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1. Executive Summary 

This document presents a short description of the main new Proofs of Concept (PoCs) of 

the integrated CERBERO development framework, which has been largely discussed in 

all the other WP5 deliverables, including those of the single components (D5.2 and D5.6) 

and those of the integration methodology (D5.1, D5.4 and D5.5). 

It is important to highlight that this document is the second and final version of the D5.7 

and they are both supporting documentation of the software deliverables D5.1 and D5.7 

respectively. The main scope of this document is to provide the explanation and technical 

details of the 7 main PoCs that have been developed and tested at M18 and at M27.  

In order to cover and test the two connections strategy used within CERBERO, the 

following PoCs have been developed and reported in this deliverable: 

• 2 PoCs using CERBERO Intermediate Format (CIF) 

• 3 PoCs using the direct connections among couples or series of CERBERO tools. 

• 1 PoCs using the direct connection between CERBERO tools and external tools. 

• 1 PoC of a single tool, completely developed during CERBERO project. 

 

Each PoC will be described separately. The main goal of the description is to provide the 

following information for each of them: 

• Purpose of the integration 

• Explanation of the technical features of the connection 

• Exchanged data 

• Explanation of the example that will be used for testing the PoC 

• Link to video or any other material considered relevant for emphasising the main 

PoC achievements.   

 

Therefore, the mission of this document is neither to describe the components/tools that 

are integrated, nor their standalone use; for that information please refer to D5.1 and 

D5.2. 

In order to speed up and ease the reading and review process the text of sections and 

paragraphs that have NOT been significantly updated and revised are in dark gray.  

  

1.1. Structure of the Document  

In Section 2 a general overview of the CERBERO development framework and its 

integration strategies is provided. In Section 3 a description of the approach for Semantic 

Integration is presented together with a comprehensive explanation of the PoCs using 

CIF. Finally, Section 4 is dedicated to present PoCs developing direct connections among 
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tools. Finally, Section 5 presents a Stand-Alone PoC developed completely during 

CERBERO project. 

1.2. Related Documents 

The CERBERO deliverables related to this document are:  

• D2.1 – CERBERO Technical Requirements 

o The activities behind D5.3 contribute to satisfy the requirements listed in 

D2.1.  

• D3.3 – Cross-layer Modelling Methodology for CPS 

o D3.3 provides methodological foundation for CERBERO Intermediate 

Format. 

• D5.1 – CERBERO Holistic Methodology and Integration Interfaces 

o D5.1 presents the final version of design framework integration approach 

and the required interfaces. 

• D5.2 – CERBERO Framework component 

o In D5.2 the final version of the technical details of the different 

components/features of the CERBERO design environment are reported. 

• D5.3 – CERBERO Framework Demo (Ver. 1) 

o The PoCs reported in the D5.3 are an integral part of this deliverable. 

1.3. Related CERBERO Requirements 

Deliverable D2.1 of the CERBERO project defines a list of CERBERO Technical 

Requirements (CTRs) the project should achieve. Each of them is referenced with a 

unique identifier ranging from 0001 to 0020. The CERBERO framework Demo described 

in the current document address 4 CTRs, as described in the following table. It is 

important to note that most of the requirements related to the framework are covered by 

the tools integrated in the framework and are not reported in the following table. 

 

CTR 

id 

CTR Description Link with the D5.7 document on CERBERO 

framework components 

0002 CERBERO framework 

SHOULD provide 

interoperability between cross-

layer tools and semantics at the 

same level of abstraction. 

The semantic integration at the same level of abstraction 

and the interoperability between cross-layer tool is 

demonstrated and tested with the PoC that connects 

AOW, DynAA and PREESM and between AOW and 

MDC using the CIF. 

0004 CERBERO framework 

SHOULD provide software 

and system in-the-loop 

simulation capabilities for 

HW/SW co-design and System 

Level Design. 

System in-the-loop simulation capabilities have been 

achieved by the integration of DynAA with MECA with 

the SCANeR simulator. Extensive description is provided 

in D6.10, since it has already been used in the use case 

demonstrator of the Electric Vehicle. 

0005 CERBERO framework The possibility of providing a multi-viewpoint, multi-
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SHOULD provide multi-

viewpoint multi-objective 

correct-by-construction high-

level architecture. 

objective and correct-by-construction high-level 

architecture has been guaranteed by the interconnection of 

AOW, DynAA, PREESM, demonstrated in the PoC of the 

CIF, and among SAGE and DynAA, demonstrated in a 

dedicated direct connection PoC.  

0009 CERBERO SHALL develop 

integration methodology and 

framework. 

The PoCs presented and developed in this deliverable (and 

in the previous one) are part of the assessment of the 

overall CERBERO development framework. Assessment 

of can be considered still ongoing through the activities 

carried out within WP6 where the framework is used by 

the UC providers.  
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2. The CERBERO Framework Integration 

A design environment for CPSs, in general, should be an integrated platform or tool chain 

that can be broken down into various interacting components serving the needs of the 

different physical and computational elements or subsystems across different layers. 

Appropriate software components (a.k.a. the design environment or framework 

components) are required to be inter-linked to form a holistic operational framework 

following design requirements and seeking a new foundation for CPS design, integration 

and operation. One of the goals of CERBERO is to deliver a semantic integration 

framework that is customizable per application scenario or use case, yet generalizable 

enough to a broad range of application domains.  

Integration aims at interconnecting the components together, in a layered fashion, to 

facilitate exchange of information and control data between these components or 

subsystems and assuring that the integrated system meets performance and behavioural 

expectations. 

 

2.1. Overview of CERBERO tools connections 

A clear explanation of the CERBERO framework has been reported in the D5.1 Section 

4.3, but a schema of all the available connections at design time and at run time are also 

reported respectively in the Figure 2.1 and Figure 2.2 of this document. 

 

Figure 2.1 - CERBERO toolchain for Design-Time Support 
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Figure 2.2 - CERBERO toolchain for Run-Time Support 

 

2.2. The Integration processes 

D5.1 has already fully explained the CERBERO design framework integration approach, 

with required interfaces among all the CERBERO tools across all layers of the toolchain 

(model, application, runtime, and hardware layers). 

In the CERBERO project, using a continuous integration methodology 7 PoCs have been 

developed for testing the connection through CIF and the direct connections. This way, 

we succeeded in developing and testing: 

• connections among tools at the same layer or leveraging on the same Model of 

Computation. These types of connection are direct ones, such as MDC with 

Artico3, PREESM-SPiDER with PAPIFY, and SPiDER and PAPIFY with MDC. 

• cross layer connections operating at design-time, such as AOW and DynAA with 

PREESM and AOW with MDC. These connections involve both different 

semantics and operate at different levels, so that they leverage on CIF. 

