: Servo 2

• Joint 3: Elbow (fixed 90º due to arm structure)

• Joint 4: Servo 3

• Joint 5: Servo 4

H2020-ICT-2016-1-732105 - CERBERO

WP26 –D6.2: Planetary Exploration Demonstrator (Final version)

Page 14 of 49

Since servos 5 and 6 do not affect to the final position of the grip (only to its orientation

and to the gripping movement), neither they intervene in the physical model equations,

nor they are considered when sending the commands to the arm.

Knowing the z-axis for each frame matches the joint axis, these parameters are defined

as:

• J: number of joint, i.e. index;

• r: value of the radius about previous z-axis;

• d: offset of the origin of the reference frame along previous z-axis;

• α: angle between the z-axis of previous and current joint.

A diagram of simple kinematic chain representing these parameters is presented in Figure

3 (note that designation ‘a’ is used instead of ‘d’ in the figure).

Figure 3. Denavit-Hartenberg parameters for schematic kinematic chain [VALVERDE]

Table 2 shows the Denavit-Hartenberg convention parameters for the model of the robot.

Table 2. Denavit-Hartenberg parameters of the physical model

Ji ri di αi Θi

1 0 0 π/2 Θ1

2 15 0 -π Θ2

3 5 0 0 Θ3

4 15 0 0 Θ4

5 15 0 0 Θ5

H2020-ICT-2016-1-732105 - CERBERO

WP26 –D6.2: Planetary Exploration Demonstrator (Final version)

Page 15 of 49

Some of these parameters could have been chosen differently, but after considering the

direction of the rotation of each servo, the resulting transformation equations should be

equivalent. The correctness of the physical model was ensured by obtaining a 3-D

representation of the arm based on calculated parameters. A view of this three-

dimensional representation generated by the Peter Corke toolbox [CORKE] is depicted in

Figure 4.

Figure 4. Output of Peter-Corke robotics toolbox

Mathematical equations for this model are too large to be included in this document, but

they may be found in the open data files for this use case [PEUCOD].

3.1.2. Energy modeling

In order to implement power consumption optimization, it was necessary to build an

energy model of the application. This model is twofold: on one hand it refers to the

power consumed during the computation of the cyber part, and on the other hand it must

consider the energy consumed by the actuators when moving the physical part to the

endpoint.

The energy consumption corresponding to the mechanical movement of the arm is orders

of magnitude above the computing power of the platform, but since the last was found to

be interesting in order to highlight specific steps in the adaptation loop, it has been also

considered.

Moreover, please note that in realistic environment the robotic and the computational

parts could be also powered by different set of batteries. Therefore, splitting the models

make specific sense to mimic the real flying model deployment.

3.1.2.1 Physical part model

There are several methods for the power consumption optimization on the movement of a

robotic arm. These strategies are based on the calculation of the trajectories with the

minimum effort, the minimum torque rate, or the minimum mechanical energy among

other optimization functions [CARABIN].

For this purpose, the mechanical energy approach has been adopted, being widely explore

in literature and found compatible with different optimization strategies

[BAILON][SENGUPTA][MOHAMMED]. The mathematical expression of the

consumption function for each actuator is:

H2020-ICT-2016-1-732105 - CERBERO

WP26 –D6.2: Planetary Exploration Demonstrator (Final version)

Page 16 of 49

𝑃𝑖 = ∫ 𝜃̇(𝑡)𝜏(𝑡)𝑑𝑡
𝑇

0

The following considerations may be applied:

• The robot is going to work under zero (or very low) gravity;

• The robot is going to work in vacuum or very thin atmosphere;

• Rotation speed of servomotors is constant over time (we will command

them accordingly).

Under the previous assumptions, being torque constant over time at a given rotation

speed, the consumption equation can be expressed as:

𝑃𝑖 = 𝑘𝑖 · Δ𝜃𝑖

Therefore, the energy consumed by every servo after a given movement is directly

proportional to its rotation angle. By applying the principle of superposition, the total

energy consumption for the physical part will be the summation of power consumed by

every actuator, i.e. directly proportional to the summation of all rotation angles.

𝑃 =∑𝑃𝑖

6

𝑖=1

=∑𝑘𝑖 · Δ𝜃𝑖

6

𝑖=1

= 𝐾 ·∑Δ𝜃𝑖

6

𝑖=1

The previous equation represents final mathematical expression for the simplified energy

model. The constant of proportionality is found through calibration of the power source

setup as depend on the desired units of measurement.

Extensive power monitoring tests has been performed in the lab in order to achieve a first

validation of the correctness of the model. Since it targets a low gravity, thin atmosphere

work environment, the model prediction could not be directly compared to the power

measurements: it was necessary to scale these measurements of different trajectories (for

and against gravity). Further experiments replicating these conditions correspond to more

advance stages of space missions and would be very costly to design and produce.

3.1.2.2 Cyber part model

The cyber part, running all diverse trajectory planning algorithms, should account on the

SW running on the R5 cores operating in lock-step mode, for reliability reasons, and so,

running as in an equivalent single-core mode. For the HW version, directly mapped HW

accelerators (such as the Nelder Mead one) or based on MDC (such as the Dumped Least

Squares one) rely on the ARTICo3 infrastructure.

The behavior of the ARTICo3 infrastructure in terms of additional power consumption is,

in general, characterized by three factors:

• There is a quite linear increment of power consumption with an increasing

number of accelerators.

• However, if good performance scalability is obtained, the computation of energy

(power along time) gives better energy utilization when the highest number of

accelerators are used.

H2020-ICT-2016-1-732105 - CERBERO

WP26 –D6.2: Planetary Exploration Demonstrator (Final version)

Page 17 of 49

• Under the previous conditions, scalability is driven by the computation. However,

if the bus gets saturated, increasing the number of used accelerators just increases

power and energy since there are no more possible time reduction.

• Power consumption in double redundancy and in triple redundancy increase

linearly. Two accelerators in DMR consume slightly less than two accelerators

operating with different data.

Figure 5 shows a typical design space of solutions provided by ARTICo3. Continuous

lines are actual measurements while dotted lines are projections with the model.

Figure 5. Design Space and Energy model for ARTICo3 infrastructure

As it can be seen, all the previously mentioned effects can be observed, and the model

may be built by the measurement of the power used for one slot, and taking into account

memory transfers and execution times, verify memory-bounded or computing-bounded

execution.

The results section shows some measurements that show the behavior with the Inverse

Kinematic problem. The adaptation manager could work with look-up tables of

consumption based on such results, although actual power measurements will be used

also.

3.1.3. Trajectory Generation

Any robotic manipulator is composed, as depicted in Figure 6, of different parts, namely:

1) a base; 2) rigid links; 3) joints (each of them connecting two adjacent links); and 4) an

end effector.

H2020-ICT-2016-1-732105 - CERBERO

WP26 –D6.2: Planetary Exploration Demonstrator (Final version)

Page 18 of 49

Figure 6 – Generalized robotic manipulator.

As you can see in Figure 6, physically an angle can be associated to each rotational joint,

or a displacement for a prismatic joint, and the end effector position can be determined

by:

• computing the spatial coordinates of the end effector from all the joint angles,

resolving a Forward Kinematics (FK) problem.

• computing the joint angles from a desired end-effector spatial coordinate,

resolving an Inverse Kinematics (IK) problem.

Indeed, implementing an arm controller we had to work on IK problems to derive the

angles of the joints starting from a given desired position (or set of positions). Solutions

of IK problems are not straightforward, since:

• more than one solution can be found for a desired end-effector position, for

example elbow-up or elbow-down poses could both lead to reach the same spatial

coordinate;

• there could be joint angles limitations; and finally,

• out-of-reach end-effector spatial coordinates could be experienced.

In the CERBERO project, despite different algorithms are available at the state of the art,

TASE adopted as a baseline the Nelder-Mead one (see Section 3.1.3.2). They also

provided the definition of an operational workspace (see Section 3.1.3.1).

In general, many numerical and non-numerical solutions are available at the state of the

art [Aristidou 2017]. Numerical methods, the category Nelder-Mead belong to, require

various iterations to converge over a solution, but are better capable of dealing with

Degrees of Freedom, and multiple end effectors (e.g. fingers of a hand or arms of a body)

with respect to analytic solutions and data-driven methods. Among the numerical

solutions we can list: Heuristic methods and Cyclic Coordinate Descendant ones [Wright

2012]; Newton-based methods (exploiting second-order Taylor expansion), and Jacobian-

based methods (exploiting inverted, pseudo-inverted and transposed Jacobian matrices)

[Buss 2009].

