

Information and Communication Technologies (ICT) Programme

Project No: H2020-ICT-2016-1-732105

D5.3: CERBERO Framework Demo

(Final Version)

Lead Beneficiary: AI

Workpackage: WP5

Date: 29/08/2019

Distribution - Confidentiality: [Public]

Abstract: This deliverable describes the integrated CERBERO development framework.

This is a short explanation and guidelines of the software components that compose

CERBERO development framework. The description of the framework characteristics is

included in D5.1. The document presents separately all the PoC that use CIF for

connecting tools, all the direct connection PoC and a PoC of a tool completely developed

during the CERBERO project. This is the final version of the D5.3.

© 2017 CERBERO Consortium, All Rights Reserved.

Disclaimer

Ref. Ares(2019)5505361 - 31/08/2019

H2020-ICT-2016-1-732105 - CERBERO

WP5 – D5.3: CERBERO framework demo

Page 2 of 45

This document may contain material that is copyright of certain CERBERO beneficiaries,

and may not be reproduced or copied without permission. All CERBERO consortium

partners have agreed to the full publication of this document. The commercial use of any

information contained in this document may require a license from the proprietor of that

information.

The CERBERO Consortium is the following:

Num. Beneficiary name Acronym Country

1

(Coord.)
IBM Israel – Science and Technology LTD IBM IL

2 Università degli Studi di Sassari UniSS IT

3 Thales Alenia Space Espana, SA TASE ES

4 Università degli Studi di Cagliari UniCA IT

5
Institut National des Sciences Appliquees de

Rennes
INSA FR

6 Universidad Politecnica de Madrid UPM ES

7 Università della Svizzera italiana USI CH

8 Abinsula SRL AI IT

9 Ambiesense LTD AS UK

10
Nederlandse Organisatie Voor Toegepast

Natuurwetenschappelijk Ondeerzoek TNO
TNO NL

11 Science and Technology S&T NL

12 Centro Ricerche FIAT CRF IT

For the CERBERO Consortium, please see the http://cerbero-h2020.eu web-site.

Except as otherwise expressly provided, the information in this document is provided by

CERBERO to members "as is" without warranty of any kind, expressed, implied or

statutory, including but not limited to any implied warranties of merchantability, fitness

for a particular purpose and non-infringement of third party’s rights.

CERBERO shall not be liable for any direct, indirect, incidental, special or consequential

damages of any kind or nature whatsoever (including, without limitation, any damages

arising from loss of use or lost business, revenue, profits, data or goodwill) arising in

connection with any infringement claims by third parties or the specification, whether in

an action in contract, tort, strict liability, negligence, or any other theory, even if advised

of the possibility of such damages.

The technology disclosed herein may be protected by one or more patents, copyrights,

trademarks and/or trade secrets owned by or licensed to CERBERO Partners. The

partners reserve all rights with respect to such technology and related materials. Any use

http://cerbero-h2020.eu/

H2020-ICT-2016-1-732105 - CERBERO

WP5 – D5.3: CERBERO framework demo

Page 3 of 45

of the protected technology and related material beyond the terms of the License without

the prior written consent of CERBERO is prohibited.

Document Authors

The following list of authors reflects the major contribution to the writing of the

document.

Name(s) Organization Acronym

Antonio Solinas AI

Giuseppe Meloni AI

Maria Katiuscia Zedda AI

Tiziana Fanni UniCA

Carlo Sau UniCA

Francesca Palumbo UniSS

Luca Pulina UniSS

Claudio Rubattu UniSS

Simone Vuotto UniSS

Alfonso Rodriguez UPM

Rafael Zamacola UPM

Daniel Madroñal UPM

Evgeny Shindin IBM

Michael Masin IBM

Karol Desnos INSA

Julio De Oliveira Filho TNO

The list of authors does not imply any claim of ownership on the Intellectual Properties described

in this document. The authors and the publishers make no expressed or implied warranty of any

kind and assume no responsibilities for errors or omissions. No liability is assumed for incidental

or consequential damages in connection with or arising out of the use of the information

contained in this document.

Document Revision History

Date Ver. Contributor

(Beneficiary)

Summary of main changes

02/07/2019 0.1 AI initial draft

15/07/2019 0.2 UNICA SPiDER PAPIFY MDC

26/07/2019 0.2 IBM and UNICA AOW-MDC CIF connection

27/07/2019 0.3 UPM SPiDER-PAPIFY-MDC

H2020-ICT-2016-1-732105 - CERBERO

WP5 – D5.3: CERBERO framework demo

Page 4 of 45

31/07/2019 1.0 AI Release of the complete draft

31/07/2019 1.1 UniSS Review of the complete draft

01/08/2019 1.2 UPM and AI Fix and refactoring

H2020-ICT-2016-1-732105 - CERBERO

WP5 – D5.3: CERBERO framework demo

Page 5 of 45

Table of contents

1. Executive Summary ... 6

1.1. Structure of the Document .. 6

1.2. Related Documents .. 7

1.3. Related CERBERO Requirements .. 7

2. The CERBERO Framework Integration .. 9

2.1. Overview of CERBERO tools connections .. 9

2.2. The Integration processes.. 10

3. Intermediate Format Connections .. 12

3.1. CERBERO Innovative Approach for Semantic Integration.................................. 12

3.2. Purpose of Integration with CERBERO Intermediate Format 13

3.3. Integration Framework Tool-Flow .. 13

3.4. PoC CIF Connection PREESM – AOW – DynAA.. 15

3.5. PoC CIF Connection AOW – MDC ... 18

4. Direct Connections ... 21

4.1. PoC Connection ARTICo3 – MDC – CAPH ... 21

4.2. PoC Connection PREESM-SPiDER-PAPIFY/PAPIFY-Viewer 24

4.3. PoC Connection SPiDER – PAPIFY – MDC .. 27

4.4. PoC Connection SAGE-ReqV – DynAA ... 31

4.5. PoC Connection PREESM - APOLLO multiversioning .. 31

5. Standalone PoC .. 37

5.1. PoC IMPRESS for Just-in-Time HW Composition .. 37

Appendix I: CIF Example ... 42

H2020-ICT-2016-1-732105 - CERBERO

WP5 – D5.3: CERBERO framework demo

Page 6 of 45

1. Executive Summary

This document presents a short description of the main new Proofs of Concept (PoCs) of

the integrated CERBERO development framework, which has been largely discussed in

all the other WP5 deliverables, including those of the single components (D5.2 and D5.6)

and those of the integration methodology (D5.1, D5.4 and D5.5).

It is important to highlight that this document is the second and final version of the D5.7

and they are both supporting documentation of the software deliverables D5.1 and D5.7

respectively. The main scope of this document is to provide the explanation and technical

details of the 7 main PoCs that have been developed and tested at M18 and at M27.

In order to cover and test the two connections strategy used within CERBERO, the

following PoCs have been developed and reported in this deliverable:

• 2 PoCs using CERBERO Intermediate Format (CIF)

• 3 PoCs using the direct connections among couples or series of CERBERO tools.

• 1 PoCs using the direct connection between CERBERO tools and external tools.

• 1 PoC of a single tool, completely developed during CERBERO project.

Each PoC will be described separately. The main goal of the description is to provide the

following information for each of them:

• Purpose of the integration

• Explanation of the technical features of the connection

• Exchanged data

• Explanation of the example that will be used for testing the PoC

• Link to video or any other material considered relevant for emphasising the main

PoC achievements.

Therefore, the mission of this document is neither to describe the components/tools that

are integrated, nor their standalone use; for that information please refer to D5.1 and

D5.2.

In order to speed up and ease the reading and review process the text of sections and

paragraphs that have NOT been significantly updated and revised are in dark gray.

1.1. Structure of the Document

In Section 2 a general overview of the CERBERO development framework and its

integration strategies is provided. In Section 3 a description of the approach for Semantic

Integration is presented together with a comprehensive explanation of the PoCs using

CIF. Finally, Section 4 is dedicated to present PoCs developing direct connections among

H2020-ICT-2016-1-732105 - CERBERO

WP5 – D5.3: CERBERO framework demo

Page 7 of 45

tools. Finally, Section 5 presents a Stand-Alone PoC developed completely during

CERBERO project.

