
Information and Communication Technologies (ICT)

Programme

Project No: H2020-ICT-2016-1-732105

D5.1: CERBERO Holistic Methodology

and Integration Interfaces (Final

Version)

Lead Beneficiary: AI

Work package: WP5

Date: 28/08/2019

Distribution - Confidentiality: [Public]

Abstract: This is an updated report on integration activities with emphasis on cross-layer

and cross abstraction levels integration methodology as well as operational interfaces

among tools. Here presented is a definition of CERBERO holistic design framework, the

Ref. Ares(2019)5505360 - 31/08/2019

H2020-ICT-2016-1-732105 - CERBERO

WP5 – D5.1: CERBERO Holistic Methodology and Integration Interfaces (Final Version)

Page 2 of 58

integration roadmap followed and the interfaces developed. This release of the deliverable

is the final of three releases, of which the first D5.4 and D5.5 are already available.

© 2017 CERBERO Consortium, All Rights Reserved.

H2020-ICT-2016-1-732105 - CERBERO

WP5 – D5.1: CERBERO Holistic Methodology and Integration Interfaces (Final Version)

Page 3 of 58

Disclaimer

This document may contain material that is copyright of certain CERBERO beneficiaries,

and may not be reproduced or copied without permission. All CERBERO consortium

partners have agreed to the full publication of this document. The commercial use of any

information contained in this document may require a license from the proprietor of that

information.

The CERBERO Consortium is the following:

Num. Beneficiary name Acronym Country

1 (Coord.) IBM Israel – Science and Technology LTD IBM IL

2 Università degli Studi di Sassari UniSS IT

3 Thales Alenia Space Espana, SA TASE ES

4 Università degli Studi di Cagliari UniCA IT

5
Institut National des Sciences Appliquees de

Rennes
INSA FR

6 Universidad Politecnica de Madrid UPM ES

7 Università della Svizzera italiana USI CH

8 Abinsula SRL AI IT

9 Ambisense LTD AS UK

10
Nederlandse Organisatie Voor Toegepast

Natuurwetenschappelijk Ondeerzoek TNO
TNO NL

11 Science and Technology S&T NL

12 Centro Ricerche FIAT CRF IT

For the CERBERO Consortium, please see the http://cerbero-h2020.eu web-site.

Except as otherwise expressly provided, the information in this document is provided by

CERBERO to members "as is" without warranty of any kind, expressed, implied or

statutory, including but not limited to any implied warranties of merchantability, fitness for

a particular purpose and non-infringement of third party’s rights.

CERBERO shall not be liable for any direct, indirect, incidental, special or consequential

damages of any kind or nature whatsoever (including, without limitation, any damages

arising from loss of use or lost business, revenue, profits, data or goodwill) arising in

connection with any infringement claims by third parties or the specification, whether in

an action in contract, tort, strict liability, negligence, or any other theory, even if advised

of the possibility of such damages.

The technology disclosed herein may be protected by one or more patents, copyrights,

trademarks and/or trade secrets owned by or licensed to CERBERO Partners. The partners

reserve all rights with respect to such technology and related materials. Any use of the

protected technology and related material beyond the terms of the License without the prior

written consent of CERBERO is prohibited.

http://cerbero-h2020.eu/

H2020-ICT-2016-1-732105 - CERBERO

WP5 – D5.1: CERBERO Holistic Methodology and Integration Interfaces (Final Version)

Page 4 of 58

Document Authors

The following list of authors reflects the major contribution to the writing of the document.

Name(s) Organization Acronym

Maria Katiuscia Zedda AI

Giuseppe Meloni AI

Michael Masin IBM

Evgeny Shindin IBM

Francesca Palumbo UNISS

Karol Desnos INSA

Julio Oliveira TNO

Luca Pulina UNISS

Claudio Rubattu INSA/UNISS

Tiziana Fanni UNICA

Daniel Madroñal UPM

Alfonso Rodriguez UPM

Leonardo Suriano UPM

Rafael Zamacola UPM

The list of authors does not imply any claim of ownership on the Intellectual Properties described

in this document. The authors and the publishers make no expressed or implied warranty of any

kind and assume no responsibilities for errors or omissions. No liability is assumed for incidental

or consequential damages in connection with or arising out of the use of the information contained

in this document.

Document Revision History

Date Ver. Contributor (Beneficiary) Summary of main changes

01/07/2019 V0.1 AI First draft

08/07/2019 V0.2 UNICA, UNISS and UPM Updated PAPIFY-MDC section,

added Spider-PAPIFY-MDC

section

09/07/2019 V0.2 AI and UPM New structure with more direct

connections included and

connection with external tools

15/07/2019 V0.3 UPM New sections

H2020-ICT-2016-1-732105 - CERBERO

WP5 – D5.1: CERBERO Holistic Methodology and Integration Interfaces (Final Version)

Page 5 of 58

23/07/2019 V0.4 IBM Refactoring of sections 4 and 5

related to CIF, new structure and

content.

25/07/2019 V1.0 AI, UNISS Review

26/07/2019 V1.1 UPM Fix Section 6

29/07/2019 V1.2 AI Refactoring of section 7

H2020-ICT-2016-1-732105 - CERBERO

WP5 – D5.1: CERBERO Holistic Methodology and Integration Interfaces (Final Version)

Page 6 of 58

Table of Contents

1. Executive Summary ... 7
1.1. Structure of Document ... 7
1.2. Related Documents .. 7
1.3. Related CERBERO Requirements .. 8

2. Introduction ... 9
2.1. Modelling for Systems Engineering ... 9
2.2. Systems Integration from CERBERO Perspective ... 10

3. State of the Art ... 12
3.1. Usage of Formal Semantics ... 12
3.2. Viewpoint Modelling ... 13
3.3. MARTE and PiSDF .. 13

4. CERBERO Integration Methodology .. 15
4.1. Tool Suite ... 15
4.2. System Design and Operational Framework .. 15
4.3. Simplified Ontology-based Integration with Intermediate Representation 20
4.4. Mapping KPIs to Model... 24
4.5. OS Qualified as a Toolchain Host.. 25

5. Internal Interfaces .. 26
5.1. Low-Level Instance Base Interface ... 26
5.2. Ontology and Class Definition Interface.. 27
5.3. Class Base Interface for Directly-Connected Tools. ... 30
5.4. Data Serialization and Data Interfaces .. 31
5.5. Ontology Alignment and Equivalence Rules .. 33

6. Direct Tool Integration Holistic Methodology .. 36
6.1. Integrating PREESM and SPIDER with MDC ... 37
6.2. Integrating PAPIFY with MDC ... 37
6.3. Integrating SAGE-ReqV and DYNAA .. 39
6.4. Integrating PAPIFY with ARTICO3 ... 42
6.5. Integrating IMPRESS with ARTICo3 ... 46
6.6. Integration ARTICo3 with PREESM .. 47
6.7. Integrating Spider with PAPIFY and with MDC... 50
6.8. Integrating ARTICo3 and MDC with PAPIFY ... 51
6.9. Integrating CERBERO Tools with External Tools ... 52

7. Conclusion ... 54
7.1. Lesson Learned .. 54
7.2. Operational Objectives Deliverable Contribution ... 55

8. References ... 57

H2020-ICT-2016-1-732105 - CERBERO

WP5 – D5.1: CERBERO Holistic Methodology and Integration Interfaces (Final Version)

Page 7 of 58

1. Executive Summary

This is the final version of the integration activities and complete framework characteristics

with emphasis on interfaces among tools.

After the first release, D5.4, that has defined CERBERO methodology, following the

iterative development scheme of the project, during the Phase II the methodology has been

deeply revised, according to possible technical requirements updates, and the verification

and fine tuning of the integration process, these updates have been reported in the second

version of the deliverable D5.5. Final reporting on integration activities and the complete

framework characteristics and interfaces are included in the present deliverable D5.1.

Please note that this non-chronological numbering of the deliverable is due to a recent

amendment.

In order to speed up and ease the reading and review process the text of sections and

paragraphs that have NOT been significantly updated and revised are in dark gray. Sections

that have been deeply updated and revised are 4.2, 4.3, 4.4, 5 and 6. Furthermore, a new

section 7 has been added.

1.1. Structure of Document

The document starts by an introduction to modeling of CPSs and vision of CERBERO

integration. Then state of the art methodologies are reported. Then the report discusses

CERBERO design framework integration approach with required interfaces between the

myriad of tools across all layers of the toolchain (model, system of system design and

analysis and computational level design and implementation). This last part is devoted to

explaining the methodological approach related to the tool integration reporting also a

number of successful integration endeavors already achieved by the consortium members.

The last section summarized the lesson learned during the integration process, and the

contribution of the present deliverable to achieve CERBERO operational objectives.

1.2. Related Documents

• D2.2: CERBERO Technical Requirement

o The activities behind D5.5 contribute to satisfying the requirements 0011

and 0012 listed in D2.2.

• D5.4 – D5.5: CERBERO Holistic Methodology and Integration Interfaces

o The proposed holistic methodology reported in the D5.4 and D5.5 has

been the basis of the D5.1

• D5.2 – D5.2: CERBERO Framework Components

o The deliverable reports the component/features of CERBERO design

environment that have been integrated

• D5.7: CERBERO Framework Demo

o After phase II, the verification of the proposed process has allowed

identifying the correct methodology for the framework integration and to

define the semantic integration approach based on CIF (CERBERO

Interoperability Framework).

H2020-ICT-2016-1-732105 - CERBERO

WP5 – D5.1: CERBERO Holistic Methodology and Integration Interfaces (Final Version)

Page 8 of 58

1.3. Related CERBERO Requirements

Deliverable D2.2 of the CERBERO project defines a list of CERBERO Technical

Requirements (CTRs) the project should achieve. Each of them is referenced with a unique

identifier ranging from 0001 to 0020.

The CERBERO holistic methodology described in the current document address 4 CTRs,

as described in the Table 1-1. It is important to note that most of the requirements related

to this deliverable are covered by the tools integrated in the framework and are not reported

in the following table.

CTR id CTR Description Link with the D5.1 document on CERBERO holistic

methodology and integration interfaces

0001 CERBERO

framework/technology

SHOULD increase the level of

abstraction at least by one for

HW/SW co-design and for

System Level Design.

Users can benefit from the integration of lower level HW-

development oriented tools with higher abstraction level

ones. The entry point for custom accelerators developments

are mainly high level dataflow specifications.

0002 CERBERO framework

SHOULD provide

interoperability between cross-

layer tools and semantics at the

same level of abstraction.

The semantic integration at the same level of abstraction

and the interoperability between cross-layer tool has been

achieved with the definition and development of CIF.

0003 CERBERO

framework/technology

SHOULD provide incremental

prototyping capabilities for

HW/SW co-design.

Direct integration of computing level development tools

allowed the possibility to complementary and

incrementally integrate/assess new features on the systems.

Staring from pure SW implementation monitoring

capabilities allows to understand what can/should be

moved to HW. Different versions of this latter can be

customized with a small user effort and time having the

same C code as an entry point, leading to a new set of

prototypes to be evaluated.

0009 CERBERO SHALL develop

integration methodology and

framework.

All the integration related activities, both direct and CIF-

based, concurs to the final development of the framework.