In the CERBERO project, to prove the possibility of effective deployment of functional

adaptive infrastructure, beside the Nelder-Mead also a second numerical algorithm

known as Damped Least Square (DLS) has been implemented (see Section 3.1.3.3).

H2020-ICT-2016-1-732105 - CERBERO

WP26 –D6.2: Planetary Exploration Demonstrator (Final version)

Page 19 of 49

3.1.3.1 Workspace and Trajectory Generator

In robotics, many times it is interesting to know what is the set of locations that can be

reached. This is what is called the “workspace” of the robot and depends on

constructional parameters of the robot itself, but also on the end-effector mounted. The

workspace for a six-axis robotic arm is a six-dimensional space that consists of all

possible combination of values for the six degrees of freedom of the arm, i.e. the

complete set of positions and orientations of the robot.

Also, singularities are a very important phenomenon that limit the usable parts of the

workspace. A singularity is a position where IK fail, and the robot end-effector becomes

blocked in certain directions. Moreover, passing close to a singularity results in high joint

velocities which may be unexpected and may be dangerous for the robot itself and its

surroundings. Main singularities have been identified (wrist, elbow and shoulder

singularity) for wrist-partitioned, vertically articulated robotic arms, but these

occurrences can only be avoided through the appropriate design of the whole robot cell.

Typically, the workspace is a combination of several singularity-free workspace subsets.

For this use case this analysis has not been performed since it is outside the scope of the

project. A “safe zone” has been specified instead in cylindrical coordinates, where the

robot can be moved without the risk of encountering a singularity if specific guidelines

are followed. The 3D representation of this safe zone is depicted in Figure 7:

Figure 7. Three-dimensional view of the safe zone of the robot (dimensions in cm.)

The description of this safe zone, mathematical equations and guidelines for the

movements are included as open data [PEUCOD].

H2020-ICT-2016-1-732105 - CERBERO

WP26 –D6.2: Planetary Exploration Demonstrator (Final version)

Page 20 of 49

According to the workspace definition provided by TASE, UNISS has derived a

trajectory generator available as open data [TRJ]. The reference trajectory set comprises

100 different trajectories, sorted by length, and available for comparisons in the

trajectories.csv file [TRJ].

Within the given workspace different possible tasks, with different possible requirements

and characteristics, have been considered.

• Task 1: Retrieval of rock sample from planetary surface of Mars

o Approximate distance of trajectories: 50 cm

o Required positioning accuracy: 10 mm

• Task 2: Manipulation of sample containment

o Approximate distance of trajectories: 10 cm

o Required positioning accuracy: 5 mm

3.1.3.2 Nelder-Mead optimization

The first motion planning algorithm that was implemented is based on the Nelder-Mead

optimization method [NM]. It is often used in non-linear searches of the minimum or

maximum of a cost function since it is a direct search method that does not need the

calculation of the function derivatives.

The main drawback of this method is its convergence is not mathematically guaranteed,

and the optimization process could lead to non-stationary points. However, after

extensive engineering testing the adopted NM based solution has not given convergence

problems, being capable of always finding a solution in a low number of iterations and

proven itself to be a valuable tool for the generation of trajectories.

The optimization process looks for a local optimum of a multidimensional problem,

finding the approximate solution when the cost function varies smoothly. The accuracy of

the searching process can be customized impacting on the number of iterations, but given

a required accuracy the length of the iterative process cannot be known in advance.

This mechanism starts with a 6-dimensional simplex: in this scenario, each dimension

represents a degree of freedom of the arm. The centroid of the starting simplex is

determined by the joint angles of the starting position (which are known).

Then, a series of transformations are applied to this simplex as seen in Figure 8:

H2020-ICT-2016-1-732105 - CERBERO

WP26 –D6.2: Planetary Exploration Demonstrator (Final version)

Page 21 of 49

Figure 8. Simplex transformations during the Nelder-Mead optimization process [Wright 2012]

The cost function is evaluated in all vertices and then, a transformation in the simplex is

produced. Depending on the values of the simplex, it will experience expansions,

contractions or reflections in order to narrow the search more and more after each

iteration.

A contingency mechanism is implemented, in such a way that if the solution is not found

in a number of iterations, the initial simplex is recalculated with random values generated

around the starting angles, and the process starts over.

In this scenario, the cost function is calculated as follows: first, the forward kinematics

equations are applied to the vertex in order to obtain its corresponding Cartesian

coordinates. Then, the least squares fitting between this point and the target point is

calculated. In this step, the constraint of canceling the z coordinate of two last joints is

added in order to keep the last section of the arm straight and avoid weird positions

during the movement. When the cost function value is smaller than the required accuracy,

the search process concludes and the angles of the joints for the final position are

provided.

This process will need to be repeated a number of times until the final position is reached

since, in order to avoid jerky movements and increase its smoothness, the algorithm

works with a list of intermediate points that can be generated through linear interpolation

or any other method.

3.1.3.3 Damped Least Squares Method

To guarantee algorithmic diversity, UNISS has studied and implemented, together with

UNICA, another trajectory IK solver, the Damped Least Squares (DLS). The DLS

approach belong to the algorithms in the Jacobian-based methods category. All of them,

as the name says, are based on the Jacobian matrix [Lewis 2003] that is defined as

follow:

H2020-ICT-2016-1-732105 - CERBERO

WP26 –D6.2: Planetary Exploration Demonstrator (Final version)

Page 22 of 49

𝑓: Ω ℝ𝑛 → ℝ𝑚 𝐽𝑓(𝑥) =

(

𝜕𝑓1
𝜕𝑥1
(𝑥) ⋯

𝜕𝑓1
𝜕𝑥𝑛
(𝑥)

⋮ ⋱ ⋮
𝜕𝑓𝑚
𝜕𝑥1
(𝑥) ⋯

𝜕𝑓𝑚
𝜕𝑥𝑛
(𝑥)
)

∈ ℝ𝑚,𝑛

The Jacobian matrix represents a transformation between two time derivative-related

spaces: the Cartesian Space and the Velocity Space. This latter depends on the Velocity

Joints Space according to the equation:

∆𝜃⃗ = 𝐽+∆𝑒

where ∆𝜃⃗ is the joint space vector, ∆𝑒 is the error or displacement vector and 𝐽+ is a

matrix computed from the Jacobian matrix J. In the paper [Fanni L. 2019] more details

are provided on how to calculate all these terms.

In the following we briefly focus just on 𝐽+ that is computed, according to the DLS

algorithm proposed in [Buss 2015], as:

𝐽+ = (𝐽𝑇𝐽 + 𝜆2𝐼)
−1
𝐽𝑇 =

and, by substituting this expression into the ∆𝜃⃗ one, we obtain:

∆𝜃⃗ = (𝐽𝑇𝐽 + 𝜆2𝐼)−1𝐽𝑇∆𝑒

The dumping factor, lambda, in the proposed implementation is a static parameter (fixed

to 0.5) that is used, more in general, to handle singularities in the workspace.

To compute the entire trajectory according to this methodology, the steps are summarized

in Figure 6. This process is clearly iterative: the new angles are obtained according to the

current ones 𝜃𝑛𝑒𝑤 = 𝜃𝑜𝑙𝑑 + ∆𝜃⃗.

Figure 6. Simplex transformations during the Nelder-Mead optimization process [WRIGHT]

Please note that the process shown in Figure 6 is normally iterated several times. The

number of iterations, N, is a parameter of the DLS algorithm. This parameter is directly

H2020-ICT-2016-1-732105 - CERBERO

WP26 –D6.2: Planetary Exploration Demonstrator (Final version)

Page 23 of 49

proportional to the accuracy: the larger is N, the smaller will be the error among the

desired (the pedix Th in the formula below, standing for theoretical desired point) and

computed/reached (the pedix Cl in the formula below, standing for classical DLS)

end-effector spatial coordinate. The final error point is computed as:

∆𝑒𝑟𝑟−𝐶𝑙−𝑇ℎ= √[(𝑥𝐶𝑙 − 𝑥𝑇ℎ)2 + (𝑦𝐶𝑙 − 𝑦𝑇ℎ)2 + (𝑧𝐶𝑙 − 𝑧𝑇ℎ)2]

An important design decision in the DSL algorithm regards the value of N to be chosen.