• cross layer connections operating at run-time, such as MECA with DynAA, 

(described in D6.10) that leverages on a direct integration methodology. 

• the connection of the CERBERO framework with external tools, like MDC with 

CAPH, PREESM with APOLLO Multi-versioning.  
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Moreover, in the present deliverable, we also present the standalone PoC of IMPRESS, a 

tool for JIT HW composition. IMPRESS is a tool that has been developed from scratch in 

CERBERO and thus, its TRL is low to be included as part of the Use Case demonstrators. 
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3. Intermediate Format Connections 

3.1. CERBERO Innovative Approach for Semantic 

Integration 

Information modelling underlies representing or formatting information in a certain way 

to guarantee its uniformity and consistency. A meta-model defines (i) the concepts or 

information that can be present in a model and that can be accessed and manipulated by 

different tools, and (ii) the rules that regulate accesses to the information. However, 

sticking with a single meta-model for the entire information model does not come 

without a problem, such as: multi-view interoperability, multi-tool interoperability, and 

model maintenance (information models compliance to the meta-model). 

Hence, strict coupling of information model and meta-model poses interoperability and 

maintenance concerns. CERBERO consortium attempts to improve the state-of-the-art of 

information modelling and semantic integration, particularly when dealing with 

multi-view cross-layer designs. In this sense, CERBERO proposes an approach to 

decouple the model information from the meta-model by model’s intermediate format 

(a.k.a. intermediate representation) meeting the following requirements: 

1. Can be used efficiently for sharing information across different levels of 

abstraction and different modelling aspects (views). In other words, an 

intermediate format should fully exploit the idea of one-model-with-multiple-

views representation of the system.  

Rationale: The modelling of CPS is intrinsically multi-disciplinary, multi-aspect, 

and involves different abstraction layers. Any unique model representation for the 

system that cannot cope with these intrinsic characteristics is doomed to fail. The 

model information should be equally adequate and accessible to the different tools 

manipulating the model for the representation of several aspects (modelling, 

analysis, code-generation, runtime management, validation), and for manipulation 

at different abstraction levels. 

2. Allows different tools to access information about a system model with minimally 

incorporating details of the meta-models used in other tools. 

Rationale: Tools should be able to read, understand, and manipulate the model 

information without or minimal knowledge on how this information is organized 

in other tools since it both can be changed without notice and is irrelevant to 

modelled system. 

CERBERO consortium considers that such points are not yet covered coherently and well 

enough by state-of-the-art work proposed so far in the literature or readily available, see 

D3.6 – Cross-layer Modelling Methodology for CPS for more discussion. In the 

following sections we describe our proposal and corresponding Proof of Concept (PoC) 

study.  
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3.2. Purpose of Integration with CERBERO Intermediate 

Format  

Integration with CERBERO Intermediate Format (CIF) allows achieving easy exchange 

of relevant information between all connected tools. Unlike tool-to-tool integration, CIF 

provides a unified platform for model and data transformation that allows implementing 

automatic transformation capabilities. Within the CIF framework, meta-models (or 

schemas) of all input and output data are defined in a declarative way allowing to define 

transformation process as mapping between corresponding schemas. Such unification 

allows achieving easy integration of multiple tools having multiple views and/or 

providing multiple functionality. The integration of new tools becomes a two-step 

process where in the first step tool describes its output and input object models using 

class definitions language (schemas), and in the second step tools that requires integration 

defines mappings between their object models using equivalence rules (see D5.1 for 

details). Ones all this information provided CIF service will care on automatic 

transformation between models. Class definitions enabling export/import of tool object 

models into intermediate format, while equivalence rules enabling transformation of 

intermediate representation of models between connected tools. Such construction 

provides additional benefits for tool developers and integrators: it is not necessary to 

describe whole data provided by the tool in a case when this data is too complex and full 

description requires big effort; instead, one can define only schema of data that is 

necessary for other tools in a scope of an integration goal. Thus, integration with CIF 

allows achieving data interchange between connected tools without additional software 

development process and without effort of complex ontological description of whole 

data. 

 

3.3. Integration Framework Tool-Flow  

As CERBERO consortium components/tools and technologies undergo continuous 

development, CERBERO adopts an iterative integration approach, i.e., continuous and 

constantly evolving rather than static or fixed. To facilitate components/tools 

interconnection, interfaces are defined and created as points of interaction between 

communicating components. Interfacing means using a common message format or 

intermediate representation to provide a unified communication paradigm across the 

system, entirely or partially. Translation is required from the interface of one component 

to the intermediate format and vice versa for bilateral or duplex communication. 

CERBERO integration approach considers underlying systems as black boxes, thus 

creating a middleware (CIF service) to facilitate communication between the integrated 

components. The architecture of CIF service represented on Figure 3.1. 
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Figure 3.1 - Architecture of CIF service 

The building blocks of CIF service are: 

• Instance Base module: is base module of CIF service that enable storage of 

information and provides access to this information through Instance Base API. 

Current implementation of the CIF service built on top TinkerPop Server, but any 

other graph databases supporting gremlin language can be used instead of it 

without code modifications. Note, that graph database is not necessary element 

for CIF service: Instance Base potentially can be implemented also on top wide-

column or relational database or even JSON-files or JSON-document database. 

• Class Base module: provides support of class-related interfaces. Enable storage 

of class definitions and allow export/import object models into intermediate 

format. In the current implementation class definition storage utilizes file system, 

storing each schema as JSON file inside directory structure, where directory 

names correspond to namespaces and class names.   

• Data extensions of class base module: built on top of class base module and 

provide parsing of JSON files into intermediate representation format. Also, 

current implementation support XML file conversion, as two-step process where 

standard XML to JSON conversion provided at the first step, and the resulting 

JSON imported to CIF at the second step.  

• Equivalence rules module: includes parser that produce abstract syntax tree from 

equivalence rules, enforcement module that enables equivalence rules 

enforcement on class base and instance base levels, and rules database that store 

all provided rules. In the current implementation equivalence rules stored as 

python serialized objects in the same file system structure that serve as class 

definitions storage. 

Current implementation of CIF service also includes transformation module that will be 

removed when equivalence rules module development will be finished. 
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3.4. PoC CIF Connection PREESM – AOW – DynAA  

 

Figure 3.2 – PREESM – AOW DynAA CIF PoC 

The purpose of the PoC is to calculate optimized scheduling of a software, provided as an 

SDF graph, on a hardware, provided as a hardware architecture description. The 

optimization can be performed with respect of several goals, such as minimal latency, 

maximum throughput, and minimum energy and subject to different constraints, such as 

computation and memory capacity. In this scenario PREESM takes a role of the service 

requester while AOW and DynAA take a role of the service providers: (i) software and 

hardware models described in PREESM passing to AOW, (ii) AOW performs 

optimization in order to obtain optimized scheduling, which is passed to DynAA, (iii) 

DynAA performs simulation of the proposed scheduling, updates run-times of software 

components on the hardware architecture according to the simulation results and pass 

them back to AOW (in order to perform another optimization run) or back to PREESM 

(if maximum numbers of iterations achieved or if there are no further updates required). 