Table 1-1: List of CTR addressed by the D5.1

H2020-ICT-2016-1-732105 - CERBERO

WP5 – D5.1: CERBERO Holistic Methodology and Integration Interfaces (Final Version)

Page 9 of 58

2. Introduction

Cyber-Physical Systems (CPS) are engineered systems comprising interacting physical and

computational components. In CPS, computation and communication are deeply

embedded in and interacting with physical processes to add new capabilities and

characteristics to physical systems.

In this report, we investigate how the various system components could be integrated into

a holistic operational framework respecting the requirements imposed by the overall

system and seeking a new foundation for CPS design, integration and operation. The goal

of the project is to deliver a model-based, heterogeneous and robust solution that is going

to be customizable (upon scenario needs) and generalizable (to different scenarios).

2.1. Modelling for Systems Engineering

Systems Engineering (SE) dictates the design process associated with the development of

large-scale products through defining systems and subsystems requirements, their

architecture, and critical parameters. With the recent increase in product complexity and

business competition, mere intuition of system design engineers has proven insufficient for

finding feasible, safe, reliable and affordable designs [1]. Hence modelling started to

emerge to overcome these shortcomings and provide a well-thought-out plan for a solid

design and smooth implementation and refinement.

In the context of systems engineering, models are created to deal with complexity. In doing

so they allow us to understand an area of interest or concern and provide unambiguous

communication amongst interested parties, models are leveraged in nearly all stages of the

development process. During analysis, models provide an abstract representation of the

desired solution, e.g. in terms of dynamic behaviour diagrams such as sequence diagrams

and state machines. In the design phase, the software architecture could be abstracted

through UML (Unified Modeling Language) component structure diagrams and class

diagrams. In addition, ports and interfaces facilitate modelling of data flows between

components. From these models, code can be partially generated in the implementation

phase. Moreover, many models can be used at several levels of specification of the system.

For example, Finite State Machines are useful at the system, and component levels, both

for HW and SW. For testing purposes, models are used to generate test cases. To sum it

up, Model-Based Systems Engineering (MBSE) or, more generically, Model-Driven

Engineering (MDE) has models as the primary data source. Model Driven Development

uses the activities associated with modelling to drive the whole development process [2].

From that perspective, specialized modelling tools come into play to increase productivity.

There is a plethora of modelling languages such as SysML (a UML extension), AADL

(Architecture Analysis & Design Language), and modeling tools such as Excel, IBM

Rhapsody, PTC Artisan Studio, Sparx Enterprise Architect, domain-specific tools (e.g.

medical, avionics, automotive, marine, space, etc.), and simulation environments such as

Simulink and Modelica [1]. The Functional Mock-up Interface (FMI) standard facilitates

the exchange of simulation models between suppliers and OEMs. FMI adopts a tool-

independent approach for both model exchange and co-simulation of dynamic models

H2020-ICT-2016-1-732105 - CERBERO

WP5 – D5.1: CERBERO Holistic Methodology and Integration Interfaces (Final Version)

Page 10 of 58

using a combination of XML-files and compiled C-code [3]. Its success could be attributed,

at least partially, to a minimalistic API allowing high flexibility for tool providers.

There are also black-box integration tools that help with reducing complexity, improving

efficiency and cutting development time. FRONTIER - by ESTECO - provides an

innovative optimization environment with modular, profiled-based access. ESTECO's

integration platform for multi-objective and multi-disciplinary optimization offers a

seamless coupling with third party engineering tools, enables the automation of the design

simulation process and facilitates analytic decision making. ModelCenter Integrate - by

Phonix Integration - allows users to automate any modelling and simulation tool from any

vendor, integrate these tools together to create repeatable simulation workflows, set

simulation parameters, and automatically execute the workflow. Hence ModelCenter

Integrate increases productivity by enabling users to execute significantly more simulations

with less time and resources.

The benefits of using models in systems engineering are manifold: Building models is

usually easier than building the actual system as a whole from the ground up. Modelling

helps to capture, structure, and understand the system and to reveal, early enough, possible

problems and potential bugs lurking at every stage of the system design and

implementation. It has proven more appropriate for high-stakes and increasingly complex

applications such as reconfigurable and adaptive cyber physical systems. Last but not least,

integration per se is not a scientific activity, it is rather an engineering problem full of

accidental issues (i.e. tools adopting different languages, running on different platforms,

vendor-specific components, etc.) CERBERO is no exception; therefore, we decided to

adopt a model-based, semantically oriented, approach.

2.2. Systems Integration from CERBERO Perspective

Systems integration is a process whereby a cohesive system is created from components

that were not specifically designed to work together. Components of an integrated system

are often systems in their own right and integration aims at interconnecting these

components together in a layered fashion in order to provide a useful exchange of

information, data and/or control between these sub-systems and assuring that the integrated

system meets requirements and performs according to user expectations.

To facilitate systems interconnection, an interface is defined and created as a point of

interaction between communicating systems. Interfacing may also mean using a common

message format, or intermediate representation, to provide kind of a unified

communication paradigm across the system entirely, or partially. The translation would be

required from the interface of one component to the intermediate representation, or vice

versa.

Generally, integration is done considering subsystems as black-boxes, hence creating a

middleware to “glue” together these disparate subsystems without them needing to know

anything about each other. We support the “open world” assumption, where each tool

should assume that all objects may have more properties than it knows about. Inspired by

FMI standard, we are developing as simple formalism as possible to exchange objects with

properties that tools recognize with middleware support for simple property mappings

when it is semantically clear.

H2020-ICT-2016-1-732105 - CERBERO

WP5 – D5.1: CERBERO Holistic Methodology and Integration Interfaces (Final Version)

Page 11 of 58

A recommended integration process adopts an iterative – that is, continuous or constantly

evolving - integration model rather than a static or fixed model. Hence, it is essential to

create a holistic and customizable framework for subsystem integration as these

subsystems and tools undergo continuous development. For tracking of integration

progress, the integrated system must be verified and validated periodically against system

and user requirements toward a mature integration framework for the overall platform or

toolchain.

H2020-ICT-2016-1-732105 - CERBERO

WP5 – D5.1: CERBERO Holistic Methodology and Integration Interfaces (Final Version)

Page 12 of 58

3. State of the Art

Systems Engineering governs the design process associated with the development of large-

scale products through defining systems and subsystems requirements, their architecture,

and critical parameters. The recent increase in product complexity and business

competition dictates the necessity for finding feasible, safe, reliable and affordable designs.

Consequently, three techniques have become popular in helping handle the complexity:

layering design process into several levels of abstraction, separation of concerns, and using

computerized tools for automation of modelling, optimization and analysis.

Embedded systems are commonly subject to data intensive processing applications where

huge amounts of data are handled in a regular way by means of repetitive computations.

These applications deal with intensive or massive parallelism either on the data level or on

the task level. High-level analysis of data-intensive applications becomes a complex task

necessitating a refinement step toward low levels of abstraction specifying both

computation and communication costs in the system.

The following works address the challenge of abstracting system design in a layered

fashion that maintains computation and communication specifications of the system and

facilitates analysis and optimization hence provides a competitive business edge for the

end cyber-physical system.

3.1. Usage of Formal Semantics

Model-Based Engineering of Cyber-Physical Systems needs correct-by-construction

design methodologies, hence CPS specification languages require mathematically

rigorous, unambiguous, and sound specifications of their syntax and corresponding model

semantics. Cyber-physical systems are software-integrated physical systems often used in

safety-critical and mission-critical applications, for example in automotive, avionics,

chemical plants, or medical applications. In these applications sound, unambiguous and

formally specified modelling languages can help developing reliable and correct solutions.

Traditional systems engineering is based on causal modelling (e.g., Simulink), in which

components are functional and a well-defined causal dependency exists between the inputs

and outputs. It is known that such a causal modelling paradigm is imperfect for physical

systems and CPS modelling since physical laws are inherently acausal.

Recently, acausal modelling has gained traction and several languages have been

introduced for acausal modelling (e.g., Modelica, bond graphs) [4]. Every time a new

specification language is introduced, there is a natural demand to extend it to support as

many features as possible. Unfortunately, this often leads to enormously large and generic

languages, which have many interpretations and variants without a clear, unambiguous

semantics. Because of the size of these languages, there is not much hope for the complete

formalization of their semantics.

A fundamental problem is that generic languages provide support for many more features

than a specific problem needs, still, they often lack support for some essential functions

that would be otherwise needed. Thus, in most cases, it is more feasible to use Domain

H2020-ICT-2016-1-732105 - CERBERO

WP5 – D5.1: CERBERO Holistic Methodology and Integration Interfaces (Final Version)

Page 13 of 58

Specific Modeling Languages (DSML) [5] [6], which are designed to support exactly the

necessary functions. Additionally, because DSMLs are usually significantly smaller than

generic languages, their formal specification is feasible.

The work in [7] discusses the challenges to develop the formal semantics of a CPS-specific

modelling language called Cyber-Physical Modeling Language (CyPhyML). The paper

formalizes the structural semantics of CyPhyML by means of constraint rules, and the

behavioural semantics by defining a semantic mapping to a language for differential

algebraic equations. The specification language is based on an executable subset of first-

order logic, which facilitates model conformance checking, model checking and model

synthesis.

3.2. Viewpoint Modelling

Viewpoint modelling is an effective approach for analyzing and designing complex

systems. Splitting various elements and corresponding constraints into different

perspectives of interests enables separation of concerns such as domains of expertise, levels

of abstraction, and stages in the lifecycle. Specifically, in Systems Engineering different

viewpoints could include functional requirements, physical architecture, safety, geometry,

timing, scenarios, etc. The first development and refinement step are referred to as

Engineering Modeling, and the second optimization and analysis step is referred to as

Design Space Exploration (DSE). Consequentially, there are no automatic tools for holistic

DSE based on libraries of previously developed and tested Analysis Viewpoints.

Despite partial inter-dependences, models are usually developed independently by

different parties, using different tools and languages. However, the essence of Systems

Engineering requires repetitive integration of many viewpoints in order to find feasible

designs and to make good architectural decisions, e.g., in each mapping between

consecutive levels of abstraction and in each design space exploration. This integration into

one consistent model becomes a significant challenge from both modelling and information

management perspectives.

The work in [1] suggests: (1) a unique modular algebraic viewpoint representation robust

to design evolution and suitable for the generation of the integrated optimization/analysis

models, and (2) an underlying ontology-based approach for consistent integration of local

viewpoint concepts into the unified design space model. The paper shows also an example

of an optimization model with different combinations of partially interdependent Analysis

Viewpoints. Using the proposed modelling and information management approach the

underlying viewpoints’ equations can be applied without modification, making the

approach pluggable.

3.3. MARTE and PiSDF

At the present time, embedded systems are commonly dedicated to data-intensive

processing applications where huge amounts of data are handled in a regular way by means

of repetitive computations. These applications deal with intensive or massive parallelism.

H2020-ICT-2016-1-732105 - CERBERO

WP5 – D5.1: CERBERO Holistic Methodology and Integration Interfaces (Final Version)

Page 14 of 58

Indeed, parallel applications can implement two levels of parallelism: data parallelism and

task parallelism. High-level analysis of data-intensive applications becomes a complex task

necessitating a refinement step toward low levels of abstraction specifying both

computation and communication costs in the system. Accurate performance numbers can

be reached at the cost of very detailed modelling. On the other hand, a moderate effort for

modelling leads to a high-level evaluation task, but the accuracy is lost.