1.2. Related Documents

The CERBERO deliverables related to this document are:

• D2.1 – CERBERO Technical Requirements

o The activities behind D5.3 contribute to satisfy the requirements listed in

D2.1.

• D3.3 – Cross-layer Modelling Methodology for CPS

o D3.3 provides methodological foundation for CERBERO Intermediate

Format.

• D5.1 – CERBERO Holistic Methodology and Integration Interfaces

o D5.1 presents the final version of design framework integration approach

and the required interfaces.

• D5.2 – CERBERO Framework component

o In D5.2 the final version of the technical details of the different

components/features of the CERBERO design environment are reported.

• D5.3 – CERBERO Framework Demo (Ver. 1)

o The PoCs reported in the D5.3 are an integral part of this deliverable.

1.3. Related CERBERO Requirements

Deliverable D2.1 of the CERBERO project defines a list of CERBERO Technical

Requirements (CTRs) the project should achieve. Each of them is referenced with a

unique identifier ranging from 0001 to 0020. The CERBERO framework Demo described

in the current document address 4 CTRs, as described in the following table. It is

important to note that most of the requirements related to the framework are covered by

the tools integrated in the framework and are not reported in the following table.

CTR

id

CTR Description Link with the D5.7 document on CERBERO

framework components

0002 CERBERO framework

SHOULD provide

interoperability between cross-

layer tools and semantics at the

same level of abstraction.

The semantic integration at the same level of abstraction

and the interoperability between cross-layer tool is

demonstrated and tested with the PoC that connects

AOW, DynAA and PREESM and between AOW and

MDC using the CIF.

0004 CERBERO framework

SHOULD provide software

and system in-the-loop

simulation capabilities for

HW/SW co-design and System

Level Design.

System in-the-loop simulation capabilities have been

achieved by the integration of DynAA with MECA with

the SCANeR simulator. Extensive description is provided

in D6.10, since it has already been used in the use case

demonstrator of the Electric Vehicle.

0005 CERBERO framework The possibility of providing a multi-viewpoint, multi-

H2020-ICT-2016-1-732105 - CERBERO

WP5 – D5.3: CERBERO framework demo

Page 8 of 45

SHOULD provide multi-

viewpoint multi-objective

correct-by-construction high-

level architecture.

objective and correct-by-construction high-level

architecture has been guaranteed by the interconnection of

AOW, DynAA, PREESM, demonstrated in the PoC of the

CIF, and among SAGE and DynAA, demonstrated in a

dedicated direct connection PoC.

0009 CERBERO SHALL develop

integration methodology and

framework.

The PoCs presented and developed in this deliverable (and

in the previous one) are part of the assessment of the

overall CERBERO development framework. Assessment

of can be considered still ongoing through the activities

carried out within WP6 where the framework is used by

the UC providers.

H2020-ICT-2016-1-732105 - CERBERO

WP5 – D5.3: CERBERO framework demo

Page 9 of 45

2. The CERBERO Framework Integration

A design environment for CPSs, in general, should be an integrated platform or tool chain

that can be broken down into various interacting components serving the needs of the

different physical and computational elements or subsystems across different layers.

Appropriate software components (a.k.a. the design environment or framework

components) are required to be inter-linked to form a holistic operational framework

following design requirements and seeking a new foundation for CPS design, integration

and operation. One of the goals of CERBERO is to deliver a semantic integration

framework that is customizable per application scenario or use case, yet generalizable

enough to a broad range of application domains.

Integration aims at interconnecting the components together, in a layered fashion, to

facilitate exchange of information and control data between these components or

subsystems and assuring that the integrated system meets performance and behavioural

expectations.

2.1. Overview of CERBERO tools connections

A clear explanation of the CERBERO framework has been reported in the D5.1 Section

4.3, but a schema of all the available connections at design time and at run time are also

reported respectively in the Figure 2.1 and Figure 2.2 of this document.

Figure 2.1 - CERBERO toolchain for Design-Time Support

H2020-ICT-2016-1-732105 - CERBERO

WP5 – D5.3: CERBERO framework demo

Page 10 of 45

Figure 2.2 - CERBERO toolchain for Run-Time Support

2.2. The Integration processes

D5.1 has already fully explained the CERBERO design framework integration approach,

with required interfaces among all the CERBERO tools across all layers of the toolchain

(model, application, runtime, and hardware layers).

In the CERBERO project, using a continuous integration methodology 7 PoCs have been

developed for testing the connection through CIF and the direct connections. This way,

we succeeded in developing and testing:

• connections among tools at the same layer or leveraging on the same Model of

Computation. These types of connection are direct ones, such as MDC with

Artico3, PREESM-SPiDER with PAPIFY, and SPiDER and PAPIFY with MDC.

• cross layer connections operating at design-time, such as AOW and DynAA with

PREESM and AOW with MDC. These connections involve both different

semantics and operate at different levels, so that they leverage on CIF.

• cross layer connections operating at run-time, such as MECA with DynAA,

(described in D6.10) that leverages on a direct integration methodology.

• the connection of the CERBERO framework with external tools, like MDC with

CAPH, PREESM with APOLLO Multi-versioning.

H2020-ICT-2016-1-732105 - CERBERO

WP5 – D5.3: CERBERO framework demo

Page 11 of 45

Moreover, in the present deliverable, we also present the standalone PoC of IMPRESS, a

tool for JIT HW composition. IMPRESS is a tool that has been developed from scratch in

CERBERO and thus, its TRL is low to be included as part of the Use Case demonstrators.

H2020-ICT-2016-1-732105 - CERBERO

WP5 – D5.3: CERBERO framework demo

Page 12 of 45

3. Intermediate Format Connections

3.1. CERBERO Innovative Approach for Semantic

Integration

Information modelling underlies representing or formatting information in a certain way

to guarantee its uniformity and consistency. A meta-model defines (i) the concepts or

information that can be present in a model and that can be accessed and manipulated by

different tools, and (ii) the rules that regulate accesses to the information. However,

sticking with a single meta-model for the entire information model does not come

without a problem, such as: multi-view interoperability, multi-tool interoperability, and

model maintenance (information models compliance to the meta-model).

Hence, strict coupling of information model and meta-model poses interoperability and

maintenance concerns. CERBERO consortium attempts to improve the state-of-the-art of

information modelling and semantic integration, particularly when dealing with

multi-view cross-layer designs. In this sense, CERBERO proposes an approach to

decouple the model information from the meta-model by model’s intermediate format

(a.k.a. intermediate representation) meeting the following requirements:

1. Can be used efficiently for sharing information across different levels of

abstraction and different modelling aspects (views). In other words, an

intermediate format should fully exploit the idea of one-model-with-multiple-

views representation of the system.

Rationale: The modelling of CPS is intrinsically multi-disciplinary, multi-aspect,

and involves different abstraction layers. Any unique model representation for the

system that cannot cope with these intrinsic characteristics is doomed to fail. The

model information should be equally adequate and accessible to the different tools

manipulating the model for the representation of several aspects (modelling,

analysis, code-generation, runtime management, validation), and for manipulation

at different abstraction levels.

2. Allows different tools to access information about a system model with minimally

incorporating details of the meta-models used in other tools.

Rationale: Tools should be able to read, understand, and manipulate the model

information without or minimal knowledge on how this information is organized

in other tools since it both can be changed without notice and is irrelevant to

modelled system.

CERBERO consortium considers that such points are not yet covered coherently and well

enough by state-of-the-art work proposed so far in the literature or readily available, see

D3.6 – Cross-layer Modelling Methodology for CPS for more discussion. In the

following sections we describe our proposal and corresponding Proof of Concept (PoC)

study.