In order to achieve desired integration PREESM provides following types of data: 

• SDF graph in XML format representing software architecture, that also includes 

additional parameter indicating maximal number of iterations between AOW and 

DynAA 

• Hardware architecture description in XML format 

• Possible mapping scenario between software and hardware including estimated 

execution times of different software actors in different processing units in XML 

format. 
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PREESM also defines schemas of each kind of data in agreed JSON format. Once 

defined, these schemas allow the CIF service to import all these data and convert it to 

CIF. Finally, PREESM also defines schema of its input data, i.e. format in which 

resulting scheduling should be provided to PREESM.  

From the second integration endpoint AOW provide two different schemas: 

• Scheduling analytic schema, i.e. schema of data required to perform calculation of 

optimal scheduling 

• Output format schema, i.e. schema of scheduling data produced by optimization, 

including current optimization run number and maximal number of iterations 

obtained from PREESM. 

Finally, DynAA endpoint provides: 

• Input schema for scheduling 

• Output schema of simulation results. 

In scope of the PoC, communication between different tools, as well as communication 

between tools and CIF service, are performed in a straightforward way where results 

(output) produced by one tool serve as input for another tool. To reduce network 

communication overhead all tools considered to run on a single Windows machine. The 

orchestration of execution of overall toolchain performed by Windows batch script 

allowing verification and demonstration of the integration capabilities without big 

development/adaptation overhead of corresponding tools. More complex communication 

procedures requiring adaptation of tools invocation methods are postponed to final stages 

of the project. 

The proposed execution scenario includes the following steps (more details are provided 

in  and the PoC data flow is shown in Figure 3.3). 

1. Orchestration script receives three parameters: PiSDF graph folder, target HW 

architecture file in XML format and possible mapping scenario between software 

actors from PiSDF graph to processing elements in HW architecture file in XML 

format. 

2. Orchestration script invoke PREESM execution that generates a flattened SDF 

graph from the PiSDF input. 

3. When the flattened SDF graph is ready, the orchestration script invokes XML-to-

JSON transformation of all input data files. 

4. Resulting data in JSON format is sent to the CIF service endpoint invocating data 

transformation according to corresponding schemas. Each data asset receives 

unique ID to allow addressing. 

5. When data storage completed orchestration script, the script invokes data 

transformation to AOW format performing call of corresponding transformation 

procedures. This produce JSON files required for AOW. 

6. The orchestration script invokes AOW optimization start providing JSON files of 

software architecture model, hardware architecture model and possible mappings 

data in AOW format. 
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7. AOW performs optimization process and store resulting data as JSON in AOW 

format. 

8.  Orchestration script send data to CIF service. Resulting data is converted to CIF 

and receiving unique ID. 

9. When data storage completed orchestration script, the script invokes data 

transformation to DynAA format performing call of corresponding 

transformation procedures. This produce JSON files that required for DynAA. 

10. Orchestration script invokes DynAA execution providing optimal scheduling 

results obtained from AOW in DynAA format. 

11. DynAA performs simulation of obtained scheduling results and stores resulting 

data in its JSON format.  

12. Orchestration script send resulting data to CIF service. Resulting data asset 

converted to CIF and receiving unique ID. 

13. Orchestration script checks difference between simulation results and 

optimization results. If this difference is below provided threshold, or maximum 

number of iterations achieved, the Orchestration script invokes data 

transformation to PREESM format and executes PREESM passing as parameters 

both simulation results and optimization results. Otherwise, the orchestration 

script invokes transformation of simulation results to AOW format and calls 

AOW providing these results as well as converted PREESM data obtained at 

Step 5.  

14. If the orchestration script executes AOW in the previous step, go to Steps 7. If 

the orchestration script executes PREESM, PREESM generates runtime code and 

Stop.   

 
Figure 3.3 – PREESM – AOW DynAA CIF PoC DataFlow 
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In the final stages of the project the data transformation module of CIF service will be 

removed, and all transformations will be held by equivalence rules module. That is 

necessary equivalence rules will be provided instead of transformation scripts. 

3.5. PoC CIF Connection AOW – MDC 

 
Figure 3.4: AOW – MDC CIF PoC 

The purpose of this PoC is to find optimized merged hardware implementation of 

multiple dataflows, provided as Dataflow Process Network (DPN) graphs, on a hardware, 

using splitting (1x2) and merging (2x1) switch boxes [Palumbo 2011]. The optimization 

can be performed with respect to several goals: model metrics (such as minimal number 

of actors, minimal number of connections, minimal number of switch boxes or shortest 

switch boxes chain), and implementation metrics (such as minimal area, minimal power 

consumption or maximal operating frequency). The merging has to be done according to 

the constraint of keeping the functional correctness of all the considered input dataflows. 

Moreover, additional constraints can be potentially provided by the user, such as not 

merging a specific actor or dataflow.  

In this scenario MDC  is the service requester, while AOW is the service provider: (i) 

dataflow models and their parameters described in MDC are passed to AOW, (ii) AOW 

performs optimization in order to obtain optimized merged design according to the 

objectives, (iii) the optimal design found by AOW is passed back to MDC. 

In order to achieve the desired integration MDC provides following types of data: 

• DPN graphs in XDF (XML dialect) format representing dataflows for (potential) 

merging; 
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• (Optional) hardware parameters, such as area and power consumption of actors, 

or maximum achievable frequency of dataflows, considering their implementation 

in hardware; 

• optimization objectives and (optional) constraints. 

In order to fit with CIF and let MDC exploit this latter as a smart bridge to access AOW 

service, schemas in the agreed JSON format are required on both sides, MDC and AOW. 

Thus, MDC defines: 

• schemas of each kind of input data so that the CIF service will be able to import 

all the MDC input data and convert them to CIF;  

• schemas of result data, i.e. format in which resulting design coming from AOW 

optimization should be provided to MDC.  

From the second integration endpoint, AOW provides two different schemas: 

• input format schema, i.e. schema of data required to perform calculation of 

optimal merged hardware; 

• output format schema, i.e. schema of optimal merged hardware. 

For the PoC purpose communication between different tools, as well as communication 

between tools and CIF service, are performed in a straightforward way where results 

(output) produced by one tool serve as input for another tool.  