The work in [8] proposes a new approach that takes advantage of Model-Driven

Engineering (MDE) foundations and Modeling and Analysis of Real-Time and Embedded

Systems (MARTE) profile. The paper defines a transformation to a new level of abstraction

that alleviates the exploration and analysis tasks of real-time data-intensive processing

applications. This level is based on a novel extension of the famous Synchronous Data

Flow (SDF) Model-of-Computation (MoC), the Parameterized and Interfaced

Synchronous Dataflow (PiSDF) model. PiSDF facilitates the specification, and especially

the analysis of data-intensive applications as it gathers a lot of features including hierarchy,

configurability and dynamism. This MoC introduces analysis techniques facilitating the

design space exploration task. Then, a high-level analysis of the data-parallel application

is performed using the PREESM rapid prototyping tool.

H2020-ICT-2016-1-732105 - CERBERO

WP5 – D5.1: CERBERO Holistic Methodology and Integration Interfaces (Final Version)

Page 15 of 58

4. CERBERO Integration Methodology

4.1. Tool Suite

As a first step toward building CERBERO toolchain, IBM and AI in collaboration with the

entire consortium have surveyed and agreed upon an array of tools that are either state-of-

the-art or already exist within the consortium as fully mature technologies. This survey

helped to collect and consolidate information about the functionality of each tool, setup

requirements, documentation availability, maturity/readiness level, licensing, and usability

domains, and would serve as a reference point for integration efforts. These tools cover the

entire stack of a CPS: system model layer, application layer, OS or runtime layer, and

hardware abstraction layer. This survey analysis has been the basis for defining a feasible

CERBERO integration plan and to specify the interfaces for newly designed tools.

4.2. System Design and Operational Framework

For the model-based design of complex systems, such as CPS and CPSoS, a structured and

well-defined design framework is essential to guarantee high-quality products that fulfil all

requirements of the stakeholders and to enable handling the complexity of such systems by

introducing different viewpoints or abstraction layers to model the system under

development. Therefore, an important step to obtain a system implementation is the Design

Space Exploration (DSE), where design decisions are taken based on goals and

requirements defined in previous phases. The set of valid solutions may be restricted by

constraints, which could be derived from previously defined requirements considering

aspects such as functional requirements, physical architecture, safety, geometry, timing,

etc. Valid solutions are rated with respect to defined goals to facilitate a decision toward

the choice of final system implementation. Based on this abstract framework, concrete DSE

methods can be implemented addressing different kinds of DSE problems that are relevant

in industrial practice. In the CERBERO framework we intend to carry out DSE at different

levels, at the system level to define the proper distribution among computing nodes, and

within the single node to identify the optimal HW/SW partitioning and components set-up.

The selected optimal design resulted from the system level DSE should be available (i.e.,

machine-readable) for HW/SW co-design to define, partially, its functional requirements.

CERBERO design framework aims at shifting designers’ work at a higher abstraction level

and earlier in the design process, relieving them from manual and complex HW/SW tuning

phases. It creates and promotes model-based cross-layer optimization, design, verification

and simulation methods that aim at deeply modifying CPS system design approach, shifting

from a V model paradigm to a ladder model paradigm, see Figure 4.1, thus slashing the

time to market. In the model-based approach, all the properties and system characteristics

are tackled concurrently right at the model level at design-time to allow the cross-

optimization of physical components, as well as the cross-configuration of the HW and SW

layers. Dealing with CPS and CPSoS poses challenges for the overall system assessment

(dimensioning and characterizing communication channels, profiling power consumption,

H2020-ICT-2016-1-732105 - CERBERO

WP5 – D5.1: CERBERO Holistic Methodology and Integration Interfaces (Final Version)

Page 16 of 58

etc.) To cope with these challenges, CERBERO features adequate analysis tools and

provide sufficient breakdown of all related layers of the system model to guarantee

continuous validation.

Figure 4.1: V-Model vs. Ladder System Design Approach

The CERBERO toolchain operates at different levels of abstraction, going from the

computation level to the system (of systems) level, delivering also user-level features (i.e.

requirements/model verification). Figure 4.3 illustrates the CERBERO tools that offer

support at Design-Time as foreseen at M27:

• At Model/Verification Level SAGE suite leverages on formal methods to

automatically check the consistency of a set of requirements provided by the user.

• At System (and System of Systems) Level, AOW solves optimization problems to

return frontier of Pareto optimal solutions, while DynAA is based on discrete-

component models and the related parallelism and physical aspects, finding optimal

solutions by means of model simulations.

• At the Computation Level several tools, for design implementation, are present.

o PREESM enables parallel-application development with design-time

prediction, as well as code generation and re-use capabilities.

o PAPIFY provides monitoring capabilities by means of an event library

aimed at generalizing Performance API (PAPI) for heterogeneous

architectures.

o MDC is an automated dataflow-to-hardware framework for the generation

of coarse-grain reconfigurable accelerators.

o ARTICo3 exploits a DPR-enabled multi-accelerator computing scheme,

going to the user-defined application down to the system implementation.

o JIT hardware composition refers to the ability to implement, at run-time,

hardware accelerators on FPGAs without a pre-synthesized design.

IMPRESS, belonging to the JIT HW design suite, is a TCL script-based tool

for the automated generation of relocatable partial bitstreams under Vivado.

At design-time, using intermediate semantics for integration through the CERBERO

Integration Framework (CIF) has allowed requirements analysis and verification at the

model level. Integration of some tools at the computational level (both for SW and HW

design), however, is more implementation oriented since interfaces between these tools

H2020-ICT-2016-1-732105 - CERBERO

WP5 – D5.1: CERBERO Holistic Methodology and Integration Interfaces (Final Version)

Page 17 of 58

have already been coded or currently being developed and tested in a DIRECT

INTEGRATION tool-to-tool manner. In Figure 4.2 and Figure 4.3 connection achieved

through the CIF are highlighted in yellow, while direct point-to-point connections are a

highlight in green. Basically, with respect to M27, the final Design-Time support of the

CERBERO framework is the one depicted in Figure 4.3, where you should notice that

MDC has not been connected to SAGE. We opted for building the connection of MDC to

CIF with the idea of providing MDC the possibility to connect to higher abstraction level

tools and to assess, conversely from the CIF point of view, the possibility of using CIF also

to make interoperable lower computation level framework components.

Figure 4.2: CERBERO toolchain for Design-Time Support (as foreseen at M18)

H2020-ICT-2016-1-732105 - CERBERO

WP5 – D5.1: CERBERO Holistic Methodology and Integration Interfaces (Final Version)

Page 18 of 58

Figure 4.3: CERBERO toolchain for Design-Time Support (as foreseen at M27)

Figure 4.4 illustrates the CERBERO tools that offer support at Run-Time as foreseen at

M27:

• At System (of Systems) Level, MECA improves the resilience of human-machine

teams by providing system, environmental and human monitoring and diagnosis,

and high-level decision support in cases of unforeseen conditions and events, while

DynAA explores different solutions at run-time to provide direct interaction with

signals that come from the system and the environment.

• At the Computation Level several tools, for run-time support are present.

o SPIDER performs dynamic mapping and scheduling of dataflow

applications on a parallel heterogeneous architecture.

o PAPIFY is meant to provide a large set of run-time execution information

to SPIDER.

o MDC and ARTICo3 deploy and configure proper engines over the physical

substrate at design-time. These engines are used at run-time to execute all

the actions needed to support run-time reconfiguration of the HW.

o JIT HW composition addresses fine-grain reconfiguration, providing a way

to map circuits at run-time by composing small HW components laid on an

overlay architecture. IMPRESS, a tool to implement JIT composable HW,

allows reconfigurable module composition to generate custom overlays on

the fly, without the need of predefined floor planning and inter-module

communication description.

It is important to highlight that the final Run-Time support of the CERBERO framework

has not changed from M18 to M27. Furthermore, the connection between SPiDER and

ARTICo3 is not available at the moment due to low-level incompatibilities between tools.

H2020-ICT-2016-1-732105 - CERBERO

WP5 – D5.1: CERBERO Holistic Methodology and Integration Interfaces (Final Version)

Page 19 of 58

However, the ARTICo3 runtime library provides similar rescheduling capabilities for

FPGA-based processing, and it is being used currently while SPiDER is modified to

support heterogeneous HW/SW processing properly.

Figure 4.4: CERBERO toolchain for Run-Time Support (as foreseen at M18 and M27)

Integration is based on methods and interfaces in agile cycles performing cross-layer

integration and combining modelling, simulation, verification and code generation

activities. It turned out to be essential before attempting the modelling, and hence

integration efforts, to plan the following system characteristics:

• Functional and non-functional requirements.

• Available system libraries, including models that require new developments.

• System structure and composition.

• A unified naming convention for all properties and attributes.

• Open world assumption (more tools, more viewpoints).

Consequentially, constraints and KPIs (such as jitter, delay, latency, KPI, QoS, energy

consumption) are verified before starting integration activities. All those activities have

involved partners, and in particular technology/tools provider, participating to WP2-5.

Integration also involves gap analysis in order to discover gaps and overlaps and reveal

points of interoperability. Understanding the opportunities for integration or gap-filling

informs holistic trade-off decisions about integrating systems and capabilities [9].

Execution of CERBERO integration methodology adopts a Continuous Engineering

approach that guarantees reuse of design time models for generating novel and more

accurate design and operational models up to the runtime environment. In this deliverable,

we provide an update on the integration methodology adopted.

H2020-ICT-2016-1-732105 - CERBERO

WP5 – D5.1: CERBERO Holistic Methodology and Integration Interfaces (Final Version)

Page 20 of 58

Semantic model-based integration supports cross-layer and cross-levels of abstraction

modelling, usually dealing with system integration and system modelling. In this case, we

leverage on ontologies “passing” relevant properties among layers and levels of

abstraction. On the other hand, each layer (that can handle more than one model) has its

own tools that usually much more compatible among each other and that should pass

information by means of the same ontologies focusing on fast execution (important, e.g.,

for simulation). We implement a simplified version of ontology based on things with

properties: each tool will look for relevant properties of intermediate models, constraints

or KPIs from other tools (potentially in other layers/levels of abstraction); while the

framework supports mapping model properties to tools/analysis namespace properties and

provides shared directories for model exchange. The methodology has been co-refined

together with project advance in cross-layer integration framework combining modelling,

DSE, simulation, verification and code generation capabilities of CERBERO tools. Two

iterations were planned during the total duration of the project, see Figure 4.5 , delivering

a “beta” and a “final” version of CERBERO integration strategies and internal interfaces.

This report refers to integration activities up to M27. We are still closing the

implementation step of the second phase of the project.

Figure 4.5: Iterative Development Scheme of CERBERO Integration Framework

4.3. Simplified Ontology-based Integration with Intermediate

Representation

As mentioned earlier, integration is traditionally a complex engineering problem. It is

characterized by several different accidental issues, as the usage of different modelling

paradigm or languages, and thus require extreme effort to create and maintain necessary

integration infrastructure. This is particularly true in the CPS environment where you need

to combine components suitable for the different aspects of the CPS. These motivations

led the designer to look for semantic integration of tools, and ontology-based integration

is particularly suitable, in our opinion, to the case.