H2020-ICT-2016-1-732105 - CERBERO

WP5 – D5.3: CERBERO framework demo

Page 13 of 45

3.2. Purpose of Integration with CERBERO Intermediate

Format

Integration with CERBERO Intermediate Format (CIF) allows achieving easy exchange

of relevant information between all connected tools. Unlike tool-to-tool integration, CIF

provides a unified platform for model and data transformation that allows implementing

automatic transformation capabilities. Within the CIF framework, meta-models (or

schemas) of all input and output data are defined in a declarative way allowing to define

transformation process as mapping between corresponding schemas. Such unification

allows achieving easy integration of multiple tools having multiple views and/or

providing multiple functionality. The integration of new tools becomes a two-step

process where in the first step tool describes its output and input object models using

class definitions language (schemas), and in the second step tools that requires integration

defines mappings between their object models using equivalence rules (see D5.1 for

details). Ones all this information provided CIF service will care on automatic

transformation between models. Class definitions enabling export/import of tool object

models into intermediate format, while equivalence rules enabling transformation of

intermediate representation of models between connected tools. Such construction

provides additional benefits for tool developers and integrators: it is not necessary to

describe whole data provided by the tool in a case when this data is too complex and full

description requires big effort; instead, one can define only schema of data that is

necessary for other tools in a scope of an integration goal. Thus, integration with CIF

allows achieving data interchange between connected tools without additional software

development process and without effort of complex ontological description of whole

data.

3.3. Integration Framework Tool-Flow

As CERBERO consortium components/tools and technologies undergo continuous

development, CERBERO adopts an iterative integration approach, i.e., continuous and

constantly evolving rather than static or fixed. To facilitate components/tools

interconnection, interfaces are defined and created as points of interaction between

communicating components. Interfacing means using a common message format or

intermediate representation to provide a unified communication paradigm across the

system, entirely or partially. Translation is required from the interface of one component

to the intermediate format and vice versa for bilateral or duplex communication.

CERBERO integration approach considers underlying systems as black boxes, thus

creating a middleware (CIF service) to facilitate communication between the integrated

components. The architecture of CIF service represented on Figure 3.1.

H2020-ICT-2016-1-732105 - CERBERO

WP5 – D5.3: CERBERO framework demo

Page 14 of 45

Figure 3.1 - Architecture of CIF service

The building blocks of CIF service are:

• Instance Base module: is base module of CIF service that enable storage of

information and provides access to this information through Instance Base API.

Current implementation of the CIF service built on top TinkerPop Server, but any

other graph databases supporting gremlin language can be used instead of it

without code modifications. Note, that graph database is not necessary element

for CIF service: Instance Base potentially can be implemented also on top wide-

column or relational database or even JSON-files or JSON-document database.

• Class Base module: provides support of class-related interfaces. Enable storage

of class definitions and allow export/import object models into intermediate

format. In the current implementation class definition storage utilizes file system,

storing each schema as JSON file inside directory structure, where directory

names correspond to namespaces and class names.

• Data extensions of class base module: built on top of class base module and

provide parsing of JSON files into intermediate representation format. Also,

current implementation support XML file conversion, as two-step process where

standard XML to JSON conversion provided at the first step, and the resulting

JSON imported to CIF at the second step.

• Equivalence rules module: includes parser that produce abstract syntax tree from

equivalence rules, enforcement module that enables equivalence rules

enforcement on class base and instance base levels, and rules database that store

all provided rules. In the current implementation equivalence rules stored as

python serialized objects in the same file system structure that serve as class

definitions storage.

Current implementation of CIF service also includes transformation module that will be

removed when equivalence rules module development will be finished.

H2020-ICT-2016-1-732105 - CERBERO

WP5 – D5.3: CERBERO framework demo

Page 15 of 45

3.4. PoC CIF Connection PREESM – AOW – DynAA

Figure 3.2 – PREESM – AOW DynAA CIF PoC

The purpose of the PoC is to calculate optimized scheduling of a software, provided as an

SDF graph, on a hardware, provided as a hardware architecture description. The

optimization can be performed with respect of several goals, such as minimal latency,

maximum throughput, and minimum energy and subject to different constraints, such as

computation and memory capacity. In this scenario PREESM takes a role of the service

requester while AOW and DynAA take a role of the service providers: (i) software and

hardware models described in PREESM passing to AOW, (ii) AOW performs

optimization in order to obtain optimized scheduling, which is passed to DynAA, (iii)

DynAA performs simulation of the proposed scheduling, updates run-times of software

components on the hardware architecture according to the simulation results and pass

them back to AOW (in order to perform another optimization run) or back to PREESM

(if maximum numbers of iterations achieved or if there are no further updates required).

In order to achieve desired integration PREESM provides following types of data:

• SDF graph in XML format representing software architecture, that also includes

additional parameter indicating maximal number of iterations between AOW and

DynAA

• Hardware architecture description in XML format

• Possible mapping scenario between software and hardware including estimated

execution times of different software actors in different processing units in XML

format.

H2020-ICT-2016-1-732105 - CERBERO

WP5 – D5.3: CERBERO framework demo

Page 16 of 45

PREESM also defines schemas of each kind of data in agreed JSON format. Once

defined, these schemas allow the CIF service to import all these data and convert it to

CIF. Finally, PREESM also defines schema of its input data, i.e. format in which

resulting scheduling should be provided to PREESM.

From the second integration endpoint AOW provide two different schemas:

• Scheduling analytic schema, i.e. schema of data required to perform calculation of

optimal scheduling

• Output format schema, i.e. schema of scheduling data produced by optimization,

including current optimization run number and maximal number of iterations

obtained from PREESM.

Finally, DynAA endpoint provides:

• Input schema for scheduling

• Output schema of simulation results.

In scope of the PoC, communication between different tools, as well as communication

between tools and CIF service, are performed in a straightforward way where results

(output) produced by one tool serve as input for another tool. To reduce network

communication overhead all tools considered to run on a single Windows machine. The

orchestration of execution of overall toolchain performed by Windows batch script

allowing verification and demonstration of the integration capabilities without big

development/adaptation overhead of corresponding tools. More complex communication

procedures requiring adaptation of tools invocation methods are postponed to final stages

of the project.

The proposed execution scenario includes the following steps (more details are provided

in and the PoC data flow is shown in Figure 3.3).

1. Orchestration script receives three parameters: PiSDF graph folder, target HW

architecture file in XML format and possible mapping scenario between software

actors from PiSDF graph to processing elements in HW architecture file in XML

format.

2. Orchestration script invoke PREESM execution that generates a flattened SDF

graph from the PiSDF input.

3. When the flattened SDF graph is ready, the orchestration script invokes XML-to-

JSON transformation of all input data files.

4. Resulting data in JSON format is sent to the CIF service endpoint invocating data

transformation according to corresponding schemas. Each data asset receives

unique ID to allow addressing.

5. When data storage completed orchestration script, the script invokes data

transformation to AOW format performing call of corresponding transformation

procedures. This produce JSON files required for AOW.

6. The orchestration script invokes AOW optimization start providing JSON files of

software architecture model, hardware architecture model and possible mappings

data in AOW format.

H2020-ICT-2016-1-732105 - CERBERO

WP5 – D5.3: CERBERO framework demo

Page 17 of 45

7. AOW performs optimization process and store resulting data as JSON in AOW

format.

8. Orchestration script send data to CIF service. Resulting data is converted to CIF

and receiving unique ID.

9. When data storage completed orchestration script, the script invokes data

transformation to DynAA format performing call of corresponding

transformation procedures. This produce JSON files that required for DynAA.

10. Orchestration script invokes DynAA execution providing optimal scheduling

results obtained from AOW in DynAA format.

11. DynAA performs simulation of obtained scheduling results and stores resulting

data in its JSON format.

12. Orchestration script send resulting data to CIF service. Resulting data asset

converted to CIF and receiving unique ID.

13. Orchestration script checks difference between simulation results and

optimization results. If this difference is below provided threshold, or maximum

number of iterations achieved, the Orchestration script invokes data

transformation to PREESM format and executes PREESM passing as parameters

both simulation results and optimization results. Otherwise, the orchestration

script invokes transformation of simulation results to AOW format and calls

AOW providing these results as well as converted PREESM data obtained at

Step 5.