To empirically determine such value, we have analyzed (prior to the implementation) the

behavior of the DLS for variable values of N. This analysis is reported in Figure 9.

Regardless of the N value, the error trend is growing in general with the trajectory length.

Therefore, longer trajectories may turn out to be critical with respect to the accuracy

when N is fixed. At the same time, the error decreases by increasing the number of

iterations N to perform the job over the same trajectory. Let’s assume a tolerance fixed to

0.5 mm:

• for N=10, only the first short trajectories can satisfy the tolerance;

• by increasing N from 50 to 100, more trajectories can maintain the error below the

tolerance.

• setting N from 500 to 1000, all the trajectories can meet the tolerance.

From our empirical analysis in the given scenario, we found out that there is a

relationship between the density of points per trajectory, defined as the total length of the

calculated trajectory divided by the number of iterations to execute it, and the tolerance

that can be guaranteed. Our empirical analysis on the reference set of 100 trajectories,

derived as described in Section 3.1.3, proved that given a tolerance of 5 mm, 8 points per

centimeter should be computed to satisfy the given constraint; while relaxing the

tolerance constraint to 10 mm, just 4 points per centimeter are sufficient.

All the data that permit to verify these assumptions and to reproduce our analysis are

available as open data [DLS].

H2020-ICT-2016-1-732105 - CERBERO

WP26 –D6.2: Planetary Exploration Demonstrator (Final version)

Page 24 of 49

Figure 9. Accuracy of the end-effector position: (top) variation with the number of iterations N in the

DLS algorithm and (bottom) zoom in of the behavior in the target accuracy range.

3.1.4. Diversity and scalability

The work done in WP4 proved that on a self-adaptive infrastructure different types of

adaptivity can be supported by a self-adaptive system. On the demonstrator we were able

to prove that the outcome and integrations carried out in WP4 and WP5 facilitate the

possibility of supporting various types of execution, based on SW and on HW, as well as

providing adaptive diversity, scalability and fault tolerance leveraging on the combined

benefits of mixed-grained reconfiguration support offered by ARTICo3 and MDC

[FANNI 2018, RODRIGUEZ 2018].

H2020-ICT-2016-1-732105 - CERBERO

WP26 –D6.2: Planetary Exploration Demonstrator (Final version)

Page 25 of 49

Diversity in terms of HW and SW execution is a good fault tolerance mechanism,

because it offers an ultimate solution in the case of common mode failures that affect

completely the execution on a given computing fabric. For instance, if a fault on the

FPGA part, or in a power supply that is used only by this one, HW execution would be

stopped and the execution would be moved to SW-only execution.

Algorithmic diversity has also been used, by implementing the two different trajectory IK

solvers described in the previous section: the Nelder-Mead (NM) and the Damped Least

Squares (DLS).

• The drawback of NM algorithm is that the computation time is not predictable,

given the fact that the number of iterations of the simplex algorithms is dependent

on the specified accuracy. i.e., the distance between the specified point (the input

to the algorithm) and the proposed one (the cartesian point obtained by the

proposed set of absolute angles) should be kept under a specified limit.

• In DLS accuracy is only given by the number of segments the trajectory is split in,

which in turn depend on the length of the same trajectory. Thus, for a given

trajectory and for a fixed accuracy, the number of steps required to the DLS is

known. Being a numerical solver, the computation time of a single run of the

algorithm is constant, meaning that, once defined desired accuracy and trajectory

length, the whole DLS computation time is predictable.

CERBERO self-adaptation loop is capable of mastering different types of adaptation,

including non-functional ones. As it will be discussed below in Section 3.2, besides the

algorithmic implication of offering predictable computation time, useful in critical tasks,

the DLS has also been modeled in order to exploit a further degree of adaptivity offered

by the CERBERO framework. In fact, the HW version of DLS has been designed with

MDC, which enables intra-slot low overhead adaptivity. Two different variants of the

HW version of DLS have been modeled: the baseline (BL) and the high performance

(HP) one. The two variants provide different trade-offs in terms of computing time and

power consumption:

• BL is slower but less power consuming,

• HP is faster but more power hungry.

In such a way, according to the current state of the system in terms of power budget

and/or level of criticality, it is possible to switch between BL and HP variants in an

extremely lightweight manner, avoiding ARTICo3 complete reconfiguration of the whole

slot.

To summarize, the algorithmic diversity is useful for different quality and performance

solutions. While guaranteed and exact precision movement1 is to be solved by NM,

1 NM algorithm, when converging, is capable to meet exactly the given accuracy (provided as input), while

in the DLS case accuracy depends on the chosen number of iterations (that are the intermediate point of the

trajectory), empirically determined on the basis of the length of the trajectory. In the second case, we DLS

prove to be able to stay within a range, but not to provide a certain accuracy number.

H2020-ICT-2016-1-732105 - CERBERO

WP26 –D6.2: Planetary Exploration Demonstrator (Final version)

Page 26 of 49

guaranteed timing2 execution is achieved by DLS. Diverse fabric execution and diverse

algorithmic solving offer four different execution possibilities:

• NM execution of SW (single core)

• DLS execution on SW (single core)

• NM execution using ARTICo3 accelerators

• DLS execution using ARTICo3 accelerators, with additional MDC adaptivity.

Figure 10. Diversity on the execution of the reverse kinematics, observable in the PiSDF graph.

Note: The four versions of the algorithm produce a result that is set to a file. This file is

then sent to one of the two following possibilities:

• To the real robotic arm in order to make the appropriate servo operation

• To the Spyder graphic simulator of the robotic arm to check the behavior when

the node is available.

2 The number of iterations of the DLS is provided as input, therefore its execution time is known. On the

contrary, NM one is not since simplex optimizations are carried out until convergence is reached.

H2020-ICT-2016-1-732105 - CERBERO

WP26 –D6.2: Planetary Exploration Demonstrator (Final version)

Page 27 of 49

3.1.5. Parallelization and adaptable redundancy

In the demonstrator, different levels of parallelization turned out to be useful:

• Acceleration through instantiation of multiple cost-function cores (related to

previous section)

• Direct parallelization of the algorithm (computing new points without the

calculation of immediate previous ones)

The scalability possibilities offered by ARTICo3 allow different modes of execution, all

for both NM and DLS:

• Execution using one accelerator

• Execution in scalability mode using two/three/four accelerators

• Execution in DMR mode (dual redundancy) with two accelerators in redundant

mode

• Execution in DMR mode with two sets of redundant accelerators with an

equivalent performance of two accelerators (using four)

• Execution in TMR mode, using three accelerators with voting for fault masking.

The following listing shows an example on how to invoke different potential

parallelization levels, as an example of the functions to be used by the adaptation

manager to easily allow for adaptation with no deep knowledge of the underlying

functions.

void changeNumberSlots(int nbSlots){

 //Release previous instances of a3 kernels

artico3_kernel_release("costfunction");

//create new SW struct for a3 kernel

artico3_kernel_create("costfunction", 512, 8, 1);

 for(int i = 0; I < nbSlots; i++){

 // load nBSlots artico bitstreams

 artico3_load("costfunction", i, 0, 0, 0);

 }

 // set all registers to zero and set internal state to reset

 artico3_kernel_reset("costfunction"); //activate reset signal

// define variable a3data_t with values to be written in the

// configuration registers. in this case, simplexPerAccelInit is

// 10 (simplex to be computed by every accelerator

 a3data_t wcfg[8] = {simplexPerAccelInit, simplexPerAccelInit,

 simplexPerAccelInit, simplexPerAccelInit,

 simplexPerAccelInit, simplexPerAccelInit,

 simplexPerAccelInit, simplexPerAccelInit};

 // write configuration data into configuration registers

 artico3_kernel_wcfg("costfunction", 0,wcfg);

}

The code that runs in parallel against several accelerators is described below. It is not

intended to give a detailed operation of the execution, but to show the different elements

that make up the code:

• Data allocation for memory exchanges (input parameters and output parameters)