 

To reduce network communication overhead all tools are considered to run on a single 

Windows (operating system compliant with both of them) machine. The orchestration of 

execution of the overall toolchain is performed by a Windows batch script allowing 

verification and demonstration of the integration capabilities without big 

development/adaptation overhead of corresponding tools. More complex communication 

procedures, requiring adaptation of tools and related invocation methods, can be 

implemented. As in the case of the PREESM – AOW – DynAA connection all 

transformations at the current phase held by transformation module and will be held by 

equivalence rules module instead later. 

 

The proposed execution scenario includes the following steps: 

1. orchestration script receives three parameters: DPN graphs folder, actors 

hardware parameters file (XML), optimization criteria; 

2. orchestration script invokes XML-to-JSON transformation of all input data files; 

3. resulting data in JSON format is sent to the CIF service endpoint that, in turn, 

invocates data transformation according to corresponding schemas (each data 

asset receives unique identifier to allow addressing); 

4. when data storage is completed, the orchestration script invokes data 

transformation to AOW format (JSON) performing calls to the corresponding 

transformation procedures; 

5. orchestration script invokes AOW optimization providing files of DPN graphs, 

hardware parameters and optimization criteria, all in AOW format (JSON); 
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6. AOW performs optimization and stores resulting data in AOW format (JSON); 

7. orchestration script sends resulting data to the CIF service in order to be 

converted to CIF, again receiving a unique identifier; 

8. when data storage is completed, the orchestration script invokes data 

transformation to MDC format (XML) performing calls to the corresponding 

transformation procedures, concluding the process.   
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4. Direct Connections 

This section is dedicated to direct tool-to-tool connections.  

4.1. PoC Connection ARTICo3 – MDC – CAPH 

 
Figure 4.1 - MDC-ARTICo3 PoC 

Purpose of the Integration: CPS need to meet several functional and non-functional 

requirements imposed by the environment, the user and their internal status. The presence 

of different, concurrent requirements influencing the system during operation introduces 

the need for an advanced adaptivity support. FPGA-based reconfigurable systems provide 

a valuable solution to this problem: lying in the middle between general purpose 

computing platforms and application specific circuits, they offer a trade-off between 

software-like flexibility and hardware-based execution performance. The point is that 

there are many kind of reconfigurable systems and that their design is not 

straightforward. It requires detailed knowledge of both the application and the hardware 

infrastructure and the flow is highly variable, depending on the chosen reconfigurability 

strategy. As explained in D4.3, reconfigurable systems can be divided, according to their 

granularity, in: Fine-Grain Reconfigurable (FGR, changes at bit level) and Coarse-Grain 

reconfigurable (CGR, changes at word level) systems.  

In CERBERO two tools offer support for hardware reconfiguration: (1) The ARTICo3 

framework provides adaptive and scalable hardware acceleration, actively altering the 

computing substrate to change the available functionality using DPR (see D5.6), while 

(2) the MDC tool delivers automatic generation and management of CGR systems based 

on the dataflow model of computation (see D5.6). Their integration brings together all the 
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benefits from both DPR and CGR, leading to more flexible solutions that can cope with 

the changing of functional and non-functional requirements affecting CPS operating 

contexts. The integration of ARTICo3 and the MDC Tool offers a unique toolchain 

capable of automatically implementing and managing multi-grain reconfigurable 

systems, offering support for advanced adaptivity.  

To raise the level of abstraction and make hardware reconfigurable platforms usable by 

programmers with little to none hardware design skills, we also integrated in this flow the 

CAPH tool, an open source HLS engine external to the CERBERO partnership (see 

D4.4). With the MDC & CAPH integration it is possible to automatically generate 

generic CGR accelerators for the CERBERO adaptivity support (see D4.4). 

 

 
Figure 4.2 - CAPH-MDC-ARTICo3 direct tool-to-tool integration 

Exchanged Data: Figure 4.2 shows the integrated design flow and the runtime setup. 

The hardware generation flow (on the left hand side) starts from high-level dataflow 

descriptions of the behaviours to be implemented in the configurable logic. Such 

descriptions are compliant with CAPH dataflow specifications. CAPH is an open source 

HLS engine supporting dataflow models as specification format (similar to the MDC one) 

that generates target independent code (it generates generic RTL descriptions for any 

kind of FPGA vendor or for ASIC flows) (see D4.4). CAPH forwards to MDC the SDF 

models of the networks to be accelerated and the HDL descriptions of the actors 

composing them. MDC merges the SDF models to create the HDL description of the 

CGR accelerator, which is post-processed by an ad-hoc MDC back end that derives the 

corresponding CGR HDL (Verilog) computational kernel, making it ARTICo3-compliant 

(properly wrapping it with the glue logic necessary to serve as an ARTICo3 DPR 

reconfigurable partition). Finally, the toolchain generates the bitstreams related to the 

system (static part) and to the hardware accelerators (reconfigurable partitions). On the 

software side, the toolchain keeps the capability, inherited from the ARTICo3 framework, 
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of generating the application executable that manages operation execution and 

computation offloading to the hardware accelerators also when these latter are MDC-

generated CGR accelerators. Both (DPR and CGR) reconfiguration mechanisms are 

transparently managed from the user code running in the host processor. 

PoC: The multi-grain reconfiguration capabilities of the combined CAPH-MDC-

ARTICo3 reconfiguration support are currently shown in an image-processing application 

scenario. The setup features ARTICo3 on a Zynq board running Linux and a camera that 

acquires live video. The input images are sent to a configurable number of hardware 

accelerators where two edge detection kernels have been implemented (Sobel and 

Roberts). In order to switch from one kernel to another, the user can decide to use the 

FGR approach of ARTICo3 to completely change the logic instantiated in each slot, or to 

use the CGR approach of the MDC-generated accelerators to multiplex the internal 

datapath of the accelerators. As a result, it is possible to see, in real time, the runtime 

overheads of each type of reconfiguration mechanism. Additional adaptivity evaluation 

can be performed by changing the working point of the application, which is based on 

several parameters: input image size, number of hardware accelerators used to exploit 

data-level parallelism, and hardware redundancy level (simplex, DMR, TMR) for fault-

tolerant execution. 

Useful material/links: 

CAPH-MDC integration, presented at SIE 2018: link 

ARTICo3-MDC integration, presented at UPM-CEI: link 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

http://www.cerbero-h2020.eu/wp-content/uploads/2018/06/Sau_SIE2018.pdf
http://www.cerbero-h2020.eu/wp-content/uploads/2018/06/Fanni_UPMSeminar.pdf
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4.2. PoC Connection PREESM-SPiDER-PAPIFY/PAPIFY-

Viewer 

 
Figure 4.3 - PREESM-SPiDER- PAPIFY PoC 

Purpose of the Integration: In the context of CPS, the productivity gap between 

platform complexity and application productivity is widening. To cope with this aspect, 

current Y-chart design flows isolate the platform and the algorithm development and, 

automatically, generate a generic solution for the problem. However, these solutions are 

usually generated following a predefined methodology for any application and, in 

consequence, they can be easily improved by a trained developer.  