14. If the orchestration script executes AOW in the previous step, go to Steps 7. If

the orchestration script executes PREESM, PREESM generates runtime code and

Stop.

Figure 3.3 – PREESM – AOW DynAA CIF PoC DataFlow

H2020-ICT-2016-1-732105 - CERBERO

WP5 – D5.3: CERBERO framework demo

Page 18 of 45

In the final stages of the project the data transformation module of CIF service will be

removed, and all transformations will be held by equivalence rules module. That is

necessary equivalence rules will be provided instead of transformation scripts.

3.5. PoC CIF Connection AOW – MDC

Figure 3.4: AOW – MDC CIF PoC

The purpose of this PoC is to find optimized merged hardware implementation of

multiple dataflows, provided as Dataflow Process Network (DPN) graphs, on a hardware,

using splitting (1x2) and merging (2x1) switch boxes [Palumbo 2011]. The optimization

can be performed with respect to several goals: model metrics (such as minimal number

of actors, minimal number of connections, minimal number of switch boxes or shortest

switch boxes chain), and implementation metrics (such as minimal area, minimal power

consumption or maximal operating frequency). The merging has to be done according to

the constraint of keeping the functional correctness of all the considered input dataflows.

Moreover, additional constraints can be potentially provided by the user, such as not

merging a specific actor or dataflow.

In this scenario MDC is the service requester, while AOW is the service provider: (i)

dataflow models and their parameters described in MDC are passed to AOW, (ii) AOW

performs optimization in order to obtain optimized merged design according to the

objectives, (iii) the optimal design found by AOW is passed back to MDC.

In order to achieve the desired integration MDC provides following types of data:

• DPN graphs in XDF (XML dialect) format representing dataflows for (potential)

merging;

H2020-ICT-2016-1-732105 - CERBERO

WP5 – D5.3: CERBERO framework demo

Page 19 of 45

• (Optional) hardware parameters, such as area and power consumption of actors,

or maximum achievable frequency of dataflows, considering their implementation

in hardware;

• optimization objectives and (optional) constraints.

In order to fit with CIF and let MDC exploit this latter as a smart bridge to access AOW

service, schemas in the agreed JSON format are required on both sides, MDC and AOW.

Thus, MDC defines:

• schemas of each kind of input data so that the CIF service will be able to import

all the MDC input data and convert them to CIF;

• schemas of result data, i.e. format in which resulting design coming from AOW

optimization should be provided to MDC.

From the second integration endpoint, AOW provides two different schemas:

• input format schema, i.e. schema of data required to perform calculation of

optimal merged hardware;

• output format schema, i.e. schema of optimal merged hardware.

For the PoC purpose communication between different tools, as well as communication

between tools and CIF service, are performed in a straightforward way where results

(output) produced by one tool serve as input for another tool.

To reduce network communication overhead all tools are considered to run on a single

Windows (operating system compliant with both of them) machine. The orchestration of

execution of the overall toolchain is performed by a Windows batch script allowing

verification and demonstration of the integration capabilities without big

development/adaptation overhead of corresponding tools. More complex communication

procedures, requiring adaptation of tools and related invocation methods, can be

implemented. As in the case of the PREESM – AOW – DynAA connection all

transformations at the current phase held by transformation module and will be held by

equivalence rules module instead later.

The proposed execution scenario includes the following steps:

1. orchestration script receives three parameters: DPN graphs folder, actors

hardware parameters file (XML), optimization criteria;

2. orchestration script invokes XML-to-JSON transformation of all input data files;

3. resulting data in JSON format is sent to the CIF service endpoint that, in turn,

invocates data transformation according to corresponding schemas (each data

asset receives unique identifier to allow addressing);

4. when data storage is completed, the orchestration script invokes data

transformation to AOW format (JSON) performing calls to the corresponding

transformation procedures;

5. orchestration script invokes AOW optimization providing files of DPN graphs,

hardware parameters and optimization criteria, all in AOW format (JSON);

H2020-ICT-2016-1-732105 - CERBERO

WP5 – D5.3: CERBERO framework demo

Page 20 of 45

6. AOW performs optimization and stores resulting data in AOW format (JSON);

7. orchestration script sends resulting data to the CIF service in order to be

converted to CIF, again receiving a unique identifier;

8. when data storage is completed, the orchestration script invokes data

transformation to MDC format (XML) performing calls to the corresponding

transformation procedures, concluding the process.

H2020-ICT-2016-1-732105 - CERBERO

WP5 – D5.3: CERBERO framework demo

Page 21 of 45

4. Direct Connections

This section is dedicated to direct tool-to-tool connections.

4.1. PoC Connection ARTICo3 – MDC – CAPH

Figure 4.1 - MDC-ARTICo3 PoC

Purpose of the Integration: CPS need to meet several functional and non-functional

requirements imposed by the environment, the user and their internal status. The presence

of different, concurrent requirements influencing the system during operation introduces

the need for an advanced adaptivity support. FPGA-based reconfigurable systems provide

a valuable solution to this problem: lying in the middle between general purpose

computing platforms and application specific circuits, they offer a trade-off between

software-like flexibility and hardware-based execution performance. The point is that

there are many kind of reconfigurable systems and that their design is not

straightforward. It requires detailed knowledge of both the application and the hardware

infrastructure and the flow is highly variable, depending on the chosen reconfigurability

strategy. As explained in D4.3, reconfigurable systems can be divided, according to their

granularity, in: Fine-Grain Reconfigurable (FGR, changes at bit level) and Coarse-Grain

reconfigurable (CGR, changes at word level) systems.

In CERBERO two tools offer support for hardware reconfiguration: (1) The ARTICo3

framework provides adaptive and scalable hardware acceleration, actively altering the

computing substrate to change the available functionality using DPR (see D5.6), while

(2) the MDC tool delivers automatic generation and management of CGR systems based

on the dataflow model of computation (see D5.6). Their integration brings together all the

H2020-ICT-2016-1-732105 - CERBERO

WP5 – D5.3: CERBERO framework demo

Page 22 of 45

benefits from both DPR and CGR, leading to more flexible solutions that can cope with

the changing of functional and non-functional requirements affecting CPS operating

contexts. The integration of ARTICo3 and the MDC Tool offers a unique toolchain

capable of automatically implementing and managing multi-grain reconfigurable

systems, offering support for advanced adaptivity.

To raise the level of abstraction and make hardware reconfigurable platforms usable by

programmers with little to none hardware design skills, we also integrated in this flow the

CAPH tool, an open source HLS engine external to the CERBERO partnership (see

D4.4). With the MDC & CAPH integration it is possible to automatically generate

generic CGR accelerators for the CERBERO adaptivity support (see D4.4).

Figure 4.2 - CAPH-MDC-ARTICo3 direct tool-to-tool integration

Exchanged Data: Figure 4.2 shows the integrated design flow and the runtime setup.

The hardware generation flow (on the left hand side) starts from high-level dataflow

descriptions of the behaviours to be implemented in the configurable logic. Such

descriptions are compliant with CAPH dataflow specifications. CAPH is an open source

HLS engine supporting dataflow models as specification format (similar to the MDC one)

that generates target independent code (it generates generic RTL descriptions for any

kind of FPGA vendor or for ASIC flows) (see D4.4). CAPH forwards to MDC the SDF

models of the networks to be accelerated and the HDL descriptions of the actors

composing them. MDC merges the SDF models to create the HDL description of the

CGR accelerator, which is post-processed by an ad-hoc MDC back end that derives the

corresponding CGR HDL (Verilog) computational kernel, making it ARTICo3-compliant

(properly wrapping it with the glue logic necessary to serve as an ARTICo3 DPR

reconfigurable partition). Finally, the toolchain generates the bitstreams related to the

system (static part) and to the hardware accelerators (reconfigurable partitions). On the

software side, the toolchain keeps the capability, inherited from the ARTICo3 framework,

H2020-ICT-2016-1-732105 - CERBERO

WP5 – D5.3: CERBERO framework demo

Page 23 of 45

of generating the application executable that manages operation execution and

computation offloading to the hardware accelerators also when these latter are MDC-

generated CGR accelerators. Both (DPR and CGR) reconfiguration mechanisms are

transparently managed from the user code running in the host processor.