The term “ontology” derives from ancient Greek “onto”, which means “being” and logos,

which means, “discourse”. Ontology -- or roughly the "science of stuff" and how it is

represented -- used to be a rather obscure branch of philosophy. It still is in some cases, but

H2020-ICT-2016-1-732105 - CERBERO

WP5 – D5.1: CERBERO Holistic Methodology and Integration Interfaces (Final Version)

Page 21 of 58

it is also an important and growing area of computer science and the web of things (WoT).

Then, ontology has assumed other relevant meanings, such as:

 “A formal shared and explicit representation of a domain concept.”

or:

“A method for formally representing knowledge as a set of concepts within a domain, using

a shared vocabulary to denote the types, properties and interrelationships of those

concepts.”

or:

“A formal way to describe taxonomies and classification networks, essentially defining the

structure of knowledge for various domains.”

Ontology-based data integration involves the use of ontology(s) to effectively combine

data or information from multiple heterogeneous sources. So, we have started CERBERO

integration efforts by creating a kind of ontology, by which we mean a collection of terms

that identify the real things and relationships that are relevant to CERBERO-supported

domains and industry-driven requirements. Maintaining an ontology design facilitates

keeping track of the terms and ensures integration efforts quickly get up to speed.

CERBERO features heterogeneous technologies and tools. As discussed above, we

retained the idea that model-2-model transformation would not necessarily be the main

mean of communication between tools (also, the feasibility of having fully automated

model to model transformations from the system of system level down to the hardware is

unlikely). Instead, each tool will manage its own model(s), and the intermediate

representation will be used to exchange “cross-layers” and “cross-models” information

between tools.

The intermediate format is, therefore, necessary to achieve the mediation between the

application's class model conceptualization and the common domain ontology

conceptualization since objects in the original format cannot be handled directly in the

framework [9]. Thus, CEBERO Interoperability Framework (CIF) follows the Resource

Description Framework (RDF)-like meta-model underlying common ontology.

CERBERO integrated framework aims at one model for the entire platform. That is, a

single model that maintains combined information provided from different connected

tools. The key feature of CERBERO integrated framework is an ability to enrich this model

by information provided by connected tools in tool-specific formats and to produce views

of this model that are readable by connected tools. This functionality provided internally

by the two-layered model structure [20] that separates instances, properties and

aggregations (lower level) from classes (upper level) (see Figure 4.6).

Figure 4.6: Layers of the CERBERO Intermediate Format

H2020-ICT-2016-1-732105 - CERBERO

WP5 – D5.1: CERBERO Holistic Methodology and Integration Interfaces (Final Version)

Page 22 of 58

Each instance in this model represents a thing that possesses one or more properties within

corresponding namespaces. The property itself possess a value that can be either simple

(integer, float, string, etc.) or object (another instance). Aggregations are special instances

that serve to represent one-to-many relations between instances, so each aggregation can

“contain” several instances. An example of instance-level CIF model is presented on Figure

4.7.

Figure 4.7: Example of CIF model

Classes are implemented using classification-by-property paradigm [20]. That is, any

instance that possesses some predefined set of properties becomes an instance of the

corresponding class. This predefined set of properties denoted as a class definition. The set

of class definitions related to the specific namespace form ontology.

The system-level of abstraction can have a complete view of the system infrastructure.

However, system level is not fully or directly aware of the “internals” of the underlying

more detailed levels. Since the information available at the system level are relevant at

lower levels, instances and properties in a model structure are inter-linked in such a way

that allows navigation from one property in the system to another across different layers

(see Figure 4.8).

Figure 4.8: From system view to CIF model

Ontology helps with revealing meaning and relations of each property from the whole

graph by referring to a property by its name. All properties relevant to the model are present

in the ontology. Ontologies can be either simplified (i.e. system model features only a

subset of all properties of the real system), or full ontology where all properties in the

system model are presented in the ontology. To enable interoperability between different

tools and preserve the integrity of holistic model mappings between ontologies are

provided. These mappings expressed through equivalence rules between classes and define

relations between instances, classes and properties coming from different namespaces. As

H2020-ICT-2016-1-732105 - CERBERO

WP5 – D5.1: CERBERO Holistic Methodology and Integration Interfaces (Final Version)

Page 23 of 58

a result, CIF database contain a single model combined from different viewpoints provided

by different tools (Figure 4.9).

Figure 4.9: Example of ontology mapping between PREESM, AOW and DynAA

CERBERO proposes an application layer solution for interoperability. The key idea is to

utilize semantics provided by existing specifications and dynamically wrap them in a

middleware fashion into semantic services in such a way that automates interoperability

without any modifications to existing standards, devices, or technologies, while providing

to the framework user an intuitive semantic interface with services that can be obtained by

executing all CERBERO technologies. In particular, a semantic layer is proposed for

simple mapping of KPIs to model properties (i.e., connecting corresponding namespaces)

as a semantic service; we may conventionally call that middleware the “CIF Service”

The architecture of CIF service represented on Figure 4.10.

Figure 4.10: Architecture of CIF service

H2020-ICT-2016-1-732105 - CERBERO

WP5 – D5.1: CERBERO Holistic Methodology and Integration Interfaces (Final Version)

Page 24 of 58

Tools can be connected to CIF directly by exposing their object models, or indirectly by

translating their object models into suitable representation such as XML or JSON. In the

second case one need additional layer translating data representation of object model into

class base representation. This layer requires extensions of class definition semantic that is

necessary for data-to-model translation. CIF service provide following APIs:

• Low-level API is designed to deal with low-level CIF model, i.e. add/remove/

change instances, properties and aggregations directly. This API is not supposed to

use directly by external tools but can be useful for service extensions.

• Class definition API is designed to allow ontology definition through definition of

related classes and classification by property paradigm.

• Class base API is designed for direct tool connection and allow import and export

of part of tool model that is described using corresponding class definitions.

• Data API serves to import/export tool models from XML or JSON data files and

requires from corresponding class definition extensions related to data-to-model

translations.

• Equivalence rules API serve to maintain mappings between different ontologies

(namespaces).

To sum it up, intermediate representation is the data or object model that one level of

abstraction, layer or tool is going to produce and the other is going to consume. It may not

necessarily be human understandable/comprehensible, but it’s necessarily interpretable

from one level/layer to another. In addition, feedback can be communicated to the

originating level/layer to facilitates self-adaptivity and reconfigurability. To connect

different layers or tools to the CIF service one should provide ontology of the respective

layer or tool. This ontology expressed in a form of class definitions that utilizing

classification-by-property paradigm. When class definition provided respective models can

be exported/imported into intermediate format automatically. Ones several tools or layers

describe their ontologies, it is possible to provide mappings between these ontologies in a

form of equivalence rules between corresponding classes. When corresponding

equivalence rules are provided, CIF service will care on automatic model transformation

between connected tools.

4.4. Mapping KPIs to Model

The evaluation of any Key Performance Indicator (KPI) out of its system model implies

that designers must determine a way to calculate them. Such calculation can be expressed

by means of a certain mathematical structure, or as we call it, an algebra. Algebras

provided as mathematical expressions between properties of different instances having

specific relations. Thus, algebra defines its own model including instances, classes and

properties. In a case when there is no plain mathematical structure and calculation of

corresponding KPI or its part should be held by some algorithm this algorithm can be

described as a function possessing input and output parameters that can be described w.r.t

to the same model structure. Models of the KPIs can be naturally expressed as a set of

parametrized class definitions. Ones all parameters are given one can instantiate these

definitions adding them to the class definition database through corresponding API.

Furthermore, these definitions can be mapped to the model by equivalence rule mechanism.

H2020-ICT-2016-1-732105 - CERBERO

WP5 – D5.1: CERBERO Holistic Methodology and Integration Interfaces (Final Version)

Page 25 of 58

Thus, to map KPI to the model one should instantiate class definitions provided by KPI

ontology and map these definitions to the model (see Figure 4.11). Ones mapping provided,

application serving for corresponding KPI calculation can read the model, perform

calculation and return the results back to the CIF.

Figure 4.11: Mapping of KPI to the model

4.5. OS Qualified as a Toolchain Host

CERBERO array of tools and technologies widely support both Windows and Linux.

However, Windows has been qualified by the consortium as the host operating system of

choice for the project since it has a larger market share and is more familiar with respect to

Linux, more feature-complete, enjoys commercial support, and is not subject to the

disintegrity imposed by a wide range of different Linux distributions that are only

maintained by their respective communities.

H2020-ICT-2016-1-732105 - CERBERO

WP5 – D5.1: CERBERO Holistic Methodology and Integration Interfaces (Final Version)

Page 26 of 58

5. Internal Interfaces

Cyber Physical Systems (CPSs) are an evolution of embedded systems and are based on a

tight combination of collaborating computational elements (i.e. micro computing units or

embedded systems interconnected by a communication system) that control physical

entities. Therefore, in CPS all types of smart equipment (i.e. sensors, actuators, devices,

machines, robots) are interconnected creating a smart community with data capture and

action capability from/to the physical world.

A CPS-based architecture for manufacturing is made of smart but independent

manufacturing components without any knowledge of the role they have to play together

in the real application. Ontologies can supply such kind of knowledge, playing a very

crucial role in CPS design.

Ontology in computer terms is concerned with the meaning of and the relationship between

entities. It derives its importance from its ability to organize raw or unstructured data by

semantics (i.e. meaning, such as classes, properties or attributes, and relationships), rather

than merely by strings or keywords, thus facilitating more efficient data operations (storing,

querying, sending and receiving). An ontology is often referred to as a “schema”.

Ontologies are typically far more flexible than class representations and hierarchies as they

are meant to represent information coming from all sorts of heterogeneous data sources.

Class hierarchies, on the other hand, are meant to be fairly static and rely on far less diverse

and more structured sources of data.

Therefore, CERBERO consortium postulates simplified ontologies as the right tool to

implement cross-layer information sharing and data flow in order to implement internal

interfaces and hence realize the CERBERO holistic integration methodology. As discussed

above, by simplified ontology we mean using things with properties where all analysis

viewpoints are defined by a set of properties and all objects that hold them.

5.1. Low-Level Instance Base Interface

As mentioned in Section 4.3 low-level interface intended for direct manipulation with basic

CIF structures that includes instances, properties and aggregations.

Instance – represents a simple object that has unique identifier (UID) that allow to

distinguish one instance from another. Instances can possess properties.

Property - represents a relation between instance (property owner) and property value,

that can be either simple value, another instance or aggregation. Each property has name

and namespace. Any instance can possess (be owner of) only one property with specific

name within specific namespace.

Aggregation – generalization of the instance that served to represent one-to-many

relations. May contain any number of members that can be either instances or simple

values. In the current implementation cannot possess properties. The question on whether

aggregation can or cannot possess properties is under investigation.

H2020-ICT-2016-1-732105 - CERBERO

WP5 – D5.1: CERBERO Holistic Methodology and Integration Interfaces (Final Version)

Page 27 of 58

The low-level interface includes methods to get/create/delete instances, properties,

aggregations and namespaces. It also includes additional methods that are created to fulfill

functionality required by high-level APIs such as class base or equivalence rules. This

interface in general is not supposed to be used by CIF connected tools directly, unless CIF

connected tool do not introduce extension to CIF itself.