H2020-ICT-2016-1-732105 - CERBERO

WP26 –D6.2: Planetary Exploration Demonstrator (Final version)

Page 28 of 49

• A loop that, for every kernel invocation (in charge of execution several points in

parallel each), performs:

o Preparation of input data

o Invocations (in a loop) of the subsequent sub-trajectories that are sent for

the complete trajectory computation

o Memory disposal (free)

• Memory free

void cost_fun_HW_Parallel(int nbParameters, int simplexPerAcc, int

ParallelPoints, simplexPlus_t *inputs) {

//printf("cost_fun_HW_Parallel\n");

 artico3_kernel_reset("costfunction");

 a3data_t wcfg[8] =

{simplexPerAcc,simplexPerAcc,simplexPerAcc,simplexPerAcc,simplexPerAcc,

simplexPerAcc,simplexPerAcc,simplexPerAcc};

 artico3_kernel_wcfg("costfunction", 0, wcfg);

 int GlobalValues = simplexPerAcc * ParallelPoints;

 x_0 = artico3_alloc(GlobalValues * sizeof *x_0, "costfunction",

"port0", A3_P_I);

 x_1 = artico3_alloc(GlobalValues * sizeof *x_1, "costfunction",

"port1", A3_P_I);

 x_3 = artico3_alloc(GlobalValues * sizeof *x_3, "costfunction",

"port2", A3_P_I);

 x_4 = artico3_alloc(GlobalValues * sizeof *x_4, "costfunction",

"port3", A3_P_I);

 pos_final_1 = artico3_alloc(GlobalValues * sizeof *pos_final_1,

"costfunction", "port4", A3_P_I);

 pos_final_2 = artico3_alloc(GlobalValues * sizeof *pos_final_2,

"costfunction", "port5", A3_P_I);

 pos_final_3 = artico3_alloc(GlobalValues * sizeof *pos_final_3,

"costfunction", "port6", A3_P_I);

 cost = artico3_alloc(GlobalValues * sizeof *cost, "costfunction",

"port7", A3_P_O);

 //filling buffers

 unsigned int simplexPlusID = 0;

 for (simplexPlusID = 0; simplexPlusID < ParallelPoints ;

simplexPlusID++){

 copyAccInputSimplex(nbParameters, simplexPlusID, simplexPerAcc,

inputs);

 }

 artico3_kernel_execute("costfunction", simplexPerAcc *

ParallelPoints /*gsize*/, simplexPerAcc/*lsize*/);

 artico3_kernel_wait("costfunction");

 for(simplexPlusID = 0; simplexPlusID < ParallelPoints ;

simplexPlusID++){

 //copyAccOutputSimplex(int nbParameters, int simplexPlusID, int

simplexPerAcc, simplexPlus_t *inputs)

H2020-ICT-2016-1-732105 - CERBERO

WP26 –D6.2: Planetary Exploration Demonstrator (Final version)

Page 29 of 49

 copyAccOutputSimplex(nbParameters, simplexPlusID, simplexPerAcc,

inputs);

 }

 artico3_free("costfunction","port0");

 artico3_free("costfunction","port1");

 artico3_free("costfunction","port2");

 artico3_free("costfunction","port3");

 artico3_free("costfunction","port4");

 artico3_free("costfunction","port5");

 artico3_free("costfunction","port6");

 artico3_free("costfunction","port7");

 return;

}

As it may be observed, the procedure is quite similar to the invocation of GPU kernels.

The ARTICo3 integrated with PREESM includes a function to include these calls

automatically on architectures that account on ARTICo3 execution.

Same as for different parallelization modes shown before, redundant modes of operation

are set by specifying the mode of operation of a set of kernels/slots. These modes are

selectable by the adaptation manager by making use of simple functions available in the

ARTICo3 run-time library.

3.1.6. HW/SW monitoring

The CERBERO toolchain offers also monitoring capabilities support, which has been

exploited in the project in different manners. The positive aspects is that PAPIFY, which

is based on the well-known and established PAPI library, masks the access to the

monitors, allowing to treat them in the same way despite what is monitored (KPI under

observation) and where (HW or SW).

Instrumentation of the PiSDF for performance monitoring is done by using the PAPIFY

tool embedded in PREESM. The PAPIFY-VIEWER tool is employed to represent the

collected performance monitoring information. The work achieved along the project

allows to monitor both SW and HW components.

• Specifically, at SW side, actor execution time per iteration is monitored as a

performance monitoring event to be provided to the Adaptation Manager.

• At HW side, execution time, error events and power measurements per actor

iteration are monitored and fed to the Adaptation Manager.

3.1.6.1 Radiation failures monitoring

When operating in redundant modes, the voter/comparator in the fixed infrastructure of

ARTICo3 accounts with error counters that are incremented in every word transaction

when resulting data are read from the accelerators, before sending it to the main memory.

Injection of faults use a simple model where a specified accelerator is set to operate under

faulty conditions. Whenever a given accelerator is set to be faulty, transactions with the

results are all set to ‘all ones’. If the mode of operation is in either DMR or TMR, the

H2020-ICT-2016-1-732105 - CERBERO

WP26 –D6.2: Planetary Exploration Demonstrator (Final version)

Page 30 of 49

associated fault registers start to increase. These registers, accessible via the

corresponding ARTICo3 PAPI component, may be read.

Whenever a given accelerator is identified to be faulty, the corresponding bitstream may

be rewritten. This improves repair times with respect to conventional scrubbers, since the

reconfiguration time for a given slot is approximately 7 times smaller than the complete

bitstream (determined by the ratio of approx. 26 MB for the complete bitstream to 3-4

MB of a partial bitstream).

3.1.7. User command and simulation

The Planetary Exploration demonstrator intends to recreate a number of operating

conditions distinctive from the scenario that are hardly replicable on the Earth surface. In

order to overcome this issue, a Graphic User Interface has been developed. It provides an

appealing, intuitive and easy-to-use environment to command the arm.

Commands are sent by serial protocol to the computing platform, where are decoded.

The main functionalities implemented in this GUI include:

• Set end-point in Cartesian coordinates (x, y, z)

• Set end and intermediate points in Cartesian coordinates

• Launch execution of pre-set trajectories

• Trigger environmental events (start and end solar storm or sand storm)

• Alternate between two different scenarios: sample retrieving and container

manipulation, with different requirements of end-effector positioning

accuracy (see section 3.1.3.1).

The graphic appearance of the GUI in shown in Figure 11:

H2020-ICT-2016-1-732105 - CERBERO

WP26 –D6.2: Planetary Exploration Demonstrator (Final version)

Page 31 of 49

Figure 11. Planetary Exploration demonstrator GUI interface

While setting a target end-point directly commands the computer platform to initiate the

motion planning algorithm, configuring a pre-set trajectory will switch between the

different internal CSV files specifying the coordinates of the trajectory. The same occurs

when alternating between scenarios: it will change the accuracy requirement, stored in an

internal file read during the execution of the algorithms. Last, the commands that indicate

environmental events are received by the adaption manager that will trigger adaption

accordingly.

The GUI has been developed in Python 2.7 and has been tested under Python Spyder.

This framework has been used to develop a Motion Simulator, as well in order to validate

the calculated trajectories without having to connect the arm every time.

This simulator application receives the angles calculated by the computation platform and

draws a schematic representation of the movement of the arm. It considers two different

scenarios, one in free space and the other with an obstacle placed in a known position.

The simulation of the arm avoiding an obstacle is displayed in Figure 12.

Figure 12. Sequential captures on Motion Simulator

H2020-ICT-2016-1-732105 - CERBERO

WP26 –D6.2: Planetary Exploration Demonstrator (Final version)

Page 32 of 49

The files for the graphic user interface, a document explaining the implemented

communication protocol and the movement simulator are provided as open data

[PEUCOD].

3.1.8. Encryption accelerator

Despite not being the main focus of this use case, encryption functionalities could be

useful in certain aerospace applications and in future phases of the development of the

planetary exploration robots. To be ready for these future needs, we designed and

independently tested a dedicated robust accelerator implementing authenticated

encryption.

Robustness here is needed to reliable operating in a harsh environment, thus we do not

need to address challenges related with the presence of a smart adversary voluntary

injecting fault to mount an attack for extracting secret information.