PoC: The multi-grain reconfiguration capabilities of the combined CAPH-MDC-

ARTICo3 reconfiguration support are currently shown in an image-processing application

scenario. The setup features ARTICo3 on a Zynq board running Linux and a camera that

acquires live video. The input images are sent to a configurable number of hardware

accelerators where two edge detection kernels have been implemented (Sobel and

Roberts). In order to switch from one kernel to another, the user can decide to use the

FGR approach of ARTICo3 to completely change the logic instantiated in each slot, or to

use the CGR approach of the MDC-generated accelerators to multiplex the internal

datapath of the accelerators. As a result, it is possible to see, in real time, the runtime

overheads of each type of reconfiguration mechanism. Additional adaptivity evaluation

can be performed by changing the working point of the application, which is based on

several parameters: input image size, number of hardware accelerators used to exploit

data-level parallelism, and hardware redundancy level (simplex, DMR, TMR) for fault-

tolerant execution.

Useful material/links:

CAPH-MDC integration, presented at SIE 2018: link

ARTICo3-MDC integration, presented at UPM-CEI: link

http://www.cerbero-h2020.eu/wp-content/uploads/2018/06/Sau_SIE2018.pdf
http://www.cerbero-h2020.eu/wp-content/uploads/2018/06/Fanni_UPMSeminar.pdf

H2020-ICT-2016-1-732105 - CERBERO

WP5 – D5.3: CERBERO framework demo

Page 24 of 45

4.2. PoC Connection PREESM-SPiDER-PAPIFY/PAPIFY-

Viewer

Figure 4.3 - PREESM-SPiDER- PAPIFY PoC

Purpose of the Integration: In the context of CPS, the productivity gap between

platform complexity and application productivity is widening. To cope with this aspect,

current Y-chart design flows isolate the platform and the algorithm development and,

automatically, generate a generic solution for the problem. However, these solutions are

usually generated following a predefined methodology for any application and, in

consequence, they can be easily improved by a trained developer.

In order to improve the quality of these automatic deployments, Design Space

Exploration (DSE) techniques need to be included within the generation procedure and,

additionally, to assess execution performance can be used to refine the work distribution

and improve the final system performance.

In CERBERO three tools can be combined to fulfil this requirement: (1) The PREESM

rapid prototyping framework provides a Y-chart design flow tool; (2) SPiDER is able to

manage the information of the system execution and make changes on the system

workload distribution; (3) finally, PAPIFY tool retrieves the system performance

information by accessing Performance Monitoring Counters through the open-source

PAPI library. The integration of PREESM, SPiDER and PAPIFY offers the capability of

refining the design time proposed solutions, while increasing the decision criteria

managed by SPiDER.

Finally, the platform independencee supported by every tool increases the level of

abstraction reachable by the developer, who can easily obtain real-time system

H2020-ICT-2016-1-732105 - CERBERO

WP5 – D5.3: CERBERO framework demo

Page 25 of 45

performance information and visualize in real-time the behaviour of the system thanks to

PAPIFY-Viewer.

Exchanged Data: Figure 4.4 and Figure 4.5 show the resulting integration of (1)

PAPIFY into PREESM framework and the (2) SPiDER execution block diagram with

PAPIFY and PAPIFY -Viewer tools included, respectively. Additionally, Figure 4.6

shows an example of PAPIFY -Viewer displaying execution time information. In Figure

4.4 the monitoring configuration of the application is set up employing a new user

interface. After that, PREESM automatically generates instrumented code that is

compliant with either PREESM backend or the SPiDER run-time manager. Secondly, as

can be seen in Figure 4.5, PAPIFY performance monitoring has been included within the

Local Run-Time (LRT) of SPiDER, which means that the monitoring happens in each

Processing Element (PE) independently. Additionally, this information is sent to the

Global Run-Time (GRT), which can analyse this information so as to make changes in

the system behaviour to increase the application performance. Finally, PAPIFY -Viewer,

which is an independent application, can display the information in real-time providing

the user with a graphical representation of the current system behaviour, as shown in

Figure 4.6.

Figure 4.4 - PREESM- PAPIFY tool-to-tool integration

H2020-ICT-2016-1-732105 - CERBERO

WP5 – D5.3: CERBERO framework demo

Page 26 of 45

Figure 4.5 - SPiDER-Papify/Papify-Viewer tool-to-tool integration

Figure 4.6 - PAPIFY -Viewer display example

PoC: The system performance monitoring capabilities of the combined PREESM-

SPiDER- PAPIFY/ PAPIFY -Viewer is currently shown using an image-processing

application scenario, a sobel-morpho image filter. The application monitoring is

configured using the PREESM framework and generationcode compliant with the

SPiDER run-time manager. In this case, the user is able to decide how many CPU cores

the system will use. Likewise, during the system execution, PAPIFY-Viewer displays the

workload distribution, the timing and the events that the user has selected to be

monitored. As a result, it is possible to see how the system is affected by the

redistribution of the workload together with a real-time application profiling.

Useful material/links:

PREESM-PAPIFY integration, presented at CF 2018: link

SPiDER-PAPIFY integration, presented at COWOMO 2018: link

https://www.researchgate.net/publication/325217267_Automatic_Instrumentation_of_Dataflow_Applications_using_PAPI
https://hackmd.io/7k7jF-JjR1e4jzXCTITvnA#COWOMO%E2%80%9918-Abstracts

H2020-ICT-2016-1-732105 - CERBERO

WP5 – D5.3: CERBERO framework demo

Page 27 of 45

4.3. PoC Connection SPiDER – PAPIFY – MDC

Figure 4.7 - SPiDER - PAPIFY - MDC PoC

Purpose of the Integration: CPSs need to meet several functional and non-functional

requirements imposed by the environment, the user and their internal status.

The most diffused software (Sw) approach for enabling self-awareness is based on

accessing the existing Performance Monitoring Counters (PMCs) of modern CPUs. In

CERBERO, PAPIFY provides a lightweight monitoring infrastructure by means of an

event library aimed at generalizing the Performance Application Programming Interface

(PAPI) for embedded heterogeneous architectures. PAPIFY has been integrated with

PREESM and SPiDER to provide the automatic instrumentation and management of

monitored code on multi-processor architectures. If the systems include also Hw

acceleration, it may be necessary to instrument it with custom Hw PMCs to provide a

proper feedback to trigger reconfiguration.

One of the Hw reconfigurable infrastructures supported in CERBERO is the Coarse-

Grain Virtual Reconfigurable Circuits (CG-VRCs) provided by MDC. CG-VRCs offer

fast and low power reconfiguration, with a good trade-off between performance and

flexibility, being suitable for providing run-time hardware adaptation. In this kind of

systems, all the resources belonging to all the configurations are instantiated in the

substrate and different configurations are enabled by multiplexing resources in time.

An Hw accelerator can be specialized by the designer to include custom monitors. This

solution is not suitable for Sw developers who may have limited knowledge of the Hw

design flow. Furthermore, if these solutions rely on custom methods to read the monitors,

the process of reading the monitors in the Hw accelerators and the PMCs already

available on the CPU could not be the same, and a heterogeneity of solutions, complex to

be implemented, may be required. This integration relies on the idea of offering to Sw

developers the support to design and implement run-time reconfigurable systems as the

H2020-ICT-2016-1-732105 - CERBERO

WP5 – D5.3: CERBERO framework demo

Page 28 of 45

CG-VRCs and, at the same time, to monitor both the processors and the Hw accelerators

using a unified methodology based on PAPIFY.