5.2. Ontology and Class Definition Interface

Many software packages are now available for creating ontologies, among which are:

• Stanford University's Protégé (https://protege.stanford.edu/) , a free, open-source

ontology editor.

• TopBraid Composer from TopQuadrant.

(https://www.topquadrant.com/products/topbraid-composer/).

• Generally, any text editor.

Apart from RDF/XML, RDF ontologies can also be expressed in human-readable formats,

for example JSON that is also popular format for data exchange.

Before delving into a full example of a JSON-represented ontology, here below is a quick

recall of the most relevant terminology:

• JSON: is a lightweight format for data exchange (as XML, but less verbose yet

more human-readable). [By "data" we mean is the set of classes and attributes that

will be shared by tools and technologies that interoperate within the CERBERO

framework.].

• JSON-Schema: a JSON document according to which the ontology is defined.

[For example, if there are required or mandatory attributes if they are of number

datatype, if they can be null, etc.] In XML equivalence, that would correspond to

an XML schema or a Document Type Definition (DTD).

• Ontology: formally defines a common set of terms used to describe and represent

a domain (according to the JSON-Schema).

• Instance of Ontology: a specific element of an ontology.

Here we provide a simple Ontology such as representing an instance of DynAA task class

that is defined as all instances having “name”, “type” and “params” properties within

DynAA namespace. Here name and type are simple properties having values of string type

and params is object property which value is an instance of DynAA param class that have

integer property load and optionally integer property factor. An instance of this class looks

like:

{

 "name": "Split0",

 "type": "Split",

 "params": {

 "factor": 8,

 "load": 2

}

http://protege.stanford.edu/
https://protege.stanford.edu/
http://www.topquadrant.com/products/TB_Composer.html

H2020-ICT-2016-1-732105 - CERBERO

WP5 – D5.1: CERBERO Holistic Methodology and Integration Interfaces (Final Version)

Page 28 of 58

}

Following is a JSON Schema that describes the Ontology:

{

 "namespace": "dynaa",

 "class": "task_description",

 "schema": {

 "properties": [

 {

 "name": "name",

 "optional": false,

 "value": {

 "type": "str",

 "optional": false,

 "collection": null,

 "constrains": [],

 "default": null,

 "object": null

 }

 },

 {

 "name": "type",

 "optional": false,

 "value": {

 "type": "str",

 "optional": false,

 "collection": null,

 "constrains": [],

 "default": null,

 "object": null

 }

 },

 {

 "name": "params",

 "optional": true,

 "value": {

 "optional": false,

 "type": "object",

 "collection": null,

 "constrains": [],

 "default": null,

 "object": {

 "namespace": "dynaa",

 "class": "param_description"

 }

 }

 }

]

 }

}

{

 "namespace": "dynaa",

 "class": "param_description",

H2020-ICT-2016-1-732105 - CERBERO

WP5 – D5.1: CERBERO Holistic Methodology and Integration Interfaces (Final Version)

Page 29 of 58

 "schema": {

 "properties": [

 {

 "name": "factor",

 "optional": true,

 "value": {

 "type": "int",

 "optional": false,

 "collection": null,

 "constrains": [],

 "default": 1,

 "object": null

 }

 },

 {

 "name": "load",

 "optional": true,

 "value": {

 "type": "int",

 "optional": false,

 "collection": null,

 "constrains": [],

 "default": 0,

 "object": null

 }

 }

]

 }

}

By using the schema, a computer program can validate, understand, and process the data

file to purposes of creating a computational model, transferring data, analysis, simulation,

and reporting. The use of schemas makes the modelling tool more generic, and

independent of a specific file format. This is very important to increase the interoperability

between tools, modelling layers (HW/SW), and modelling views.

CERBERO intermediate format introduce following format of class definitions (schemas):

CIF class definition file includes following fields:

• "namespace" – namespace for which belongs class definition.

• "class" – name of the class.

• "schema" – schema of the class.

Schema consists of properties definitions enlisted under “properties” key, where each

property includes following fields:

• "name" - name of the property.

• "namespace" – optional. Should be provided if property has different

namespace (not same as defined in the schema namespace).

• "optional" – true/false indicates if property is optional or not. Instance of

respective class may not possess optional properties.

• "value" – describes value of the instance.

Value field includes following properties:

H2020-ICT-2016-1-732105 - CERBERO

WP5 – D5.1: CERBERO Holistic Methodology and Integration Interfaces (Final Version)

Page 30 of 58

• "type" – describes type of property value may be either “str”, “int”, “float” or

“object”, indicating that related property should have value of corresponding type.

• "optional"– true/false indicates that value is optional (i.e. can have “null”)

value or not.

• "collection" – “set”/ “list”/null indicates that property points to collection of

objects of corresponding type. Null value in this field indicates that property

possess single value. Properties possessing collection values (having collection

“set” or “list”) possessing aggregation value in the instance base.

• "constrains" – set of constraints on property value (functionality of this field

does not implement yet).

• "default" – default value of the property. Optional. If provided and property

has null value, then default value used instead of null.

• "object" – either null (for simple types) or object specification (for object type).

Object specification consist of two fields:

• "namespace" – namespace for which belongs object value.

• "class" – name of the class for which belong object value.

5.3. Class Base Interface for Directly-Connected Tools.

Class base interface introduce methods to deal with objects of specific classes. Each class

should be described by providing corresponding class definition. As mentioned in section

4.3 classes are implemented using classification-by-property paradigm, i.e. each instance

in the instance base that possess specific set of properties described in some class definition

is the object of the corresponding class. In order to use class base interface direct-connected

tools should expose their objects as Python dictionaries. Class base interface includes

following methods:

• "create_object(self, namespace, class_name, dct)" – creates

object of specific class within specific namespace from Python dictionary object.

Fails if Python dictionary object does not include specific set of properties

described in class definition.

• "get_object(self, namespace, class_name, cif_instance)"

- obtains object of specific class within specific namespace from specific CIF

instance. Fails if provided instance does not possess necessary set of properties

described in class definition.

• "get_objects(self, namespace, class_name)" – obtain all objects

that meets specific class definition within specific namespace.

• "remove_objects(self, uids)" – removes instances of corresponding

objects including corresponding properties.

• "update_object(self, uid, dct)" – update object by setting property

values according to values provided by Python dictionary object.

H2020-ICT-2016-1-732105 - CERBERO

WP5 – D5.1: CERBERO Holistic Methodology and Integration Interfaces (Final Version)

Page 31 of 58

5.4. Data Serialization and Data Interfaces

Successful tool integration necessitates that system model data to be serialized or rendered

into a preferably standard, format or syntax that can be parsed later and transformed into

another format as per need of subsequent layers.

JSON representation of a set of RDF triples as a series of nested data structures has become

increasingly popular as a data serialization format thanks to its more lightweight structure

compared to XML, making it a useful format for data exchange in a way that requires less

bandwidth than a bulky XML document. Thus, CERBERO choose JSON format as a

primary format for data serialization. To enlarge compatibility with CERBERO tools that

using XML as primary serialization format automatic XML-to-JSON and JSON-to-XML

translators are provided.

However, JSON data format (especially after XML-to-JSON translation) are lacking

several important features that are natural parts of underlining object models. For example,

JSON format lacking possibility of referencing object that are defined in other parts of

JSON document. To overcome difficulties introduced by the missing features we provide

class definition extension for data. This extension provides following properties:

On the schema level:

• "name" - name of the schema. Since objects of the same class can be serialized

with different data formats several different schemas can be provided to deserialize

these objects. These schemas distinguishing by their names.

• "representation" – defines properties representation into JSON serialized

object. Includes following sub-properties:

o “type” – can be one of “key_value_base” / “property_base” / “mixed”.

Describing data representation type: “key_value_base” is a native JSON

representation, where JSON key describes property name and JSON value

describes property value; “property_base” is a special representation often

produced by XML-to-JSON converters, where each property defined by

two JSON key-value pairs one having property name as its value and

another having property value as its value; “mixed” is a representation

where both types of representation are used.

o “base_key” – parameter that defines JSON key which value defines

class of JSON serialized objects. This value will be parsed according to

corresponding schema all other JSON key-value pairs will be ignored.

o “key_prefix” – parameter that defines prefix that should be stripped

from JSON key on JSON-to-CIF conversion or added to JSON key on CIF-

to-JSON conversion.

o “key_value_base” – describes parameters specific for

“key_value_base” representation of properties. Includes “base_key” and

“key_prefix”.

o “property_base” – describes parameters specific for “property_base”

representation of properties. Includes “base_key”, “key_prefix” and two

additional parameters:

H2020-ICT-2016-1-732105 - CERBERO

WP5 – D5.1: CERBERO Holistic Methodology and Integration Interfaces (Final Version)

Page 32 of 58

▪ “property_name_key” – describes which JSON key used by

parser to identify key-value pair that defines property name as its

value.

▪ “property_value_key” – describes which JSON key used by

parser to identify key-value pair that defines property value as its

value.

• “keys” – define list of unique keys that allow to distinguish one object of

corresponding class from another. Includes following sub-properties:

o “name” – name of the key.

o “properties” – defines list of properties which form unique identifier

of the object of corresponding class.

On the property level:

• "representation" – defines representation of the specific property if schema

has “mixed” type of representation.

• “base_key” – same meaning as “base_key” in representation description but

applied only to specific property.

• “key_prefix” – same meaning as “key_prefix” in representation description

but applied only to specific property.

On the object level:

• "schema" – defines name of the schema of the nested JSON object. Object will

be parsed according to corresponding schema.

• "extensible" – true/false. Defines if nested object can represent a new object

of corresponding class (true), or only reference to existing object of corresponding

class (false).

• "id_type" – defines how nested object are identified and can be either:

o “object” – nested object itself provided according to corresponding

schema,

o “uid” – reference to the existing instance in the CIF database provided

as UID of the CIF instance,

o “key”–indicates that only several properties are provided and set of

provided properties includes at least properties enlisted in the unique key

provided in the “id_key” property value,

o "key_property" – indicates that provided value of a property that

uniquely identify the object. In this case “id_key” property refers to key that

based on one property only.

• "id_key" – required if “id_type” property has value “key” or “key_property”

defines a name of the unique key in the corresponding schema.

CIF data interface expose exactly same methods as class base interface, however these

methods gets schema name as additional parameter and using JSON or XML instead of

Python dictionary objects.

H2020-ICT-2016-1-732105 - CERBERO

WP5 – D5.1: CERBERO Holistic Methodology and Integration Interfaces (Final Version)

Page 33 of 58

5.5. Ontology Alignment and Equivalence Rules

Ontology alignment, or ontology matching, is the process of determining correspondences

between concepts in ontologies. In the tool-integration context involving many tools

providing their own ontologies, ontology matching has taken a critical place for helping

heterogeneous tools to interoperate. CIF provides ontology alignment as set of the

equivalence rules between objects of two or more classes. Equivalence rules allow

automatic transformation of objects between different tools, levels and layers of

abstractions. Set of the rules, describing all equivalence relations between objects of all

classes of two different namespaces, represents a mapping between corresponding

ontologies. Albeit, different tools and languages for ontology alignment exists, CERBERO

found that existing tools and languages are not suitable for CIF simplified ontologies for

various semantic and syntactic reasons. Thus, instead of trials to adopt existing tools and

languages to ontology alignment CERBERO decided to develop new equivalence rules

language based on mathematical background and language developed by IBM for metrics

library. This choice supported by common principles that lies under SEMI developed by

IBM and CIF developing by CERBERO. Moreover, specification of this kind of language

can be further reused to develop KPI library language.