In order to improve the quality of these automatic deployments, Design Space 

Exploration (DSE) techniques need to be included within the generation procedure and, 

additionally, to assess execution performance can be used to refine the work distribution 

and improve the final system performance.  

In CERBERO three tools can be combined to fulfil this requirement: (1) The PREESM 

rapid prototyping framework provides a Y-chart design flow tool; (2) SPiDER is able to 

manage the information of the system execution and make changes on the system 

workload distribution; (3) finally, PAPIFY tool retrieves the system performance 

information by accessing Performance Monitoring Counters through the open-source 

PAPI library. The integration of PREESM, SPiDER and PAPIFY offers the capability of 

refining the design time proposed solutions, while increasing the decision criteria 

managed by SPiDER.  

Finally, the platform independencee supported by every tool increases the level of 

abstraction reachable by the developer, who can easily obtain real-time system 
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performance information and visualize in real-time the behaviour of the system thanks to 

PAPIFY-Viewer. 

Exchanged Data: Figure 4.4 and Figure 4.5 show the resulting integration of (1) 

PAPIFY into PREESM framework and the (2) SPiDER execution block diagram with 

PAPIFY and PAPIFY -Viewer tools included, respectively. Additionally, Figure 4.6 

shows an example of PAPIFY -Viewer displaying execution time information. In Figure 

4.4 the monitoring configuration of the application is set up employing a new user 

interface. After that, PREESM automatically generates instrumented code that is 

compliant with either PREESM backend or the SPiDER run-time manager. Secondly, as 

can be seen in Figure 4.5, PAPIFY performance monitoring has been included within the 

Local Run-Time (LRT) of SPiDER, which means that the monitoring happens in each 

Processing Element (PE) independently. Additionally, this information is sent to the 

Global Run-Time (GRT), which can analyse this information so as to make changes in 

the system behaviour to increase the application performance. Finally, PAPIFY -Viewer, 

which is an independent application, can display the information in real-time providing 

the user with a graphical representation of the current system behaviour, as shown in 

Figure 4.6. 

 

Figure 4.4 - PREESM- PAPIFY tool-to-tool integration 
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Figure 4.5 - SPiDER-Papify/Papify-Viewer tool-to-tool integration 

 
Figure 4.6 - PAPIFY -Viewer display example 

PoC: The system performance monitoring capabilities of the combined PREESM-

SPiDER- PAPIFY/ PAPIFY -Viewer is currently shown using an image-processing 

application scenario, a sobel-morpho image filter. The application monitoring is 

configured using the PREESM framework and generationcode compliant with the 

SPiDER run-time manager. In this case, the user is able to decide how many CPU cores 

the system will use. Likewise, during the system execution, PAPIFY-Viewer displays the 

workload distribution, the timing and the events that the user has selected to be 

monitored. As a result, it is possible to see how the system is affected by the 

redistribution of the workload together with a real-time application profiling. 

Useful material/links: 

PREESM-PAPIFY integration, presented at CF 2018: link 

SPiDER-PAPIFY integration, presented at COWOMO 2018: link 

 

https://www.researchgate.net/publication/325217267_Automatic_Instrumentation_of_Dataflow_Applications_using_PAPI
https://hackmd.io/7k7jF-JjR1e4jzXCTITvnA#COWOMO%E2%80%9918-Abstracts
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4.3. PoC Connection SPiDER – PAPIFY – MDC 

 
Figure 4.7 - SPiDER - PAPIFY - MDC PoC 

Purpose of the Integration: CPSs need to meet several functional and non-functional 

requirements imposed by the environment, the user and their internal status.   

The most diffused software (Sw) approach for enabling self-awareness is based on 

accessing the existing Performance Monitoring Counters (PMCs) of modern CPUs. In 

CERBERO, PAPIFY provides a lightweight monitoring infrastructure by means of an 

event library aimed at generalizing the Performance Application Programming Interface 

(PAPI) for embedded heterogeneous architectures. PAPIFY has been integrated with 

PREESM and SPiDER  to provide the automatic instrumentation and management of 

monitored code on multi-processor architectures. If the systems include also Hw 

acceleration, it may be necessary to instrument it with custom Hw PMCs to provide a 

proper feedback to trigger reconfiguration.  

One of the Hw reconfigurable infrastructures supported in CERBERO is the Coarse-

Grain Virtual Reconfigurable Circuits (CG-VRCs) provided by MDC. CG-VRCs offer 

fast and low power reconfiguration, with a good trade-off between performance and 

flexibility, being suitable for providing run-time hardware adaptation. In this kind of 

systems, all the resources belonging to all the configurations are instantiated in the 

substrate and different configurations are enabled by multiplexing resources in time.  

An Hw accelerator can be specialized by the designer to include custom monitors. This 

solution is not suitable for Sw developers who may have limited knowledge of the Hw 

design flow. Furthermore, if these solutions rely on custom methods to read the monitors, 

the process of reading the monitors in the Hw accelerators and the PMCs already 

available on the CPU could not be the same, and a heterogeneity of solutions, complex to 

be implemented, may be required. This integration relies on the idea of offering to Sw 

developers the support to design and implement run-time reconfigurable systems as the 
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CG-VRCs and, at the same time, to monitor both the processors and the Hw accelerators 

using a unified methodology based on PAPIFY. 

Exchanged Data:  

The Hw accelerator is modelled starting from a set of dataflow networks described in 

CAPH, that are parsed by MDC to generate a Xilinx-compliant IP able to execute all the 

different functionalities described by the input dataflow specifications, one at a time. The 

code incorporates the accelerator-level monitors as described in D5.5. Together with the 

accelerator, MDC generates the APIs to mask the communication with the accelerator. 

Furthermore, thanks to the developed configurable PAPI-compliant MDC-component, 

PAPIFY can transparently access the above cited Hw monitors.  

This Hw accelerator is used by a Sw application, which is modelled as a Parameterized 

Interfaced Synchronous Dataflow (PiSDF) specification, using the design-time tool 

PREESM and the run-time manager SPiDER, that automatically integrate the PAPIFY 

necessary monitoring code. In this context, actors exchange tokens through edges 

depending on the feasible working points of the application scenario. With respect to the 

mapping strategy, SPiDER handles all Sw tasks taking into account the constraints given 

as input by the application designer. The Sw actors delegated to communicate with the 

Hw accelerator embed the code to talk to the accelerator, that exploits the APIs provided 

by MDC.  