Exchanged Data:

The Hw accelerator is modelled starting from a set of dataflow networks described in

CAPH, that are parsed by MDC to generate a Xilinx-compliant IP able to execute all the

different functionalities described by the input dataflow specifications, one at a time. The

code incorporates the accelerator-level monitors as described in D5.5. Together with the

accelerator, MDC generates the APIs to mask the communication with the accelerator.

Furthermore, thanks to the developed configurable PAPI-compliant MDC-component,

PAPIFY can transparently access the above cited Hw monitors.

This Hw accelerator is used by a Sw application, which is modelled as a Parameterized

Interfaced Synchronous Dataflow (PiSDF) specification, using the design-time tool

PREESM and the run-time manager SPiDER, that automatically integrate the PAPIFY

necessary monitoring code. In this context, actors exchange tokens through edges

depending on the feasible working points of the application scenario. With respect to the

mapping strategy, SPiDER handles all Sw tasks taking into account the constraints given

as input by the application designer. The Sw actors delegated to communicate with the

Hw accelerator embed the code to talk to the accelerator, that exploits the APIs provided

by MDC.

PoC: The monitoring capabilities of the combined SPiDER-PAPIFY-MDC design and

management support are shown in an image-processing application scenario, involving a

multi-functional accelerator for edge detection, able to compute two different algorithms:

Sobel and Roberts. The setup features the MDC accelerator on a Pynq board running

Linux, in which are installed SPiDER, PAPIFY and PAPI.

Figure 4.8 - Schematic graphs representation of the Sobel and the Roberts edge detectors.

The dataflows processed by MDC have been described in CAPH language. Figure 4.8

depicts a schematic graph representation of the Sobel and Roberts kernels. The line buffer

H2020-ICT-2016-1-732105 - CERBERO

WP5 – D5.3: CERBERO framework demo

Page 29 of 45

actors are adopted to store previous rows of the image, while delay actors are in charge of

memorizing one previous pixel within a row. Once the actors are filled with the proper

numbers of rows and pixels, the convolution actors can compute the horizontal and

vertical gradients. Actor abs sum sums up the absolute values of the horizontal and

vertical gradients and right-shifts the result for a given scaling factor n. Lastly, the

thresholding actor thr sets to 255 all the magnitudes that are above a certain threshold (in

this case it has been fixed to 80), while setting to 0 the others. The generated Xilinx-

compliant IP is instrumented with 4 monitors at accelerator-level to keep trace of

standard dataflow metrics during execution, such as the execution time, the number of

input tokens and the number of output tokens.

This accelerator is adopted in a Sw application, modelled using PiSDF, in which both Sw

and Hw monitoring are automatically inserted using the PREESM-SPiDER-PAPIFY

design flow as described above.

Figure 4.9 - Dataflow description of the Sw application, modelled using PREESM.

Figure 4.9 illustrates the developed Sw application.

• Given as input to the actor Read_YUV, a YUV video is read frame by frame,

where the number of rows and columns correspond to height and width

parameters respectively. Edge detection is applied only to the Y component,

while the other ones are directly sent to be displayed.

• Before the edge detection, the block Split divides the image in slices depending on

the degree of exploitable parallelism. In this PoC, having available one single Hw

accelerator, no adaptation has been considered in this sense.

• At this point, verified the on-the-fly selected kernel (set by IdSetter) among Sobel

and Roberts, an initialization phase is performed in EdgeMDC_1. In this phase,

the processing data and the communication with the accelerator (through the APIs

provided by MDC) are handled.

• Then, processing occurs by blocks of pixels of a size suitable for the accelerator

specifications (in the assessed example, 32). EdgeMDC_2 sends a number of

blocks, to the EdgeMDC_hw_filter, which forwards the data to the accelerator.

Therefore, EdgeMDC_3 receives the result of each iteration, which is collected in

EdgeMDC_4.

H2020-ICT-2016-1-732105 - CERBERO

WP5 – D5.3: CERBERO framework demo

Page 30 of 45

• Finally, the filtered frame is merged and displayed with the applied type of kernel

and the execution time expressed in Frames per Second (FpS).

With respect to the mapping strategy, SPiDER handles all Sw tasks taking into account

the constraints given as input by the application designer. In the evaluated case, the actors

performing splitting and merging have to be executed onto the same core. Moreover,

SPiDER has managed 305 instances of the single-rate graph. Indeed, 8 out of 11 actors

are executed 1 time per firing, and 99 times per firing the other 3 ones (EdgeMDC_2,

EdgeMDC_hw_filter, and EdgeMDC_3), since 99 blocks are present in the frame size

(352x288 pixels).

The described Sw application has been mapped onto two cores. Specifically, Display and

Read_YUV actors are mapped onto the Core 0 while the others are mapped onto the Core

1 of the adopted board. Among the actors mapped onto Core 1, three actors are repeated

more than one time per firing: EdgeMDC_2, EdgeMDC_hw_filter, and EdgeMDC_3.

Actors Display and Read_YUV are selected for the monitoring of the clock cycles and

number of instructions events, while in the Hw accelerator the monitored events are the

execution time (monitoring the clock cycles) and the throughput (monitoring the number

of output tokens).

During the execution the monitored events are written in csv files to 1) analyse the

application and 2) locate possible bottlenecks using PAPIFY-Viewer. Figure 4.10

illustrates the monitored timing for every actor and, as it can be noticed, EdgeMDC_1,

EdgeMDC_4 and Read_YUV are the actors taking longer. This is coherent with the reality

because these three actors are the ones managing the whole frame. On the contrary, the

actors being executed 99 times per iteration (EdgeMDC_2, EdgeMDC_hw_filter, and

EdgeMDC_3), are among the fastest actors in the specification.

Figure 4.10 - Timing event

In Figure 4.11 and Figure 4.12, events associated to perf_event and MDC PAPI

components are shown, respectively. Here, it can be observed that the events associated

to the real execution of the Hw accelerator (EdgeMDC_hw_filter) are properly measured

for the only actor associated to real Hw accelerator execution.

Figure 4.11 - PAPI_TOT_INS Sw event

H2020-ICT-2016-1-732105 - CERBERO

WP5 – D5.3: CERBERO framework demo

Page 31 of 45

Figure 4.12 - MDC_CLOCK_CYCLE Hw event

Useful material/links:

SPIDER-PAPIFY integration, presented at CF 2018: link

PAPIFY-MDC integration, presented at CF 2019: link

4.4. PoC Connection SAGE-ReqV – DynAA

Figure 4.13 – SAGE -ReqV - DynAA

Purpose of the Integration: Formal verification of the discrete part of a DynAA model

with respect to a set of consistent specification formally checked with ReqV.

Exchanged Data:

DynaaGen is the tool designed to integrate ReqV and DynAA. It takes in input two text

files: a Promela model, containing the discrete description of the system, and a property

https://dl.acm.org/citation.cfm?doid=3203217.3209886
https://dl.acm.org/citation.cfm?id=3323423

H2020-ICT-2016-1-732105 - CERBERO

WP5 – D5.3: CERBERO framework demo

Page 32 of 45

file, containing the LTL requirements that the model should satisfy. The first file is

provided by the designer, while the second one is produced by ReqV.

The provided output is a set of Java classes implementing the input model in DynAA.

PoC:

The integration between ReqV and DynAA is obtained with the pipeline depicted in

Figure 4.14. The requirements are first collected and checked in ReqV. When this process

in ended, and the whole specification is consistent, the requirements are translated into

LTL formulae and passed to DynaaGen, along with the Promela model. DynaaGen first

check every LTL property against the model with the Spin Model Checker. It reports a

countexample if a property is violated. If the model satisfies all the requirements,

DynaaGen automatically generates the Java Source Code with the Dynaa classes

corresponding to the same modelled system.

Figure 4.15 shows the definition of a client-server model written in Promela. In this

example, two client processes try to enter a critical session at the same time, and a server

process grant access to the critical session to only one client at a time. Figure 4.16 shows

some requirements inserted and checked in ReqV. One of such requirements, for

instance, is that only 0 or 1 processes can stay in the critical session in every time steps.