CIF provide following syntax of equivalence rules.

• Main rule syntax:
ns1:class1 operator ns2:class2 [*…] [ON …] [IMPLYING

…];

ns1, ns2 - names of namespaces

class1, class2 - names of classes

operator - one of: ===, <==, ==>, <==>

[*…] - optional multiplication part

[ON …] - optional “on” part

[IMPLYING …] - optional “implying” part

; - termination symbol

• Optional multiplication part syntax:
* ns3:class3 | int_expression [*…]

ns3 - name of namespace

class3 - name of class

|int_expression – any integer expression that can be provided instead of
ns3:class3

[*…] - optional multiplication part

• Optional on part syntax:
ON)bool_expression [, bool_expression](

bool_expression – any bool expression

[, bool_expression] – optional additional comma-separated bool

expressions

• Optional implication part syntax:
IMPLYING)implication [, implication](

• Implication syntax 1:

H2020-ICT-2016-1-732105 - CERBERO

WP5 – D5.1: CERBERO Holistic Methodology and Integration Interfaces (Final Version)

Page 34 of 58

ns1:class1.property_expr1 operator

ns2:class2.property_expr2 [*…] [ON …] [IMPLYING …]

ns1, ns2 - names of namespaces

class1, class2 - names of classes

operator - one of: ===, <==, ==>, <==>

property_expr1, property_expr2 - expressions defining

(sub)properties names

[*…] - optional multiplication part

[ON …] - optional “on” part

[IMPLYING …] - optional “implying” part

• Implication syntax 2:
ns1:class1.property_expr1 = gen_expression

ns1 - name of the namespace

class1 - name of the class

property_expr1 - expression defining (sub)property name

gen_expression - general mathematical expression

Equivalence rule semantics.

Semantics of main rule operators (void multiplication part).

=== - means that corresponding classes are equivalent, i.e. each instance of class 1

is also instance of class 2 and vice versa.

==> - means that class 2 equivalent to class 1, i.e. each instance of class 2 is also

instance of class 1, but instance of class 1 is equivalent to instance of class 2

only if both met matching criteria provided in “on” part.

<== - means that class 1 equivalent to class 2, i.e. each instance of class 1 is also

instance of class 2, but instance of class 2 is equivalent to instance of class 1

only if both met matching criteria provided in “on” part.

<==> - means that instance of class 1 is equivalent to instance of class 2 only if both

met matching criteria provided in “on” part.

Semantics of multiplication part.

Multiplication part change equivalence rules operator semantics in the following sense:

• when multiplication part contains class reference this means that class 1 equivalent

to cartesian product of instances of class 2 and class 3, each instance of class 1 has

two different instances (one of class 2 and one of class 3) as his counterpart with

respect to corresponding relation operator.

• when multiplication part contains integer expression this means that each instance

of class 1 corresponds to number of instances of class 2, and this number defined

by integer expression that may depend on properties of corresponding instances.

Semantics of “On” part.

“On” part can include several logical expressions that treated as matching criteria between

instances that are equivalent according to corresponding rule. These expressions can be

treated as one single expression with “and” operator between corresponding parts.

H2020-ICT-2016-1-732105 - CERBERO

WP5 – D5.1: CERBERO Holistic Methodology and Integration Interfaces (Final Version)

Page 35 of 58

Semantics of implications.

Implication of kind 1 (syntax 1) can be treated as nested equivalence rule and define

equivalence relations between property values of instances of corresponding classes.

Implication of kind 2 (syntax 2) define property value that should be assigned during rule

execution process. This value is a result of calculation of general mathematical expression.

H2020-ICT-2016-1-732105 - CERBERO

WP5 – D5.1: CERBERO Holistic Methodology and Integration Interfaces (Final Version)

Page 36 of 58

6. Direct Tool Integration Holistic Methodology

Figure 4.3 and Figure 4.4 illustrate the CERBERO framework for design-time and run-

time support respectively. Some of the integration was already described in previous

deliverables. For the sake of conciseness those connections are listed here in after, but not

explained any further:

1. DynAA – MECA (D6.10)

2. ARTICo3 – MDC – CAPH (see D5.7)

3. PREESM – Spider – PAPIFY/PAPIFY-Viewer (see D5.7)

4. PREESM – ARTICo3 (see D5.4)

5. MDC – HLS Tools (see D5.4)

6. SPIDER – MDC (see D5.5)

The rest of this Section illustrates new achieved direct tool-to-tool connections or

advancement in the already illustrated ongoing ones.

a. PREESM – SPIDER – MDC

b. PAPIFY – MDC

c. SAGE-ReqV – DynAA

d. PAPIFY – ARTICo3

e. IMPRESS - ARTICo3

f. ARTICo3 – PREESM

g. SPIDER – PAPIFY –MDC

h. ARTICo3– MDC – PAPIFY

i. APOLLO – PREESM

In the previous deliverable, we foresaw the possibility of connecting SAGE with MDC,

but as said before, we opted to connect MDC to CIF. We still believe that MDC could

benefit from a connection to higher level abstraction tools, like SAGE (i.e. for automatic

test generation functions) or AOW (i.e. to exploit continuous linear programming to

perform a faster exploration of the design space). Nevertheless, the implementation of

direct connections seemed to be too time consuming, since all the mentioned tools operate

on different Models of Computation. Therefore, we invested time on creating proper

schema to connect MDC with CIF to improve its interoperability with higher level tools.

Also, there is still another integration to be performed, based on combining the

composability provided by ARTICo3 with the capability of changing functionality in

specific overlays obtained by JIT composition. In other words, whenever a JIT composed

design (either using the deterministic approach or using the iterative/evolutionary options)

is to be used, it will be embedded into a specific ARTICo3 slot. An example overlay based

on a block-based neural network is being presently developed and refined as an example

and, for later versions of the demonstrations to be achieved in CERBERO, this overlay will

be embedded in an ARTICo3 slot and exchanged with other possibilities. This double level

granularity will allow using different types of overlays, and exchange them according to

specific needs.

H2020-ICT-2016-1-732105 - CERBERO

WP5 – D5.1: CERBERO Holistic Methodology and Integration Interfaces (Final Version)

Page 37 of 58

6.1. Integrating PREESM and SPIDER with MDC

SPIDER (a dataflow-based runtime manager for multi-/many-core architectures) and MDC

(a dataflow-to-hardware synthesizer for coarse-grained reconfigurable systems) have been

combined in order to manage software and hardware reconfigurability at runtime. This

work has seen the collaboration among INSA, UNICA and UNISS.

As depicted in Figure 6.1, the proposed design flow considers:

Figure 6.1: PREESM-SPIDER-MDC design flow

(1) a PiSDF-based description of the application developed using PREESM, that

implies some reconfigurable workloads requiring hardware acceleration with low

reconfiguration overheads (actor 4). The functionalities of these specific

workloads (α,β,γ) can be implemented in hardware and handled by a parametric

software actor in the high-level graph of the application.

(2) This actor initializes and exchanges data with the reconfigurable processing

element, generated as a coarse-grained reconfigurable accelerator using MDC,

and capable to perform all the single functionalities depending on the value of

the dynamic input parameter (such as M) related to its configuration.

H2020-ICT-2016-1-732105 - CERBERO

WP5 – D5.1: CERBERO Holistic Methodology and Integration Interfaces (Final Version)

Page 38 of 58

(3) One or multiple instances of such accelerator can be deployed onto an FPGA

device implemented in a system on chip including micro-processors (such as

Xilinx Zynq-7000). Thus, depending on the adaptation strategies, SPIDER

schedules and maps at runtime the whole application graph, and sends job orders

to the processing elements.

6.2. Integrating PAPIFY with MDC

The objective of this integration is to provide monitoring support to HW accelerators

developed using MDC. As a result, both SW and HW Processing Element (PE) resources

will be monitored through the same interface, PAPIFY. The PEs are resources where one

or more actors are scheduled for the execution. It can be a SW core or a complete HW

accelerator. PAPIFY provides an interface to access to performance monitoring

information of the different PEs existing in the target platform (see D5.7). MDC, on the

other hand, provides reconfigurable HW accelerators, which can be composed of one or

several dataflow networks (see D5.7). Each actor of the dataflow network is implemented

in HW as a custom Functional Unit (FU). To integrate them, both a PAPI component and

the Performance Monitoring Counters (PMCs) have been developed for MDC (see Figure

6.2).

Figure 6.2: Custom PAPI component and Performance Monitoring Counters (PMCs) for MDC.

Specifically, the HW monitoring can be done on two levels of abstraction, as shown in

Figure 6.3:

(1) accelerator-level: the monitoring is homogeneous for every accelerator that can be

implemented using MDC, and in particular it keeps trace of important dataflow

metrics during execution, such as the execution time, the number of input tokens

and the number of output tokens.

(2) low-level: the monitoring is specific for the current accelerator, e.g. it is identifying

the bottleneck FUs internally.

The accelerator-level monitors are automatically inserted by MDC, while the low-level

monitoring still requires manual steps to be used within the code generation flow.

H2020-ICT-2016-1-732105 - CERBERO

WP5 – D5.1: CERBERO Holistic Methodology and Integration Interfaces (Final Version)

Page 39 of 58

Figure 6.3: HW Monitoring at two level of abstraction: (1) accelerator level; (2) low-level.

Since the base address of the accelerator may change from one accelerator to one other, as

well as the number and type of events to be monitored, we developed a configurable PAPI-

MDC component that is automatically configured when the application is launched.

The PAPI-MDC component is compliant with the standard already existing SW

components and can be naturally accessed by PAPIFY. The monitoring strategy is based

on starting the monitoring, launching the actor execution and stopping the monitoring. In

order to support this flexibility, the PAPI component is automatically configured, by means

of an XML file, when the application is launched and the specific available monitors for

the accelerator under evaluation are loaded. The XML file, automatically generated by

MDC, specifies the physical base address of the accelerator to be monitored (baseAddress),

the number of available events (nbEvents) and their type (event), but this approach can be

easily extended to consider other variables.

<?xml version="1.0" encoding="UTF-8"?>

<mdcInfo>

 <baseAddress>0xADDRESS</baseAddress>

 <nbEvents>N</nbEvents>

 <event>

 <index>M</index>

 <name>MDC_EVENT_NAME</name>

 <desc>Event Description</desc>

 </event>

</mdcInfo>

6.3. Integrating SAGE-ReqV and DYNAA

The goal of the integration between ReqV and DynAA is the verification of the DynAA

model with respect to the requirements introduced and verified in ReqV. The requirements

in ReqV describe behaviors over time and can contains numerical constraints and boolean

signals. ReqV formalizes such requirements in Linear Temporal Logic (LTL). The main

H2020-ICT-2016-1-732105 - CERBERO

WP5 – D5.1: CERBERO Holistic Methodology and Integration Interfaces (Final Version)

Page 40 of 58

issue for the verification of DynAA models is that it contains continuous signals, while

most of the available verification tools for LTL are designed for discrete models.