The accelerator implements the AES algorithm used in Galois/Counter Mode, with a

MAC size of 128 bit, being this the configuration is currently widely used in aerospace

[CCSDS].

The accelerator includes error detection and correction capabilities. The choice to include

these capabilities directly in the module instead of using the one provided by ARTICo3

comes from the fact that robustness of the AES algorithm and the development of optimal

error detection and correction codes for it is a problem that has been widely studied in

literature and the dedicated design previously proposed have been shown to achieve

sufficient robustness at minimal cost. These designs are thus a natural solution for the

particular problem of ensuring robustness of the AES algorithm. The selection of the

amount of redundancy (and, as direct consequence, the provided robustness) can be

configured by the user by means of a dedicated input port. Being designed to be a library

component for future use, the accelerator has an interface that allows an easy integration

with different types of components.

3.2. Integrated and evolved tools

The PE Demonstrator, and all its functionalities described in the previous section, has

been designed and managed using the tools at the computational level of CERBERO

environment. In particular Fig. Figure 13 illustrates tools adopted at design-time (on the

left) and at run-time (on the right).

H2020-ICT-2016-1-732105 - CERBERO

WP26 –D6.2: Planetary Exploration Demonstrator (Final version)

Page 33 of 49

Figure 13. CERBERO tools used by PE demonstrator

Design-Time Support

At the design-time, the application is modeled adopting PREESM that allows to early

stage analysis and facilitate the definition of the partitioning of the application among the

cores and the HW fabric (1). The application, at this stage, can be automatically

instrumented with PAPIFY calls necessary to read monitors present in both SW and HW

(2). The HW computing fabric leverages on the multi-grain reconfiguration given by the

combination of MDC (3) and ARTICo3 (3). Hereinafter it is reported a short recap on the

design-time adopted tools:

• PREESM enables parallel-application development with design-time prediction,

and provides also code generation capabilities, generating an optimized code to

execute the application on the given parallel and heterogeneous architecture

[PREESM].

• PAPIFY generalizes PAPI to provide monitoring capabilities for heterogeneous

HW/SW architectures. PAPIFY is capable of instrumenting any PREESM

dataflow applications according to user-defined monitoring configurations

[PAPIFY-DEMO] [PAPIFY] [PAPIFY-VIEWER] [Madroñal 2019].

• MDC and ARTICo3 offer support for the design and implementation of a mixed

grain architecture able to offer different degrees of reconfiguration [FANNI 2018,

RODRIGUEZ 2018, MULTIGRAIN_TUT]. This architecture can be

automatically instrumented with PAPI compliant monitors [Fanni 2019].

Run-Time Support

The mixed-grain architecture given by the combination of MDC and ARTICo3 offers

high flexibility, by enabling different execution trades-off in terms of performance,

surfing among execution set-points and enabling scalable parallelism as well as achieving

fault-tolerant designs through redundancy (1). Instrumentation of the architecture with

ad-hoc PAPI-compliant HW monitor, allows PAPIFY and PAPIFY VIEWER (2) to pass

H2020-ICT-2016-1-732105 - CERBERO

WP26 –D6.2: Planetary Exploration Demonstrator (Final version)

Page 34 of 49

relevant information to SPIDER, where a dedicated actor manager triggers the adaptation

of the design (3). Hereinafter it is reported a short recap on the design-time adopted tools:

• SPIDER is the dynamic counter part of PREESM and performs dynamic mapping

and scheduling of dataflow applications on a parallel heterogeneous architecture

under a given constrained scenario [SPIDER].

• PAPIFY provides a set of run-time execution information to SPIDER. Monitors

data are sent to SPIDER global run-time to enable informed decision taking

[PAPIFY-DEMO] [PAPIFY] [PAPIFY-VIEWER] [Madroñal 2019].

• MDC and ARTICo3 deploy and configure proper engines over the physical

substrate at design-time. These engines are used at run-time to execute all the

actions needed to support run-time reconfiguration of the HW [FANNI 2018,

RODRIGUEZ 2018, MULTIGRAIN_TUT, Fanni 2019].

The following sections provide more technical details on these tools and how they have

been adopted into the presented PE Demonstrator.

3.2.1. PREESM and SPIDER

In Figure 14, the PiSDF describes the DLS application in PREESM.

Figure 14. PiSDF description of the DLS application for design-time implementation using PREESM

In this implementation, the parameters (the blue pentagons) are set at design-time cannot

be assigned at run-time, such as the characteristics of the communication links (FIFO

sizes and delays) that depend on them. The actor Init sends the starting angles of the

joints and the required points of the trajectory. From the information related to the

starting configuration, the FK actor evaluates the end-effector position by using the

Forward Kinematics. The actor Firing_DLS takes this as input and forwards it with the

other desired points, managing the firing rate of the actor DLS_allin1 that performs the

algorithm always iterations times for each required point. At the end of the process,

DataSender can send all the angles of the considered trajectory to the robotic arm. Thus,

in order to handle the application at run-time with a variable number of iterations per

segment, a SPIDER implementation has been needed.

H2020-ICT-2016-1-732105 - CERBERO

WP26 –D6.2: Planetary Exploration Demonstrator (Final version)

Page 35 of 49

Figure 15. PiSDF description of the DLS application for run-time configuration using SPIDER

Figure 16. PiSDF description of the subgraph DLS_Loop

Figure 15 and Figure 16 show the dataflow description of the DLS application and of its

sub-graph respectively, that have been designed by using PREESM and SPIDER. The

configuration actor (DLS_PreProcessing) reads the inputs given by the user related to the

accuracy and the required points of the trajectory. From the distance between subsequent

input points, it calculates the number of the iterations required to the DLS to achieve

every specific point, given the input accuracy. Then, it writes a file ("segmentsInfo.txt")

in which all the points are reported with the related number of iterations. Moreover, it

evaluates the total number of iterations needed to perform the entire movement (sum of

the iterations of each point).

However, its main effect is to set the dynamic parameters: number of input

segments/points (segments) and number of total iterations (total_iterations). The actor

DLS_init fires one time per graph firing, only to read and send all the point information

contained in the "segmentsInfo.txt", and enable the N firings of the next actor Firing_Init

(where N corresponds to the parameter segments). For each point of the trajectory,

Set_Iter updates the number of iterations (iterations), on which the FIFO sizes and delays

(grey circles on the edges) depend. Moreover, depending on the battery level, it enables

high or low performance of the accelerator by setting its ID (parameter acc_id) in the

HW case (subgraph DLS_HW in the Figure 10).

As in the static version, FK provides the proper angles of the joints associated to the

starting point of the trajectory (that is statically defined). The actor Firing_DLS handles

input data tokens to send to the DLS_allin1. For the whole trajectory, DLS_allin1 fires

iterations times for each input point, performing the DLS algorithm and sending the

output to the ThetaOut_Writer that stores it into the file “thetas.txt” for each DLS

iteration. ThetaOut_Enabler fires at the end of every segment present in the trajectory

H2020-ICT-2016-1-732105 - CERBERO

WP26 –D6.2: Planetary Exploration Demonstrator (Final version)

Page 36 of 49

only to enable the DataSender. This actor properly sets the angles of the joints, send the

data of the whole trajectory to the arm, and enables a new reading of the input in the

configurator (DLS_PreProcessing).

3.2.2. PAPIFY/PAPIFY VIEWER

PAPIFY is employed to monitor the HW/SW NM and DLS dataflow implementations.

Specifically, the PAPIFY toolbox is used:

• To specify and collect execution time per actor iteration as a performance

monitoring event for actors mapped to HW.

• To specify and collect execution time, error event counter values and power

measurements per actor iteration during HW actor execution in a centralized

manner at the SW side of the heterogeneous system using the concept of

component

• To provide the collected counter values (execution times, error events and power

measurements) to the adaptation manager for proper actor parameter adaptation in

SPIDER.

The PAPIFY-VIEWER tool is employed to graphically represent the monitoring data per

either actor or computing resource.

3.2.3. ARTICo3

As it was mentioned, both NM and DLS were designed so that they were compatible with

ARTICo3 slots to allow for scalable and dynamically redundant operation modes. In

order to achieve these goals, ARTICo3 was used to:

• Define an architecture that splits the FPGA into the static part and four

reconfigurable slots.