DynaaGen read the Promela process and the requirements passed by ReqV, in LTL

format, and check with the Spin model checker that such requirements are in fact

satisfied by the model. Finally, DynaaGen generates the Java source code representing

the same model in a Dynaa model. Since the generated Java code is quite verbose, only a

fragment of it is shown in Figure 4.17.

Figure 4.14: ReqV- Dynaa Integration Pipeline

H2020-ICT-2016-1-732105 - CERBERO

WP5 – D5.3: CERBERO framework demo

Page 33 of 45

Figure 4.15 - Client-Server Promela Model

H2020-ICT-2016-1-732105 - CERBERO

WP5 – D5.3: CERBERO framework demo

Page 34 of 45

Useful material/links:

Git repository of DynaaGen (https://gitlab.sagelab.it/sage/dynaagen)

4.5. PoC Connection PREESM - APOLLO multiversioning

The PoC explained below demonstrates the possibility and potentiality to connect

CERBERO tools with external tools.

Purpose of the Integration: The combination of a dataflow framework such as

PREESM with an external tool like APOLLO multiversioning reveals the possibility to

exploit intra-actor optimizations which are initially hidden since actors are considered as

primitives of the model. These new potential optimizations can improve the usage of (1)

Figure 4.16 - Client-Server requirements in ReqV

Figure 4.17 - Fragment of the code generated by DynaaGen

H2020-ICT-2016-1-732105 - CERBERO

WP5 – D5.3: CERBERO framework demo

Page 35 of 45

available resources or (2) memory, either creating more threads or applying the right

optimization. As a result, significant speed-ups can be achieved for all software parts of

CPS systems modelled with dataflow models of computation without changing the

mapping between actors and resources performed by PREESM. In particular, massively

parallel computation with a fine granularity of parallelizable actors, such as the

computation used in matrix operations, are particularly well suited to benefit from

polyhedral optimizations.

Exchanged Data: An Application Programming Interface (API) is defined to embed

APOLLO multiversioning run-time into the binary generated by PREESM

PoC: A PREESM application to multiply two matrices has been implemented. The actual

PREESM implementation can be seen in Figure 4.18. This application contains four

actors: two for data generation, one to perform matrix multiplication, and one to collect

the result. Two different configurations will be demonstrated: (1) sequential

configuration, with one thread, and (2) multithreaded configuration, with several threads

to compute the matrix multiplication in parallel.

Figure 4.18 - PREESM application to demonstrate CERBERO polyhedral multiversioning

mechanism

Speed-up results for both configurations and three different scenarios will be shown in

the PoC: (1) when compiled with gcc, (2) when compiled with APOLLO and (3) when

compiled with APOLLO multi-versioning. As can be seen in section 5.4 of D3.2: Models

of Computation, speed-ups up to 20 are achieved when APOLLO multiversioning is

employed.

H2020-ICT-2016-1-732105 - CERBERO

WP5 – D5.3: CERBERO framework demo

Page 36 of 45

Useful material/links:

APOLLO site: http://apollo.gforge.inria.fr/about

http://apollo.gforge.inria.fr/about

H2020-ICT-2016-1-732105 - CERBERO

WP5 – D5.3: CERBERO framework demo

Page 37 of 45

5. Standalone PoC

The PoC reported below is not a not a connection of tools but a standalone proof of

concept of how IMPRESS can be used to implement just-in-time HW composition

applications.

5.1. PoC IMPRESS for Just-in-Time HW Composition

Purpose of the Integration: As IMPRESS and Just-in-time HW composition

applications have been developed from scratch in CERBERO, they have a lower TRL

and are not as mature as other tools of the project. Thus, they are not going to be

integrated in the use cases but are going to be validated using a PoC.

Exchanged Data: the just-in-time HW composition applications use the API provided by

IMPRESS to build and reconfigure the overlays at run-time.

PoC: This PoC is divided in two different applications.

Deterministic JIT HW composition

The deterministic JIT HW composition consists in generating a custom accelerator from

C code without using vendor specific implementation tools.

In this PoC the accelerator is described in a C function. In order to generate the

accelerator, it is necessary to extract the Data Flow Graph (DFG) of the function. To do

that, the C code is converted to LLVM intermediate representation (IR) [Lattner 2004]

and from there the DFG is extracted. The dataflow graph generated should be a direct

acyclic graph, which implies that only IR basic blocks (i.e. blocks without branches) can

be transformed to valid DFGs. It is possible to transform the IR code using LLVM passes

to convert a block with control statements into a basic block. For example, an if statement

can be transformed into a comparison & multiplexer operation, and there are some loops

that can be unrolled at compilation time. Therefore, the C function can contain some

control flow statements.

In order to achieve JIT HW composition, the FPGA contains an overlay that implements

a coarse-grain reconfigurable array. Each cell contains multiplexers in each cardinal

direction so that it can be connected with its neighbor cells. Moreover, each cell contains

a functional unit that can implement a set of operations. Therefore, the overlay can be

configured to implement a functionality described in a data flow graph.

At design time it is possible to obtain the configuration needed to map the DFG into the

FPGA overlay. This process has two steps, the first one is to place the nodes of the DFG

into the overlay cells. Different cells of the overlay can only implement a subset of

functions and therefore the nodes cannot be placed in every cell. The second step is to

H2020-ICT-2016-1-732105 - CERBERO

WP5 – D5.3: CERBERO framework demo

Page 38 of 45

route the cells of the overlay as described in the DFG. The configuration is then

converted into a custom bitstream.

At run-time it is possible to use the previous bitstream to compose the accelerator. This

placement of the cells is done by using IMPRESS partial reconfiguration to change the

functional units of the cells. The routing is done using IMPRESS LUT-based partial

reconfiguration to change the routing of the overlay.

All these steps are represented in Figure 5.1. In this PoC a simple C function is used to

implement an accelerator.

Figure 5.1 - Deterministic JIT HW composition flow

Evolutionary JIT HW composition

The evolutionary JIT HW composition approach uses a Block-based Neural Network

(BbNN) to compose HW accelerators. A BbNN is a neural network that is composed by

blocks that can implement 16 different configurations. Each configuration has different

number of neurons (i.e., 1 to 3) and different interconnections. Figure 5.2 shows three

different valid configurations.

Figure 5.2 - Different block configuration

The BbNN is a 2D architecture composed with modular blocks that are connected to each

other. Therefore, the BbNN is the perfect candidate to be implemented leveraging

IMPRESS reconfiguration features. IMPRESS allows to reconfigure each block of the

BbNN using sub-module reconfiguration, direct reconfigurable-to-reconfigurable

communication and 2D grid composition, thus allowing to add blocks to scale the size of

the BbNN at run-time. Moreover, the configuration of each block, the weights and the

bias can be modified using the LUT-based reconfiguration capabilities provided by

IMPRESS.

The block of the BbNN has been implemented with a reduced footprint to minimize the

number of DSP needed. Using a finite state machine, it is possible to use just one DSP to

perform the whole block calculation in 7 clock cycles. The block implementation is

H2020-ICT-2016-1-732105 - CERBERO

WP5 – D5.3: CERBERO framework demo

Page 39 of 45

shown in Figure 5.3. As it can be seen the weights, bias and configuration are

implemented with reconfigurable LUT-based constants.

Figure 5.3 - Block implementation

In contrast to deep neural networks the BbNN is trained using an evolutionary algorithm

which needs to find the weights, bias and configuration of each block. The main benefit

of using an evolutionary algorithm is that the training and inference operations are the

same and therefore the training stage can be done in the physical device. The algorithm

that is used in this PoC is shown in Figure 5.4.

Figure 5.4 - Evolutionary algorithm

In this PoC the BbNN is used to generate an adaptable controller of a CPS system. The

selected CPS is a discrete simulated cart pole obtained from the open AI gym toolkit

[Gym]. The open AI gym toolkit considers this problem solved when the controller is

able to control the cart pole for at least 200 steps. In this PoC we consider that a

controller is valid when it can maintain the cart pole in an upright position for at least

1000 steps.