The proposed solution is to use a well-established language, supported by off-the-shelf

verification tools, to model the system at a high-level of abstraction, representing the

discrete evolution of the system, and to provide a sound and semantically equivalent

translation to DynAA Java code, letting the user refine the model with the continuous part.

This idea is similar to the C++/Java code generators from UML diagrams.

Promela, the modeling language adopted for this purpose, is expressive enough to support

the models related to CERBERO use cases and can be automatically analyzed by the Spin

Model Checker.

In the following, we present a brief introduction to Promela and the proposed translation

into DynAA components.

Promela And Spin

Promela (Process/Protocol Meta Language) is a verification modeling language that can be

analyzed with the Spin Model Checker (http://spinroot.com) to verify the correctness of

the modeled system with respect to a given specification. Promela has a C-like notation for

specifying system design or its finite-state abstraction unambiguously. It is especially

suited to model concurrent and parallel systems.

A Promela model consists of three types of objects: processes, channels and variables.

A process is identified with the proctype keyword and it can accept channels references or

variables in input. Processes can be instantiated with the run command or the active [N]

modifier (to automatically instantiate N objects of the same type). A process body can

contain loops, if statements, expressions, assignments, etc.

The syntax and semantics of the if and do statements differ from the one used in C

programs:

Figure 6.4: If/do statement in Promela

The if/do statement is composed of one or more guards (choice_i), followed by a sequence

of other statements. The program chose to execute non-deterministically one of the

branches with executable guard. If no guard is executable, the if/do statement is blocked.

The else guard became executable if none of the other guards is executable. Finally, the do

statement behaves in the same way as the if statement, but at the end of the chosen list of

statements it repeats the choice selection, until a break statement is found.

Channels are special objects that model communication channels and can be used to

exchange messages between processes. A channel can be defined to be synchronous (i.e.,

rendez-vous), or asynchronous (i.e., buffered).

H2020-ICT-2016-1-732105 - CERBERO

WP5 – D5.1: CERBERO Holistic Methodology and Integration Interfaces (Final Version)

Page 41 of 58

Variables declaration works as in C and the supported types are bit, bool, byte, short, int,

mtype (symbolic user-defined constants) or arrays. More complex types can be declared

with typedef, in the same way as C’s structures.

Figure 6.5: Example of a Promela Model with two proctypes, a client and a server, and three running

processes (two clients and one server).

Figure 6.6 shows an example of a Promela program implementing the central server

algorithm.

For a complete specification of the language syntax and semantics, we remand the reader

to the official documentation (http://spinroot.com/spin/Man/promela.html).

Given a model system specified in Promela, Spin can generate a C program that performs

an efficient online verification of the system's correctness properties. The properties can be

specified as invariants or linear temporal logic formulae. Spin also checks for the absence

of deadlocks, unspecified receptions, and unexecutable code.

Promela to DynAA Translation

Every proctype in Promela is represented as a Task object in DynAA, and every Promela

statement is represented as a DynAA specialized Segment (currently expressions, if/do

statements, assignments and asserts are supported).

The variables defined in Promela are stored in different places, depending on their scope:

H2020-ICT-2016-1-732105 - CERBERO

WP5 – D5.1: CERBERO Holistic Methodology and Integration Interfaces (Final Version)

Page 42 of 58

• Global variables are stored in the DataContainer shared object

• Proctype parameters are stored as Task properties

• Local variables are stored in the TaskContext object

Figure 6.6: Example of Promela to Java translation provided by DynaaGen.

The translation is automated with a tool called DynaaGen

(https://gitlab.sagelab.it/sage/dynaagen), part of the SAGE Verification Suite. The tool

takes in input a Promela file and automatically generates the Java Source Code with the

DynAA classes corresponding to the same modelled system (an example is shown in Figure

6.6).

In conclusion, requirements, checked and encoded into LTL formulae by ReqV can be used

to verify the Promela model’s correctness with the Spin model checker. The same model,

then, can be translated with DynaaGen to build a correct-by-construction model in Java.

At this point, the designer can further refine the model and run simulations with DynAA.

Finally, this approach has also the desired side effect to reduce the size of model written

by the designer because, as shown in the previous section, Promela has a much more

compact syntax compared to the Java counterpart. This gives the designer the possibility

to focus more on the functional behavior of the system and increase her confidence in the

final system correctness.

6.4. Integrating PAPIFY with ARTICO3

The objective of this integration is to provide access to PMCs located on (1) CPUs and (2)

on the FPGA when ARTICo³ infrastructure is in charge of dispatching HW task on the

different slots of the Programmable Logic.

In order to achieve the goal, the same approach adopted for the integration of MDC –

PAPIFY (see section 6.2 of D5.1) was followed. Specifically:

H2020-ICT-2016-1-732105 - CERBERO

WP5 – D5.1: CERBERO Holistic Methodology and Integration Interfaces (Final Version)

Page 43 of 58

1. A new ARTICo³ - PAPI component was designed;

2. An XML extension, consistent with the one adopted for MDC with PAPIFY, was

designed, together with an XML parser;

3. Additional ARTICo³ runtime functions, embedded in a dynamic library, were

developed.

The PAPI component developed does not have direct access to the PMCs. Instead, it calls

the specific runtime function embedded within the ARTICo³ shared library. This step was

necessary to keep the PAPI component independent from the hardware description (i.e. no

HW address are managed within it). Moreover, in that way, the ARTICo³ software

infrastructure is aware that an external library is accessing its registers and can manage the

data to be read. In Figure 6.7 we show that the PAPI component develop is not directly

connected with the HW and needs other low-level, hardware-specific functions. In other

words, the PAPI components does not manage the hardware but delegate its management

to a proper library.

Figure 6.7: Custom PAPI component and Performance Monitoring Counters (PMCs) for ARTICo³

infrastructure.

Depending on the specific application to be monitored (note: the application can be

Dataflow or not), the PMCs developed at design time may differ from one project to the

other. For this reason, the same approach followed in section 6.2 was included in an

extension of ARTICo3-PAPIFY integration, as explained in [10], where the ARTICo³

component automatically configures itself by reading an XML file which describes the

hardware monitors within:

1. The ARTICo³ infrastructure.

2. Every specific ARTICo³ hardware accelerator (that can be loaded at runtime on

the available slots).

As already mentioned, following the same approach to provide a consistent methodology

for accessing instrumented HW, an XML PAPI-ARTICo³ was also designed in order to be

H2020-ICT-2016-1-732105 - CERBERO

WP5 – D5.1: CERBERO Holistic Methodology and Integration Interfaces (Final Version)

Page 44 of 58

compliant with PAPI and PAPIFY from one side and with ARTICo3 accelerators from the

other. The following listing shows the structure of this xml description:

<?xml version="1.0" encoding="UTF-8"?>

<artico3Info>

 <nbEventsArtico3>N</ nbEventsArtico3 >

 <eventArtico3>

 <index>M</index>

 <name>ARTICo3_EVENT_NAME</name>

 <desc>Event Description</desc>

 </eventArtico3>

 <nbKernels>K</nbKernels>

 <kernel>

 <kernelName>ARTICo3_KERNEL_NAME</kernelName>

 <nbEvents>N</nbEvents>

 <event>

 <index>M</index>

 <name>ARTICo3_KERNEL_EVENT_NAME</name>

 <desc>Event Description</desc>

 </event>

 </kernel>

 <nbEvents>N</nbEvents>

</artico3Info>

It can be noted that there are two different types of events:

• the generic events associated to the ARTICo³ infrastructure (always present) such

as ERRORS and CLOCK-CYCLES.

• Specific kernel events associated to particular hardware accelerators. They are not

part of the ARTICo³ infrastructure but, instead, they are part of the internal structure

of the accelerators (when designed). For the specific case of MDC accelerators into

ARTICo3 containers, these registers may be accessed via an MDC into ARTICo3

encapsulated XML file. This case will be shown in the PAPIFY-ARTICo3-MDC

section.

The concept is graphically explained in the following Figure 6.8, where we highlight the

two different kind of event and the location of the associated PMCs.

H2020-ICT-2016-1-732105 - CERBERO

WP5 – D5.1: CERBERO Holistic Methodology and Integration Interfaces (Final Version)

Page 45 of 58

Figure 6.8: Generic Event and Specific Event within the ARTICo³ infrastructure

The two only functions that are embedded within the PAPI component are:

/**

 *

 * @param eventName : the name of the PAPI event used

 * @return : the value read

 *

 */

uint32_t genericEvent(char * eventName)

/**

 *

 * @param eventName : the name of the PAPI event used

 * @return : the value read

 */

uint32_t specificEvent(char * eventName)

As PAPIFY (EventLib) is naturally interfaced with the PAPI library, the ARTICo³ PMCs

are easy accessible making use of it. The developed functions were needed to guarantee

the compatibility with no action on the upper software layer.

H2020-ICT-2016-1-732105 - CERBERO

WP5 – D5.1: CERBERO Holistic Methodology and Integration Interfaces (Final Version)

Page 46 of 58

6.5. Integrating IMPRESS with ARTICo3

As explained in deliverable 5.2 IMPRESS is the tool that provides the reconfiguration

features needed for just-in-time HW composition. It is possible to leverage the

reconfiguration capabilities provided by IMPRESS to improve ARTICo3 with the

following features:

• Relocation. This feature permits to use one partial bitstream for each

compatible slot (i.e., slots with the same resource footprint). For example, in a

scenario where there are m kernels and n compatible slots, without relocation

m*n partial bitstreams are needed. With relocation only m partial bitstreams

are necessary. In the case of a multi-kernel scenario, relocation adds more

flexibility to the scheduling and placement of the accelerators on the available

reconfigurable slots.

• Decoupling the static and reconfigurable designs. In contrast to Xilinx

reconfiguration flow, IMPRESS decouples the static and reconfigurable

designs. This allows to have several pre-built static configurations of

ARTICo3. This way a user can use one of these predefined configurations and

just generate a kernel independently, without re-implementing the static part.

• Sub-clock region slots. This allows to use slots with a finer granularity as

multiple slots can be stacked in the same clock region or combining coarse

(slot-based reconfiguration) with extended features, such as fine grain

reconfiguration.

ARTICo3

When a user wants to implement a kernel in ARTICo3 the first step is to select a Reference

Design, also known as template. The ARTICo3 toolchain is highly modular, since it builds

around a common core (based on Python scripts), but then relies on these templates to

apply device- or board-specific customizations in the hardware designs. From all the files

that define the template, two play a relevant role reconfiguration-wise:

• A constraints file that defines the floorplanning of the FPGA (i.e., the number and

location of the reconfigurable slots).

• A set of TCL scripts that implement the reconfigurable multi-accelerator system

using the Xilinx Partial Reconfiguration Flow and the information of the template.

IMPRESS

IMPRESS is a set of TCL scripts that extends the features offered by the Xilinx

reconfiguration flow. IMPRESS needs three input files to define a reconfigurable design.

The first file is called project_info and contains all the information related to the project

(i.e., FPGA device, reconfigurable and static sources, etc.). The second file is called

virtual_architecture and contains information of the floorplanning and compatible

partitions. The third file contains the interface of each partition.

Figure 6.9 shows the contents of each file.