• Use the toolflow to generate the HW versions of both NM and DLS. They have

been generated by either transferring the cost function from C to VHDL in the

case of NM, or use HLS → MDC → ARTICo3 wrapper addition in the case of

DLS

• Use the provided ARTICo3 run-time support libraries in the function calls

available in the adaptation manager.

3.2.4. MDC

As described previously, in order to introduce an additional degree of non-functional

adaptivity in the system, the HW version of the DLS has been modeled with MDC

enabling two different execution profiles. The dataflow corresponding to such DLS HW

model, in the BaseLine (BL) variant, is depicted in Figure 14. It corresponds to the actor

DLS_allin1 within the SPIDER PiSDF description of the DLS, depicted in Figure 15.

The DLS HW model involves, in turn, five HW actors, each executing a different step of

the processing. HW actors have been designed by means of Vivado HLS starting from

H2020-ICT-2016-1-732105 - CERBERO

WP26 –D6.2: Planetary Exploration Demonstrator (Final version)

Page 37 of 49

the C code of the SPIDER DLS_allin1 monolithic actor. The DLS HW model, besides

having 5 inputs, as shown in Figure 17, also takes two dynamic parameters, compliantly

with the corresponding SPIDER PiSDF model, and produces 4 outputs.

Figure 17. MDC model of the HW version of the DLS algorithm (BL variant).

Among all the HW actors, J_Matrix is the one responsible for about half of the

computing time in the BL variant of the HW implementations. This actor, starting from

the initial angles of the joints, is in charge of calculating the Jacobian matrix J, that is

then used in the following computation by the other HW actors.

To provide an alternative to the BL configuration of the DLS HW implementation, the

High Performance (HP) version has been derived by substituting the BL J_Matrix HW

actor with a corresponding HP one. The HP J_Matrix HW actor has been generated with

Vivado HLS as well, but UNROLL directives have been adopted to provide a faster, but

more resource hungry J_Matrix actor. The HP variant of the DLS HW model is than

equal to the BL one, but the J_Matrix actor has been replaced with the corresponding HP

version, resulting in a speed up of the whole computation at a price of increased resource

occupancy and, in turn, power consumption.

By running MDC on BL and HP DLS HW models, a reconfigurable DLS accelerator able

to switch between these two execution profiles, BL and HP, has been generated. Being

the reconfiguration provided by MDC a virtual reconfiguration, meaning that the

resources of the two profiles are always present within the accelerator, the achievable

trade-off is in terms of computing time vs. power consumption.

3.2.5. Mixed-Grain Adaptivity

The integration of MDC and ARTICo3 offers the possibility of automatically implement,

deploy and manage mixed-grain reconfigurable architectures, able to provide different

degrees of flexibility. Applications to be accelerated are defined as dataflow

specifications and merged by MDC in an ARTICo3-compliant CGR kernel. Then

ARTICo3 toolchain processes this kernel to automatically embed it in the HW

architecture [FANNI 2018, RODRIGUEZ 2018, MULTIGRAIN_TUT].

In this particular demonstrator this allowed us to support:

H2020-ICT-2016-1-732105 - CERBERO

WP26 –D6.2: Planetary Exploration Demonstrator (Final version)

Page 38 of 49

1. functional changes of the execution from NM to DLS, exploiting potential of

partial reconfiguration;

2. robust execution of both NM and DLS, by leveraging on ARTICo3 slots

redundancy;

3. different execution trade-off of the DLS algorithm, by implementing HP and LP

configurations concurrently on the same slot with no partial reconfiguration

penalty;

4. exploit parallelization potentials of the simplex optimization computation in the

NM implementation by distributing calculations upon multiple ARTICo3 slots.

3.3. Development and deployment environment

The robotic arm used is a Widow X by Trossen Robotics [TROSSEN]. It is a

wrist-partitioned, vertically articulated robotic arm with six degrees of freedom. This

robot mounts dynamixel actuators in each joint. This kind of servomotors is not

representative of space technology, where typically brushless DC (BLDC) motors are

used [NASA]. The main reasons are related to their limited life due to brush wear, and

the generation of sparks. A BLDC motor control scenario was envisioned in early stages

of the project, but the challenges of the robotic arm scenario were found to be more

interesting in order to highlight the benefits of the complete CERBERO toolset.

The board that has been selected to implement the RCU is a ZCU-102 (see Figure 18)

that contains a XCZU9EG-2FFVB1156E MPSoC SRAM based device. This device

contains a variety of computing fabrics, which is valid for exploiting the heterogeneous

execution support devised in the adaptation WP (WP4). Among the fabrics selected for

execution, there are:

• An A53 quad-core 64 bits core from ARM, where Linux OS and SW supported

tools are held.

• A programmable logic component (i.e. FPGA fabric) which holds the ARTICo3

infrastructure, enriched with MDC-compliant slots and PAPIFY monitors, for

HW accelerated execution.

H2020-ICT-2016-1-732105 - CERBERO

WP26 –D6.2: Planetary Exploration Demonstrator (Final version)

Page 39 of 49

Figure 18. Xilinx ZCU102 development board

The device also contains other cores, such as R5 cores for real-time execution, and an

embedded GPU. This last one would be a desirable fabric, but the support provided by

the manufacturer restricts its use for processing graphics with OpenGL libraries, which is

out of the scope of this project.

The ARTICo3 architecture was implemented within the project using a 4 slot architecture.

An 8-slot based architecture was also used for verifying performance and scalability. The

ARTICo3 toolflow includes a tutorial on how to set up the virtual architecture partition

(i.e., the number of slots and the architecture of the static part).

H2020-ICT-2016-1-732105 - CERBERO

WP26 –D6.2: Planetary Exploration Demonstrator (Final version)

Page 40 of 49

4. Tests, results and feedback

4.1. Tests

For testing and validating the M36 Planetary Exploration demonstrator the scenario

described in D2.1 has been implemented by using PREESM, PAPIFY, SPIDER,

ARTICo3 and MDC tools.

As stated in section 3.1.3, initially the Nelder-Mead optimization was adopted as the

baseline approach for the path planning algorithm implementation. Initial testing of a

standalone application was performed in order to assess its usability in the scenario.

Figure 19 shows the lab set-up in TASE where the validation tests took place.

Figure 19. Set-up in TASE for testing of N-M implementation

These validation tests were favorable and they confirmed that the Nelder-Mead algorithm

would not throw convergence problems during the optimization process, and that the

defined “safe zone” was indeed a valid workspace free of singularities.

After M18, in order to be capable of highlight more features of the toolset, it was decided

to add the algorithm diversity feature to the demonstrator. In that moment, a development

started in parallel for another version of the motion planning algorithm based on the

Damped Least-Squares that overcomes some of the limitations of the Nelder-Mead

algorithm. Thanks to the combined effort of all partners involved in the project, this

algorithm was promptly validated with the real arm, and its implementation under

CERBERO toolset could start.

H2020-ICT-2016-1-732105 - CERBERO

WP26 –D6.2: Planetary Exploration Demonstrator (Final version)

Page 41 of 49

Figure 20 shows the set-up for the DLS implementation of the motion planning algorithm

as displayed in Alghero for the Summer School 2019 demonstration.

Figure 20. Set-up in Alghero for the demonstration of DLS implementation

These two development environments with the physical robotic arm were used to

develop, integrate and validate the different parts of the demonstrator.

Final tests were focused on the ability to execute the scenarios as defined in D2.1 and

also prove that expected behavior of the computing system is produced after every

mechanism of adaptation is triggered; e.g. change in robot functionality with different

accuracy constraints automatically impacts performance, redundancy mechanisms are

implemented when the solar storm is commanded, or algorithm diversity is properly

exploited.