PoC: The monitoring capabilities of the combined SPiDER-PAPIFY-MDC design and 

management support are shown in an image-processing application scenario, involving a 

multi-functional accelerator for edge detection, able to compute two different algorithms: 

Sobel and Roberts. The setup features the MDC accelerator on a Pynq board running 

Linux, in which are installed SPiDER, PAPIFY and PAPI. 

 
Figure 4.8 - Schematic graphs representation of the Sobel and the Roberts edge detectors. 

The dataflows processed by MDC have been described in CAPH language. Figure 4.8 

depicts a schematic graph representation of the Sobel and Roberts kernels. The line buffer 
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actors are adopted to store previous rows of the image, while delay actors are in charge of 

memorizing one previous pixel within a row. Once the actors are filled with the proper 

numbers of rows and pixels, the convolution actors can compute the horizontal and 

vertical gradients. Actor abs sum sums up the absolute values of the horizontal and 

vertical gradients and right-shifts the result for a given scaling factor n. Lastly, the 

thresholding actor thr sets to 255 all the magnitudes that are above a certain threshold (in 

this case it has been fixed to 80), while setting to 0 the others. The generated Xilinx-

compliant IP is instrumented with 4 monitors at accelerator-level to keep trace of 

standard dataflow metrics during execution, such as the execution time, the number of 

input tokens and the number of output tokens.  

This accelerator is adopted in a Sw application, modelled using PiSDF, in which both Sw 

and Hw monitoring are automatically inserted using the PREESM-SPiDER-PAPIFY 

design flow as described above. 

 

 
Figure 4.9 - Dataflow description of the Sw application, modelled using PREESM. 

Figure 4.9 illustrates the developed Sw application.   

• Given as input to the actor Read_YUV, a YUV video is read frame by frame, 

where the number of rows and columns correspond to height and width 

parameters respectively.  Edge detection is applied only to the Y component, 

while the other ones are directly sent to be displayed.  

• Before the edge detection, the block Split divides the image in slices depending on 

the degree of exploitable parallelism. In this PoC, having available one single Hw 

accelerator, no adaptation has been considered in this sense.  

• At this point, verified the on-the-fly selected kernel (set by IdSetter) among Sobel 

and Roberts, an initialization phase is performed in EdgeMDC_1. In this phase, 

the processing data and the communication with the accelerator (through the APIs 

provided by MDC) are handled. 

• Then, processing occurs by blocks of pixels of a size suitable for the accelerator 

specifications (in the assessed example, 32). EdgeMDC_2 sends a number of 

blocks,  to the EdgeMDC_hw_filter, which forwards the data to the accelerator. 

Therefore, EdgeMDC_3 receives the result of each iteration, which is collected in 

EdgeMDC_4.   
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• Finally, the filtered frame is merged and displayed with the applied type of kernel 

and the execution time expressed in Frames per Second (FpS). 

With respect to the mapping strategy, SPiDER handles all Sw tasks taking into account 

the constraints given as input by the application designer. In the evaluated case, the actors 

performing splitting and merging have to be executed onto the same core. Moreover, 

SPiDER has managed 305 instances of the single-rate graph. Indeed, 8 out of 11 actors 

are executed 1 time per firing, and 99 times per firing the other 3 ones (EdgeMDC_2, 

EdgeMDC_hw_filter, and EdgeMDC_3), since 99 blocks are present in the frame size 

(352x288 pixels).  

The described Sw application has been mapped onto two cores. Specifically, Display and 

Read_YUV actors are mapped onto the Core 0 while the others are mapped onto the Core 

1 of the adopted board. Among the actors mapped onto Core 1, three actors are repeated 

more than one time per firing: EdgeMDC_2, EdgeMDC_hw_filter, and EdgeMDC_3. 

Actors Display and Read_YUV are selected for the monitoring of the clock cycles and 

number of instructions events, while in the Hw accelerator the monitored events are the 

execution time (monitoring the clock cycles) and the throughput (monitoring the number 

of output tokens). 

During the execution the monitored events are written in csv files to 1) analyse the 

application and 2) locate possible bottlenecks using PAPIFY-Viewer. Figure 4.10 

illustrates the monitored timing for every actor and, as it can be noticed, EdgeMDC_1, 

EdgeMDC_4 and Read_YUV are the actors taking longer. This is coherent with the reality 

because these three actors are the ones managing the whole frame. On the contrary, the 

actors being executed 99 times per iteration (EdgeMDC_2, EdgeMDC_hw_filter, and 

EdgeMDC_3), are among the fastest actors in the specification.  

 
Figure 4.10 - Timing event 

In Figure 4.11 and Figure 4.12, events associated to perf_event and MDC PAPI 

components are shown, respectively. Here, it can be observed that the events associated 

to the real execution of the Hw accelerator (EdgeMDC_hw_filter) are properly measured 

for the only actor associated to real Hw accelerator execution. 

 
Figure 4.11 - PAPI_TOT_INS Sw event 
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Figure 4.12 - MDC_CLOCK_CYCLE Hw event 

Useful material/links: 

SPIDER-PAPIFY integration, presented at CF 2018: link 

PAPIFY-MDC integration, presented at CF 2019: link 

 

4.4. PoC Connection SAGE-ReqV – DynAA 

 
Figure 4.13 – SAGE -ReqV - DynAA 

 

Purpose of the Integration: Formal verification of the discrete part of a DynAA model 

with respect to a set of consistent specification formally checked with ReqV. 

 

Exchanged Data:  

DynaaGen is the tool designed to integrate ReqV and DynAA. It takes in input two text 

files: a Promela model, containing the discrete description of the system, and a property 

https://dl.acm.org/citation.cfm?doid=3203217.3209886
https://dl.acm.org/citation.cfm?id=3323423
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file, containing the LTL requirements that the model should satisfy. The first file is 

provided by the designer, while the second one is produced by ReqV.  

The provided output is a set of Java classes implementing the input model in DynAA.  

 

PoC: 

The integration between ReqV and DynAA is obtained with the pipeline depicted in 

Figure 4.14. The requirements are first collected and checked in ReqV. When this process 

in ended, and the whole specification is consistent, the requirements are translated into 

LTL formulae and passed to DynaaGen, along with the Promela model. DynaaGen first 

check every LTL property against the model with the Spin Model Checker. It reports a 

countexample if a property is violated. If the model satisfies all the requirements, 

DynaaGen automatically generates the Java Source Code with the Dynaa classes 

corresponding to the same modelled system. 

 

Figure 4.15 shows the definition of a client-server model written in Promela. In this 

example, two client processes try to enter a critical session at the same time, and a server 

process grant access to the critical session to only one client at a time. Figure 4.16 shows 

some requirements inserted and checked in ReqV. One of such requirements, for 

instance, is that only 0 or 1 processes can stay in the critical session in every time steps. 