The PoC runs on a Zynq Z-7020 that combines a hard ARM processor and an FPGA

fabric. The evolutionary algorithm run on the processor and the BbNN is implemented in

H2020-ICT-2016-1-732105 - CERBERO

WP5 – D5.3: CERBERO framework demo

Page 40 of 45

the FPGA fabric. The Zynq device is connected through an UART to a PC that runs the

python simulation of the cart pole as shown in Figure 5.5.

Figure 5.5 - BbNN and cartpole

The first step of the demo is to build the BbNN with a 3x3 size using partial

reconfiguration and then use the evolutionary algorithm to find a valid controller. Once a

valid controller has been found it is possible to change the cart pole parameters (i.e.,

varying the pole size). If the controller is no longer valid for the new cart pole, the BbNN

is trained again to find a new valid controller. Therefore, this PoC shows how this

approach can be used in lifelong learning applications.

Useful material/links:

[Zamacola 2018]

[Zamacola 2019]

H2020-ICT-2016-1-732105 - CERBERO

WP5 – D5.3: CERBERO framework demo

Page 41 of 45

References

[SEMI] E. Shindin et al., SEmantic Middleware presentation, IBM Research - Haifa,

Israel, 2018.

[Parsons 2000] J. Parsons et al., Emancipating instances from the tyranny of classes in

information modelling, ACM Transactions on Database Systems, 2000.

[Palumbo 2011] F. Palumbo et al., The Multi-Dataflow Composer Tool: a Runtime Reconfigurable

HDL Platform Composer, Conference on Design and Architectures for Signal and

Image Processing, 2011.

[JanusGraph] www.janusgraph.org

[ThinkerPop/Think

erGraph]

http://tinkerpop.apache.org/javadocs/3.2.2/full/org/apache/tinkerpop/gremlin/tinke

rgraph/structure/TinkerGraph.html

[Cassandra] www.cassandra.apache.org

[ElasticSearch] www.elastic.co

[Gym] www.gym.openai.com/

[Lattner 2004] C. Lattner et al., Llvm: A compilation framework for lifelong program analysis &

transformation, International Symposium on Code Generation and Optimization:

Feedback-directed and Runtime Optimization, 2004.

[Zamacola 2018] R. Zamacola, et al., IMPRESS: Automated Tool for the Implementation of Highly

Flexible Partial Reconfigurable Systems with Xilinx Vivado, International

Conference on ReConFigurable Computing and FPGAs, 2018.

[Zamacola 2019] R. Zamacola et al., Automated Tool and Runtime Support for Fine-Grain

Reconfiguration in Highly Flexible Reconfigurable Systems, IEEE International

Symposium on Field-Programmable Custom Computing, 2019.

../../../../../../cassa/Desktop/unica/progetti/CERBERO/deliverable/D5.6/0.7/cassandra.apache.org

H2020-ICT-2016-1-732105 - CERBERO

WP5 – D5.3: CERBERO framework demo

Page 42 of 45

Appendix I: CIF Example

CIF meta-meta model

Initial CIF meta-meta model defines schema of tool’s input and output files. The

following schema syntax provides an example in JSON format:

{

 "view" : {

 "name": "str",

 "classes": [

 "class_def"

]

 },

 "class_def" : {

 "name": "str",

 "representation" : "repr_def",

 "schema": "class_schema"

 },

 "repr_def" : {

 "type": "repr_type_def", //one of repr_type_defs

 "property_base" : "property_base_def",

 "key_value_base": "key_value_base_def"

 },

 "repr_type_def" : ["mixed", "key_value_base", "property_base"],

 //key_value_base representation: key: value - key property name value property value

 //property_base representation main_key: [{name_key: name_value, value_key: value_value}]

 "property_base_def" : {

 "base_key": "str", //key under which we have list of property base representation

 "property_name_key": "str", //key of property name

 "property_value_key": "str" //key of property value

 },

 "key_value_base_def": {

 "key_prefix": "str" //prefix of keys in key value represebtation

 },

 "class_schema" : {

 "extensible" : "bool",

H2020-ICT-2016-1-732105 - CERBERO

WP5 – D5.3: CERBERO framework demo

Page 43 of 45

 "properties" : ["property_schema"],

 "keys": {"key_name": "key"},

 "id": "str" //property name (property that gives unique id of objects of this class)

 },

 "property_schema": {

 "name": "str",

 "type": "type_def", // one of type defs

 "value": "value_schema",

 "optional": "bool",

 "set": "bool"

 },

 "key": [

 "str" //names of properties that form unique key

],

 "type_defs": [

 "bool","float","int","str","object"

],

 "value_schema": {

 "optional": "bool",

 "default": null,

 "constraints": [],

 "object": "object_schema" // in case if value is object, otherwise null

 },

 "object_schema" : {

 "domain": "str",

 "class": "str",

 "extensible": "bool",

 "id_type": "id_type_def" // one of id type defs

 },

 "id_type_defs": [

 "object_id", {"key":"key_name"}, "object"]

}

H2020-ICT-2016-1-732105 - CERBERO

WP5 – D5.3: CERBERO framework demo

Page 44 of 45

CIF example for PREESM-AOW semantic integration

The example starts from three files native in PREESM:

• 03-parallel_sobel.graphml – flattened sdf graph (XML),

• 4CoreX86.slam – architecture (XML),

• sobel_scenario.xml – timing (XML) [not presents in the example].

XML files converted to JSON using an XML-2-JSON converter.

After conversion, three JSON files are consequently produced:

• sobel_sdf.json,

• 4CoreX86.json,

• sobel_timing.json [directly defined].

PREESM meta models of the files are given according to CIF meta-meta model in

directory “schemas”. All files converted to CIF according to corresponding schemas.

Schemas are processed recursively. Top-level schema for flattened sdf graph represented

in sdf.json file, top-level schema for architecture represented in slam.json file, top-level

schema for architecture represented in timing.json file. Intermediate representation after

conversion described by following JSON files:

• sobel_sdf_cif.json

• slam_cif.json

• sobel_timing_cif.json

• preesm_classes_cif.json

Note, that representation divided to several JSON files for convenience only. Actually,

there is a single database containing connected objects.

From CIF, data transformation to AOW format is performed. There are various property

name transformations as well as more complex architecture transformation. In the PoC all

these transformations are performed by a script containing sequence of CIF API calls.

Transformation add to CIF representation additional set of objects that are represented in

sobel_aow_cif.json and aow_classes.json files.

Flattened sdf graph represented by object of “sdf” class in “preesm” namespace

converted to object of “scheduling_application” class in “aow” namespace. The

transformation mainly converts objects from classes defined in “preesm” namespace to

objects from classes defined in “aow” namespace by renaming various property names.

Architecture represented by object of “slam” class in “preesm” namespace converted to

object of “scheduling_architecture” class in “aow” namespace. The transformation

converts objects from classes defined in “preesm” namespace to objects from classes

defined in “aow” namespace by renaming various property names and perform more

complex aggregative transformations (for example objects of “componentInstance” class

are aggregated by “componentRef” property values and if "componentDescription" object

having property “componentRef” with same value have also “componentType” property

with value “Operator” it is transformed to “processingElement” object)

H2020-ICT-2016-1-732105 - CERBERO

WP5 – D5.3: CERBERO framework demo

Page 45 of 45

Timing data represented by object of “timing” class in “preesm” namespace converted to

aggregation of objects of "scheduling_execution" class in “aow” namespace, where each

object transformed from corresponding “timingEntry” object in “preesm” namespace, by

changing property names.

Then data to JSON file according to AOW input data schema (top-level schema

represented in aow.json file) are converted. After these steps, a single JSON file in AOW

format (sobel_aow.json) is obtained.

AOW performs optimization and store optimal scheduling result in JSON file in AOW

format (aow_result.json). Next, JSON is converted to CIF and then transformed to

PREESM format using CIF middleware API, enriching existing PREESM SDF

representation by scheduling results. Finally, SDF together with scheduling results

converted to JSON according to PREESM schema (sobel_sdf_result.json).