4.2. Test result

4.2.1. Quantitative results

4.2.1.1 Nelder-Mead on ARTICo3

The following performance and power measurements, that correspond with actual values

of the execution in the target board, are to exemplify the performance of ARTICo3

accelerator system behavior. For this, values on execution time, power and resulting

energy values (computed by multiplying the previous two values) are shown in the Table

3:

H2020-ICT-2016-1-732105 - CERBERO

WP26 –D6.2: Planetary Exploration Demonstrator (Final version)

Page 42 of 49

Table 3. Performance metrics for Nelder Mead on ARTICo3

accelerators Elapsed Time (s) Meas. Power (mW) Energy (J)

1 11.5 375 4.31

2 6.5 400 2.60

3 5.5 450 2.47

4 4.5 450 2.02

5 3.4 500 1.70

6 3.4 525 1.78

7 3.4 550 1.87

8 3.4 575 1.95

The time measurement is for a complete 100 points trajectory, solving 8 points in parallel

assuming, as a starting point, the same set of initial arm angles for all point computations

within the same accelerator invocation. Every point iteration needs a total of 10 simplex

evaluations. Evaluating 8 points in parallel implies, therefore,80 simplex evaluation per

iteration. The number of iterations is not fixed and depends on the precision and the

distance angles between the original starting point of the computation and the resulting

final one. Although the architecture used in the PE use case contains only 4 slots, the

previous table shows data for up to 8 accelerators, to show the scalability property. It may

be seen that, using more than 5 accelerators, no further performance savings are obtained,

on the contrary and increased power and energy are used.

Time per iteration per point for a variable number of accelerators is shown in Figure 21.

Curves apply only for the feasible parallelization achievable, i.e., since a point cannot be

split into two accelerators, it is useless to use a number of accelerators higher than the

number of points in parallel.

Figure 21. Time per single iteration for different number of parallel points and slots

H2020-ICT-2016-1-732105 - CERBERO

WP26 –D6.2: Planetary Exploration Demonstrator (Final version)

Page 43 of 49

As mentioned before, the number of iterations to solve each point is not fixed. Figure 22

shows a statistical boxplot for the number of iterations required when splitting the

number of points in every accelerator invocation.

Figure 22. Number of iterations (-3 sigma, avf, 3 sigma) per parallel points invocation

As it may be seen, the total number gets reduced with higher parallel points. This is due

to the fact that the points that are invoked in parallel are close to each other and start from

the same angle, and so, the precision gets closer for all parallel computations, and so,

release the accelerator for the next point set computation.

4.2.1.2 Damped Least Square with MDC

Table 4 reports resource occupancy numbers coming from the High Level Synthesis of

the actors involved in the DLS reconfigurable HW accelerator, as well as from the

synthesis of the isolated reconfigurable datapath provided by MDC. As discussed

previously, even if such datapath is capable of executing the BL and HP variants of the

DLS HW implementation, the corresponding resources are always instantiated in the

device, meaning that the resource occupancy for such implementation is the same for

both BL and HP cases.

Table 4. Synthesis results for Zynq UltraScale+ target device.

entity LUT FF DSP BRAM

J_Matrix 4729 3577 18 15

J_Matrix_HP 13880 12110 88 5

J2_Matrix 1074 833 5 0

Min 738 676 5 0

H2020-ICT-2016-1-732105 - CERBERO

WP26 –D6.2: Planetary Exploration Demonstrator (Final version)

Page 44 of 49

J2Cof_Matrix 1872 1402 8 2

Theta 1656 1295 5 0

reconfigurabl

e datapath
18925 15448 129 14

Dealing with latency (see Table 5) and power consumption (see Table 6) the situation is

different: the HP variant is over-performing the BL one, employing barely 25% less time

for executing one iteration, that is one step, of the DLS algorithm. Being the number of

iterations fixed for a given length of the trajectory and desired accuracy, this percentage

of saving is kept constant also for the considered test trajectories.

Table 5. Post-synthesis latency analysis at 100 MHz

latency [ms]

configuration 1 iteration trajectory 1 trajectory 2 trajectory 3 trajectory 4

BL 0.0452 11.3 9.04 4.52 9.04

HP 0.0329 8.22 6.58 3.29 6.58

If the resource trade-off between the two variants, BL and HP, is flattened by the MDC

virtual reconfiguration, it is still present a trade-off in terms power consumption. In fact,

for calculating one iteration, that is one step, of the DLS algorithm, the BL variant

consumes about 4% less power than the HP one. This difference could be very important

in the considered context where the system is supplied by batteries and the power of these

latter can be limited.

Table 6. Post-synthesis power consumption analysis at 100 MHz

power [mW]

configuration total static dynamic clocks signals logic BRAM DSP

BL 751 621 130 50 5 13 4 18

HP 780 621 159 50 14 24 4 27

The DLS reconfigurable HW accelerator generated by MDC is thus successfully

providing a system capable to quickly adapt depending either on the desired computation

time (latency) or the amount of power consumption. The adaptation is reached by

changing configuration from the BL profile, that is low power but slow, to the HP profile,

that is fast but power hungry, and vice versa.

4.2.2. End-user results

In the table below the results from the demonstrator development activity were added (in

italic) to the expected results as specified in Table 3-1 of D2.1:

H2020-ICT-2016-1-732105 - CERBERO

WP26 –D6.2: Planetary Exploration Demonstrator (Final version)

Page 45 of 49

ID Goal Results M36 demonstrator

PE1 Enable Hardware / Software

(HW/SW) co-design for

Rad-Tolerant control of

robotic arm for planetary

exploration using adaptable

COTS FPGAs.

Minimization of energy consumption and costs, while

keeping/improving resiliency.

o PiSDF applications developed through PREESM

get all benefits from the design time, from

architecture modeling to code generation, and

ARTICo3 architecture enables heterogeneous

systems with resiliency to radiation failures.

o The implementation of a HW/SW self-adaptation

loop on heterogeneous FPGA technologies has

been facilitated by the adoption of the available

tools (PREESM, SPIDER, ARTICo3, MDC and

PAPIFY) and offered the possibility of switching

among different working points and

configurations to guarantee variable

performance and resiliency.

o The Robot Control Unit has been implemented in

a Zynq UltraScale+ FPGA, which has proven to

hold the computing power and reconfigurable

resources necessary to demonstrate this

requirements.

PE2 Develop integrated “open”

toolchain environment for

development of robotic

arms for space missions

with focus on multi-

viewpoint system-in-the-

loop virtual environment.

Provide multi-objective design space exploration and

multi-view analysis.

Reduce development time of complex heterogeneous

systems by increasing the level of abstraction.

Increase quality and verification level to ensure proper

operation of the system.

o The complete toolset has been used to deploy and

run the self-adaptation computing infrastructure

capable of controlling the robotic arm.

o A number of library elements that can be used

for future developments have been produced.

PE3 Development of a (self-

)adaptation methodology

with supporting tools.

Efficient support of architectural adaptivity, according

to radiation effects and harsh environmental conditions.

o The usage of the CERBERO tools shows the

efficient support of functional, non-functional and

repair-oriented adaptation, according to internal

triggers from processing platform, user commands

and emulation of environmental conditions.

4.3. Feedback

Based on the high-level functionalities and the demonstrator skeleton description defined

in early versions of the respective deliverables, an initial test scenario was defined. This

scenario was tackled in the M18 demonstrator, which highlighted the following

H2020-ICT-2016-1-732105 - CERBERO

WP26 –D6.2: Planetary Exploration Demonstrator (Final version)

Page 46 of 49

achievements:

• Verification of the proper operation of the inverse kinematics and optimization

algorithms to provide collision-free motion planning.

• Improvement of execution time by using parallel methods of computation.

• Optimal parallelization to find a trade-off between execution time and soft motion

planning.

• Support of dual and triple mode redundancy, enabling component-level fault

tolerance.

After the development of M18 demonstrator, additional functionalities were added.

First, the initial PiSDF graph implementing the algorithm in PREESM evolved into a

more complex description with a higher number of actors, increasing the monitoring

granularity of internal KPIs achieved by the PAPIFY tool. This graph included a HW

description for the most critical, time consuming actor, enabling the HW scalability.

In parallel, algorithm diversity was explored and DLS solution for the inverse kinematic

problem was developed. The concurrent adaptive implementation of different algorithms

contributes to achieve the requested QoS versus computational efficiency and energy

consumption trade-off.

Finally, ARTICo3 was integrated with SPIDER, enhancing the reconfigurable behavior of

the model by allowing to set new values for parameters for the ARTICo3 accelerators at

run-time.

The final solution provided all envisioned functionalities, leading to the results described

in section 4.2. A final evaluation on the fulfillment of the initial requirements and the

tools utilized during the development of M36 demonstrator for the Planetary Exploration

use case is provided in Section 4 of D6.5.