DynaaGen read the Promela process and the requirements passed by ReqV, in LTL 

format, and check with the Spin model checker that such requirements are in fact 

satisfied by the model. Finally, DynaaGen generates the Java source code representing 

the same model in a Dynaa model. Since the generated Java code is quite verbose, only a 

fragment of it is shown in Figure 4.17.  

Figure 4.14: ReqV- Dynaa Integration Pipeline 
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Figure 4.15 - Client-Server Promela Model 
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Useful material/links:  

Git repository of DynaaGen (https://gitlab.sagelab.it/sage/dynaagen) 

4.5. PoC Connection PREESM - APOLLO multiversioning 

The PoC explained below demonstrates the possibility and potentiality to connect 

CERBERO tools with external tools.  

 

Purpose of the Integration: The combination of a dataflow framework such as 

PREESM with an external tool like APOLLO multiversioning reveals the possibility to 

exploit intra-actor optimizations which are initially hidden since actors are considered as 

primitives of the model. These new potential optimizations can improve the usage of (1) 

 

Figure 4.16 - Client-Server requirements in ReqV 

Figure 4.17 - Fragment of the code generated by DynaaGen 
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available resources or (2) memory, either creating more threads or applying the right 

optimization. As a result, significant speed-ups can be achieved for all software parts of 

CPS systems modelled with dataflow models of computation without changing the 

mapping between actors and resources performed by PREESM. In particular, massively 

parallel computation with a fine granularity of parallelizable actors, such as the 

computation used in matrix operations, are particularly well suited to benefit from 

polyhedral optimizations. 

 

Exchanged Data: An Application Programming Interface (API) is defined to embed 

APOLLO multiversioning run-time into the binary generated by PREESM 

 

PoC: A PREESM application to multiply two matrices has been implemented. The actual 

PREESM implementation can be seen in Figure 4.18. This application contains four 

actors: two for data generation, one to perform matrix multiplication, and one to collect 

the result. Two different configurations will be demonstrated: (1) sequential 

configuration, with one thread, and (2) multithreaded configuration, with several threads 

to compute the matrix multiplication in parallel.  

 

 

Figure 4.18 - PREESM application to demonstrate CERBERO polyhedral multiversioning 

mechanism 

Speed-up results for both configurations and three different scenarios will be shown in 

the PoC: (1) when compiled with gcc, (2) when compiled with APOLLO and (3) when 

compiled with APOLLO multi-versioning. As can be seen in section 5.4 of D3.2: Models 

of Computation, speed-ups up to 20 are achieved when APOLLO multiversioning is 

employed. 
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Useful material/links:  

APOLLO site: http://apollo.gforge.inria.fr/about 

http://apollo.gforge.inria.fr/about
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5. Standalone PoC 

The PoC reported below is not a not a connection of tools but a standalone proof of 

concept of how IMPRESS can be used to implement just-in-time HW composition 

applications.  

5.1. PoC IMPRESS for Just-in-Time HW Composition 

Purpose of the Integration: As IMPRESS and Just-in-time HW composition 

applications have been developed from scratch in CERBERO, they have a lower TRL 

and are not as mature as other tools of the project. Thus, they are not going to be 

integrated in the use cases but are going to be validated using a PoC.  

 

Exchanged Data: the just-in-time HW composition applications use the API provided by 

IMPRESS to build and reconfigure the overlays at run-time.  

 

PoC: This PoC is divided in two different applications. 

Deterministic JIT HW composition  

The deterministic JIT HW composition consists in generating a custom accelerator from 

C code without using vendor specific implementation tools.  

In this PoC the accelerator is described in a C function. In order to generate the 

accelerator, it is necessary to extract the Data Flow Graph (DFG) of the function. To do 

that, the C code is converted to LLVM intermediate representation (IR) [Lattner 2004] 

and from there the DFG is extracted. The dataflow graph generated should be a direct 

acyclic graph, which implies that only IR basic blocks (i.e. blocks without branches) can 

be transformed to valid DFGs. It is possible to transform the IR code using LLVM passes 

to convert a block with control statements into a basic block. For example, an if statement 

can be transformed into a comparison & multiplexer operation, and there are some loops 

that can be unrolled at compilation time. Therefore, the C function can contain some 

control flow statements. 

In order to achieve JIT HW composition, the FPGA contains an overlay that implements 

a coarse-grain reconfigurable array. Each cell contains multiplexers in each cardinal 

direction so that it can be connected with its neighbor cells. Moreover, each cell contains 

a functional unit that can implement a set of operations. Therefore, the overlay can be 

configured to implement a functionality described in a data flow graph.  

At design time it is possible to obtain the configuration needed to map the DFG into the 

FPGA overlay. This process has two steps, the first one is to place the nodes of the DFG 

into the overlay cells. Different cells of the overlay can only implement a subset of 

functions and therefore the nodes cannot be placed in every cell. The second step is to 
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route the cells of the overlay as described in the DFG. The configuration is then 

converted into a custom bitstream. 

At run-time it is possible to use the previous bitstream to compose the accelerator. This 

placement of the cells is done by using IMPRESS partial reconfiguration to change the 

functional units of the cells. The routing is done using IMPRESS LUT-based partial 

reconfiguration to change the routing of the overlay.  

All these steps are represented in Figure 5.1. In this PoC a simple C function is used to 

implement an accelerator.  

 
Figure 5.1 - Deterministic JIT HW composition flow 

Evolutionary JIT HW composition 

The evolutionary JIT HW composition approach uses a Block-based Neural Network 

(BbNN) to compose HW accelerators. A BbNN is a neural network that is composed by 

blocks that can implement 16 different configurations. Each configuration has different 

number of neurons (i.e., 1 to 3) and different interconnections. Figure 5.2 shows three 

different valid configurations.  

 
Figure 5.2 - Different block configuration 

The BbNN is a 2D architecture composed with modular blocks that are connected to each 

other. Therefore, the BbNN is the perfect candidate to be implemented leveraging 

IMPRESS reconfiguration features. IMPRESS allows to reconfigure each block of the 

BbNN using sub-module reconfiguration, direct reconfigurable-to-reconfigurable 

communication and 2D grid composition, thus allowing to add blocks to scale the size of 

the BbNN at run-time. Moreover, the configuration of each block, the weights and the 

bias can be modified using the LUT-based reconfiguration capabilities provided by 

IMPRESS.  

The block of the BbNN has been implemented with a reduced footprint to minimize the 

number of DSP needed. Using a finite state machine, it is possible to use just one DSP to 

perform the whole block calculation in 7 clock cycles. The block implementation is 
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shown in Figure 5.3. As it can be seen the weights, bias and configuration are 

implemented with reconfigurable LUT-based constants.  