H2020-ICT-2016-1-732105 - CERBERO

WP26 –D6.2: Planetary Exploration Demonstrator (Final version)

Page 47 of 49

5. Conclusion

The final demonstrator of the Self-Healing System for Planetary Exploration use case

uses CERBERO methodology, tools and technologies to overcome the main challenges

of the scenario.

Fault tolerant capabilities are provided to the computing platform, automatically

adjusting the redundancy of the HW accelerators and being capable of moving the

execution flow of the path planning algorithm from HW to SW and vice versa in an

autonomous way.

Adaptation to the harsh physical environment is achieved due to the run-time trade-offs

evaluation by the adaption manager between the internal KPIs of the system, user

commands and environmental conditions emulation.

The implemented performance monitoring counters in the cyber part of the computing

platform provide simultaneous HW/SW power measurement and optimization

capabilities.

This demonstrator highlights an extensive amount of work from the CERBERO

consortium. The collaboration between scientific and industrial community during this

time has produced important synergies: advances in relevant, state-of-the art challenges

of the field of space robotics were addressed, and also the evolving needs defined by this

activity helped refine the tools to better fit real use case applications.

H2020-ICT-2016-1-732105 - CERBERO

WP26 –D6.2: Planetary Exploration Demonstrator (Final version)

Page 48 of 49

6. References

 [Aristidou 2018] Aristidou, A., Lasenby, J., Chrysanthou, Y. and Shamir, A. (2018), Inverse Kinematics

Techniques in Computer Graphics: A Survey. Computer Graphics Forum, 37: 35-58.

doi:10.1111/cgf.13310

[BAILON Bailón,W.; Cardiel, E.; Campos, I.; Paz, A. Mechanical energy optimization in trajectory

planning for six DOF robot manipulators based on eighth-degree polynomial functions and a

genetic algorithm. In Proceedings of the 7th International Conference on Electrical

Engineering, Computing Science and Automatic Control, Tuxtla Gutierrez, Mexico, 8–10

September 2010; pp. 446–451.

[Buss 2009] Samuel R. Buss. Introduction to inverse kinematics with Jacobian transpose, pseudoinverse

and damped least squares methods , 2009.

[Buss 2015] Buss, Samuel & Kim, Jin-Su. (2005). Selectively Damped Least Squares for Inverse

Kinematics. J. Graphics Tools. 10. 37-49. 10.1080/2151237X.2005.10129202.

[CARABIN] Carabin, G.; Wehrle, E.; Vidoni, R. A Review on Energy-Saving Optimization Methods for

Robotic and Automatic Systems. Robotics 2017, 6, 39.

[CCSDS] https://public.ccsds.org/Pubs/352x0b2.pdf

[CERBERO 2018] http://www.cerbero-h2020.eu

[CORKE] http://petercorke.com/wordpress/toolboxes/robotics-toolbox

[D1.3] CERBERO D1.3 Open Data Management Plan (Final version)

[D2.1] CERBERO D2.1 Scenarios description (Final version)

[D2.2] CERBERO D2.2 Technical requirements (Final version)

[D3.1] Modelling of KPI (Final version)

[D4.2] D4.2 – Self Adaptation Manager (Final version)

[D5.1] CERBERO D5.1 Holistic methodology and integration interfaces (Final version)

[D6.1] CERBERO D6.1 Demonstration Skeleton (Final version)

[D6.8] CERBERO D6.8 Planetary Exploration Demonstrator (Version I)

[DH1] Denavit, Jacques; Hartenberg, Richard Scheunemann (1955). "A kinematic notation for

lower-pair mechanisms based on matrices". Trans ASME J. Appl. Mech. 23: 215–221

[DH2] Hartenberg, Richard Scheunemann; Denavit, Jacques (1965). Kinematic synthesis of

linkages. McGraw-Hill series in mechanical engineering. New York: McGraw-Hill. P. 435.

[DLS] https://www.cerbero-h2020.eu/wp-content/uploads/2019/12/DLS-implementation.zip

[FANNI 2018] Fanni, T., Rodríguez, A., Sau, C., Suriano, L., Palumbo, F., Raffo, L., & de la Torre, E.

(2018, December). Multi-Grain Reconfiguration for Advanced Adaptivity in Cyber-Physical

Systems. In 2018 International Conference on ReConFigurable Computing and FPGAs

(ReConFig) (pp. 1-8). IEEE.

[Fanni 2019] T. Fanni et al., "Run-time Performance Monitoring of Heterogenous Hw/Sw Platforms Using

PAPI," FSP Workshop 2019; Sixth International Workshop on FPGAs for Software

Programmers, Barcelona, Spain, 2019, pp. 1-10.

[Fanni L. 2019] Luca Fanni, Leonardo Suriano, Claudio Rubattu, Pablo Sánchez, Eduardo de la Torre,

Francesca Palumbo. A Dataflow Implementation of Inverse Kinematics on Reconfigurable

Heterogeneous MPSoC. Proceedings of the Cyber-Physical Systems PhD Workshop 2019,

an event held within the {CPS} Summer School "Designing Cyber-Physical Systems - From

concepts to implementation", Alghero, Italy, September 23, 2019. http://ceur-ws.org/Vol-

2457/11.pdf

[Lewis 2003] Lewis, F.L. and Dawson, D.M. and Abdallah, C.T., Robot Manipulator Control: Theory and

Practice}. 2003, Edition 2. CRC Press.

H2020-ICT-2016-1-732105 - CERBERO

WP26 –D6.2: Planetary Exploration Demonstrator (Final version)

Page 49 of 49

[Madroñal 2019] D. Madroñal, F. Arrestier, J. Sancho, A. Morvan, R. Lazcano, K. Desnos, R. Salvador, D.

Menard, E. Juarez and C. Sanz. PAPIFY: Automatic Instrumentation and Monitoring of

Dynamic Dataflow Applications Based on PAPI. IEEE Access, Vol 7, pp. 111801-111812,

Sept. 2019.

[MOHAMMED] Mohammed, A.; Schmidt, B.;Wang, L.; Gao, L. Minimizing energy consumption for robot

arm movement. Procedia CIRP 2014, 25, 400–405.

[MULTIGRAIN_TUT] http://www.cpsschool.eu/previous-editions/cps-summer-school-2018/schedule/multi-grain-

reconfiguration-advanced-adaptivity-cyber-physical-systems-2/

[NASA] NASA-CR-2506, NASA, United States, 1975.

[NM] Nelder, John A.; R. Mead (1965). "A simplex method for function minimization". Computer

Journal. 7 (4): 308–313

[PAPIFY] https://gitlab.citsem.upm.es/papify/papify/wikis/Papify-Website

[PAPIFY-DEMO]

https://www.youtube.com/watch?v=9QbqtEjKI2U

[PAPIFY-VIEWER] https://gitlab.citsem.upm.es/papify/papify/wikis/Papify-Viewer-website

[PEUCOD] https://www.cerbero-h2020.eu/wp-content/uploads/2019/12/Open-Data-PE.zip

[PREESM] https://preesm.github.io/

[RODRIGUEZ 2018] Rodriguez, A., & Fanni, T. (2018, December). Multi-Grain Adaptivity in Cyber-Physical

Systems. In 2018 30th International Conference on Microelectronics (ICM) (pp. 44-47).

IEEE.

[SENGUPTA] Sengupta, A.; Chakraborti, T.; Konar, A.; Nagar, A. Energy efficient trajectory planning by a

robot arm using invasive weed optimization technique. In Proceedings of the 3rdWorld

Congress on Nature and Biologically Inspired Computing, Salamanca, Spain, 19–21 October

2011; pp. 311–316.

[SPIDER] https://preesm.github.io/tutos/spider/

[TRJ] https://www.cerbero-h2020.eu/wp-content/uploads/2019/12/Trajectory-Generator.zip

[TROSSEN] https://www.trossenrobotics.com/widowxrobotarm

[VALVERDE] Valverde, Alfredo & Tsiotras, Panagiotis. (2018). Spacecraft Robot Kinematics Using Dual

Quaternions. Robotics. 7. 64. 10.3390/robotics7040064.

[Wright 2012] Wright, M. (2012). Nelder, Mead, and the other simplex method. Documenta Mathematica,

Extra volume: Optimization Stories, 271-276