 
Figure 5.3 - Block implementation 

In contrast to deep neural networks the BbNN is trained using an evolutionary algorithm 

which needs to find the weights, bias and configuration of each block. The main benefit 

of using an evolutionary algorithm is that the training and inference operations are the 

same and therefore the training stage can be done in the physical device. The algorithm 

that is used in this PoC is shown in Figure 5.4.  

 

 
Figure 5.4 - Evolutionary algorithm 

In this PoC the BbNN is used to generate an adaptable controller of a CPS system. The 

selected CPS is a discrete simulated cart pole obtained from the open AI gym toolkit 

[Gym]. The open AI gym toolkit considers this problem solved when the controller is 

able to control the cart pole for at least 200 steps. In this PoC we consider that a 

controller is valid when it can maintain the cart pole in an upright position for at least 

1000 steps.  

The PoC runs on a Zynq Z-7020 that combines a hard ARM processor and an FPGA 

fabric. The evolutionary algorithm run on the processor and the BbNN is implemented in 
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the FPGA fabric. The Zynq device is connected through an UART to a PC that runs the 

python simulation of the cart pole as shown in Figure 5.5. 

 
Figure 5.5 - BbNN and cartpole 

The first step of the demo is to build the BbNN with a 3x3 size using partial 

reconfiguration and then use the evolutionary algorithm to find a valid controller. Once a 

valid controller has been found it is possible to change the cart pole parameters (i.e., 

varying the pole size). If the controller is no longer valid for the new cart pole, the BbNN 

is trained again to find a new valid controller. Therefore, this PoC shows how this 

approach can be used in lifelong learning applications. 

 

Useful material/links:  

[Zamacola 2018] 

[Zamacola 2019] 
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Appendix I: CIF Example 

CIF meta-meta model 

Initial CIF meta-meta model defines schema of tool’s input and output files. The 

following schema syntax provides an example in JSON format: 

{ 

  "view" : { 

    "name": "str", 

    "classes": [ 

      "class_def" 

    ] 

  }, 

 

  "class_def" : { 

    "name": "str", 

 "representation" : "repr_def", 

    "schema": "class_schema" 

  }, 

   

  "repr_def" : { 

    "type": "repr_type_def", //one of repr_type_defs 

 "property_base" : "property_base_def", 

 "key_value_base": "key_value_base_def"    

  }, 

   

  "repr_type_def" : ["mixed", "key_value_base", "property_base"], 

  //key_value_base representation: key: value - key property name value property value 

  //property_base representation main_key: [{name_key: name_value, value_key: value_value}] 

   

  "property_base_def" : { 

  "base_key": "str", //key under which we have list of property base representation 

  "property_name_key": "str", //key of property name 

  "property_value_key": "str" //key of property value 

  }, 

  

  "key_value_base_def": { 

  "key_prefix": "str" //prefix of keys in key value represebtation 

  }, 

   

  "class_schema" : { 

    "extensible" : "bool", 
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    "properties" : ["property_schema"], 

    "keys": {"key_name": "key"}, 

    "id": "str" //property name (property that gives unique id of objects of this class) 

  }, 

 

  "property_schema": { 

    "name": "str", 

    "type": "type_def", // one of type defs 

    "value": "value_schema", 

    "optional": "bool", 

    "set": "bool" 

  }, 

 

  "key": [ 

    "str" //names of properties that form unique key 

  ], 

 

 

  "type_defs": [ 

    "bool","float","int","str","object" 

  ], 

 

  "value_schema": { 

    "optional": "bool", 

    "default": null, 

    "constraints": [], 

    "object": "object_schema" // in case if value is object, otherwise null 

  }, 

 

  "object_schema" : { 

    "domain": "str", 

    "class": "str", 

    "extensible": "bool", 

    "id_type": "id_type_def" // one of id type defs 

  }, 

 

 "id_type_defs": [ 

   "object_id", {"key":"key_name"}, "object"] 

 

} 
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CIF example for PREESM-AOW semantic integration 

The example starts from three files native in PREESM: 

• 03-parallel_sobel.graphml – flattened sdf graph (XML), 

• 4CoreX86.slam – architecture (XML), 

• sobel_scenario.xml – timing (XML) [not presents in the example]. 

XML files converted to JSON using an XML-2-JSON converter.  

After conversion, three JSON files are consequently produced: 

• sobel_sdf.json,  

• 4CoreX86.json,  

• sobel_timing.json [directly defined]. 

PREESM meta models of the files are given according to CIF meta-meta model in 

directory “schemas”. All files converted to CIF according to corresponding schemas. 

Schemas are processed recursively. Top-level schema for flattened sdf graph represented 

in sdf.json file, top-level schema for architecture represented in slam.json file, top-level 

schema for architecture represented in timing.json file. Intermediate representation after 

conversion described by following JSON files: 

• sobel_sdf_cif.json  

• slam_cif.json  

• sobel_timing_cif.json 

• preesm_classes_cif.json 

Note, that representation divided to several JSON files for convenience only. Actually, 

there is a single database containing connected objects. 

From CIF, data transformation to AOW format is performed. There are various property 

name transformations as well as more complex architecture transformation. In the PoC all 

these transformations are performed by a script containing sequence of CIF API calls. 

Transformation add to CIF representation additional set of objects that are represented in 

sobel_aow_cif.json and aow_classes.json files. 

Flattened sdf graph represented by object of “sdf” class in “preesm” namespace 

converted to object of “scheduling_application” class in “aow” namespace. The 

transformation mainly converts objects from classes defined in “preesm” namespace to 

objects from classes defined in “aow” namespace by renaming various property names. 

Architecture represented by object of “slam” class in “preesm” namespace converted to 

object of “scheduling_architecture” class in “aow” namespace. The transformation 

converts objects from classes defined in “preesm” namespace to objects from classes 

defined in “aow” namespace by renaming various property names and perform more 

complex aggregative transformations (for example objects of “componentInstance” class 

are aggregated by “componentRef” property values and if "componentDescription" object 

having property “componentRef” with same value have also “componentType” property 

with value “Operator” it is transformed to “processingElement” object)  
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Timing data represented by object of “timing” class in “preesm” namespace converted to 

aggregation of objects of "scheduling_execution" class in “aow” namespace, where each 

object transformed from corresponding “timingEntry” object in “preesm” namespace, by 

changing property names. 

Then data to JSON file according to AOW input data schema (top-level schema 

represented in aow.json file) are converted. After these steps, a single JSON file in AOW 

format (sobel_aow.json) is obtained.  

AOW performs optimization and store optimal scheduling result in JSON file in AOW 

format (aow_result.json). Next, JSON is converted to CIF and then transformed to 

PREESM format using CIF middleware API, enriching existing PREESM SDF 

representation by scheduling results. Finally, SDF together with scheduling results 

converted to JSON according to PREESM schema (sobel_sdf_result.json). 

 

 