H2020-ICT-2016-1-732105 - CERBERO

WP5 – D5.1: CERBERO Holistic Methodology and Integration Interfaces (Final Version)

Page 47 of 58

a) Project_info b) virtual_architecture c) interface

Figure 6.9: IMPRESS input files

ARTICo3 + IMPRESS integration

In order to integrate both tools, the custom scripts that ARTICo3 used to implement a

reconfigurable design have been replaced by IMPRESS scripts. The floorplanning

definition of each template has been changed for the virtual_architecture and interface files.

As happened before the integration, these files have to be filled in manually by the user

(although they could eventually be automatically generated by the core scripts in the

ARTICo3 toolchain). However, the project_info contents are now generated automatically

by the ARTICo3 toolchain as this information is already described in the ARTICo3 project

configuration.

To use the partial bitstreams generated by IMPRESS, it has also been necessary to modify

Linux reconfiguration drivers to implement the reconfiguration engine used by IMPRESS.

6.6. Integration ARTICo3 with PREESM

As described in section 3.1.1 of deliverable D4.3, it is more than frequent to have a tightly

couple of FPGA accelerated HW functions together with SW, all wrapped with an

operating system. In such architecture, the system can manage at the same time software

threads as well as hardware threads. A big challenge within the CERBERO project is to

have the possibility of easily design an application (a SW application running upon an

operating system) that efficiently exploits the different HW computing fabrics (namely

ARTICo³, MDC and JIT). Specifically, this section addresses, the integration between

ARTICo3 and PREESM.

As a contribution of the collaboration between INSA and UPM, it is possible to account

with newer versions of PREESM, where the capability to easily exploit the SW and HW

tasks combination by offloading the chosen software task to the ARTICo³ slot accelerators

has been added. The heterogeneous execution of the whole application therefore, has:

• SW threads running on the available CPU described in the Architecture.

• SW threads that delegate the execution of “pieces of code” (i.e. instances of a

Dataflow Actor) to the FPGA programmable logic.

H2020-ICT-2016-1-732105 - CERBERO

WP5 – D5.1: CERBERO Holistic Methodology and Integration Interfaces (Final Version)

Page 48 of 58

The strength of PREESM is to give the possibility of independently describe (1) the

algorithm (by using the PiSDF (see Desnos[11]) and (2) the architecture (by using the S-

LAMin Pelcat [12]). Thus, PREESM will be in charge of finding an optimal solution by

mapping and scheduling every instance of actors of the PiSDF up on the S-LAM.

Following, Figure 6.10 the possible elements of the S-LAM that can be used to describe

any architecture are reported:

Figure 6.10: Elements of the S-LAM [12]

To better explain the concept, two examples are here given:

1. In Figure 6.11, a SLAM description of three ARM core plus one ARTICo³

processing element is shown (bottom left).

2. In Figure 6.12, a SLAM description of dual ARM core plus four ARTICo³

processing element is shown.

It is worth to note that no other elements were added to the S-LAM typology reported

above in order to describe a heterogeneous system with hardware accelerators.

Figure 6.11: Three ARM cores and one ARTICo³ SLOT

H2020-ICT-2016-1-732105 - CERBERO

WP5 – D5.1: CERBERO Holistic Methodology and Integration Interfaces (Final Version)

Page 49 of 58

Figure 6.12: Two ARM cores and four ARTICo³ SLOT

From the user’s standpoint, he/she should just describe the application (using the PiSDF

representation [11]) and the architecture (using the S-LAM representation) including at

least one core of ARTICo³ type in the S-LAM figures shown above.

If a new ARTICo³ infrastructure should be added in the S-LAM, these two main concepts

must be followed:

1. Every slot of the architecture is a processing element within the S-LAM.

2. All the slots communicate with the main memory of the system.

The code generator that has been embedded into the last versions of PREESM ‘prints’

(produce the code for) all the necessary instructions to manage the accelerators, send and

receive data. All the in-out buffers (ARTICo³ internal memory banks) are properly

generated and automatically handled, and a similar process is also done with ARTICo³

registers. Heterogeneous executions were tested with several hardware/software

configurations. From the user’s standpoint, it is remarkable that very little hardware

background is needed, since the process of ‘printing’ is achieved automatically.

To describe how the hardware code generator of PREESM works, it is worth to be noted

that three of the inputs of the generator are:

1. The S-LAM model.

2. The Directed Acyclic Graph (DAG) of the application.

3. The Scenario (explained after).

The DAG is derived by means of graph transformations from the PiSDF, the S-LAM

describes the architecture and, by means of the Scenario, some constraints can be added.

In this case, we can specify which actor can be executed on the ARTICo³ architecture. Of

course, only the actor with the corresponding hardware accelerators is going to be selected

as possible candidate to be moved on the Programmable Logic (PL).

Within the Code Generator, an intermediate model is created. Every object of this

intermediate model within the PREESM Code Generator, is associated to a specific

“printer”. The new object created for this purpose are:

• The FPGA load bitstream object: this printer is in charge of printing the instruction

for charging the bitstream of the accelerator in the slot of ARTICo³.

• The FPGA register setting: this printer is in charge of printing the instruction

necessary for setting up the register of the hardware accelerators when needed.

• The FPGA data transfer: this printer is in charge of printing the instruction

necessary to move the data to/from the Processing System from/to the

Programmable Logic.

• The FPGA start execution: this printer is in charge of printing the instruction

necessary to give the start signal to the FPGA to start the computation using the

data previously charged within the slots.

All the printed instructions are part of the ARTICo³ runtime library. This way, the

PREESM’s generated software will be in charge of automatically manage the SW-based

Processing as well as HW-based processing (by interfacing with the ARTICo³ runtime

H2020-ICT-2016-1-732105 - CERBERO

WP5 – D5.1: CERBERO Holistic Methodology and Integration Interfaces (Final Version)

Page 50 of 58

library [13]). In Figure 6.13 , a schematic view of the heterogeneous system with SW-based

Processing threads and HW-based Processing delegate-thread is shown:

Figure 6.13: A graphical view of the Delegate SW thread offloading computation to the ARTICo³

slots

Thanks to the S-LAM semantics [12], an architecture making use of ARTICo³ can be

described. The instance of the actors within the PiSDF is then mapped and scheduled upon

the architecture described here.

6.7. Integrating Spider with PAPIFY and with MDC

The Spider – PAPIFY – MDC integration is the natural extension of the standalone

integration of Spider-MDC, Spider-PAPIFY and PAPIFY-MDC.

In the SPIDER-MDC integration, SPIDER is capable to configure the CGR accelerators

generated by MDC to compute their different functionalities. Depending on the adaptation

strategy, SPIDER schedules and maps, at runtime, the whole application graph composed

of software tasks (including those that manage the communication with the accelerators)

and sends these latter to the slave processors.

In the SPIDER-PAPIFY integration, it has been demonstrated that, in an application

monitoring configured using PREESM framework from which the code compliant with the

SPIDER run-time manager has been generated, the user is able to decide how many CPU

cores the system will use and to monitor the workload distribution during the system

execution using PAPIFY-Viewer.

Additionally, it has been explained that PAPIFY-MDC integration has been conducted to

offer a transparent monitoring approach from the user point of view (PAPIFY accesses

both the SW and the HW PMCs in the same way). When we replaced the monitored MDC

accelerators in applications adopted to validate the SPIDER-MDC integration, the same

SW application was able to manage both the standard MDC accelerator and the monitored

one (please, pay attention that, at this step, we did not read the monitors). After feeding

PREESM with the XML file containing the PAPI-info updated to consider also the MDC-

PAPI component, the new generated SW application, which includes also the required

function calls to access the MDC monitors, was able to access the HW monitors in the

H2020-ICT-2016-1-732105 - CERBERO

WP5 – D5.1: CERBERO Holistic Methodology and Integration Interfaces (Final Version)

Page 51 of 58

MDC accelerator as well as the standard PMCs in the CPU. Thus, the integration of

SPIDER – PAPIFY – MDC came out without any further modification of the tools.

6.8. Integrating ARTICo3 and MDC with PAPIFY

The integration of ARTICo³ and MDC was successfully achieved and explained in detail

in D5.7 [14]. Besides, the integration of the monitoring strategy that makes use of the

software layers PAPI and PAPIFY with (1) MDC and (2) ARTICo³ was also successfully

achieved and discussed in previous sections. However, to make the three tools

communicate, further modifications where necessary in the MDC Kernel Adapter, that

wrap the logic generated by MDC into an ARTICo3 compliant kernel. Indeed, the previous

Kernel Adapter could not be aware of the extra logic inserted to monitor the selected event.

Now that logic is kept into account, as well as the extra configuration registers exploited

to communicate the values of the monitors.

The integration of PAPIFY with ARTICo³ evolved from the first version presented in [10]

to the one above described where an approach that makes use of XML was adopted in order

to be compliant with the new MDC PAPI component [15]. The advantage of such solution

is to have a PAPI component that configures itself when the corresponding XML file is

read.

The XML that describes the PMCs of ARTICo³ was designed keeping in mind that some

slots of the hardware infrastructure may host an MDC accelerator. In that case, the XML

description looks like:

<?xml version="1.0" encoding="UTF-8"?>

<artico3Info>

 <nbEventsArtico3>N</ nbEventsArtico3 >

 < eventArtico3>

 <index>M</index>

 <name>ARTICo3_EVENT_NAME</name>

 <desc>Event Description</desc>

 </ eventArtico3>

 <nbKernels>K</nbKernels>

 <kernel>

 <kernelName>ARTICo3_KERNEL_NAME</kernelName>

<baseAddress>0xADDRESS</baseAddress>

<nbEvents>N</nbEvents>

<event>

 <index>M</index>

 <name>MDC_EVENT_NAME</name>

 <desc>Event Description</desc>

</event>

 </kernel>

 <nbEvents>N</nbEvents>

H2020-ICT-2016-1-732105 - CERBERO

WP5 – D5.1: CERBERO Holistic Methodology and Integration Interfaces (Final Version)

Page 52 of 58

</artico3Info>

This means that:

• The description of generic events of the whole ARTICo³ infrastructure are,

logically, not affected. No changes are needed for the generic ARTICo³ events.

• The description of specific events that belong to every specific kernel must reflect

the hardware register structure. A specific case is given by the use of MDC

accelerators: the registers are read/written using ARTICo³ API and, so, naturally

accessible by PAPI and PAPIFY.

In summary, this section highlights the process that allows PAPI-PAPIFY to work with (1)

MDC accelerators, (2) ARTICo³ architecture and, also, (3) the combined functionality of

ARTICo³-MDC. The natural integration of the tools makes, so, PAPIFY a valid monitoring

instrument for multi-grain reconfigurable architecture by means of this triple integration.

6.9. Integrating CERBERO Tools with External Tools

CERBERO tools have been also integrated with external tools (that means tools not

developed in the CERBERO project.

APOLLO-PREESM

Dataflow applications are modeled as a set of actors interconnected through a set of FIFOs,

used for sending and receiving information in a streaming fashion. One of the main

advantages of modeling an application with a dataflow model of computation is that the

inherent structural parallelism can be exploited. However, this parallelism extraction is

kept within the limits of the application structure: since actors are considered as primitives,

their behavior remains untouched. As a result, some optimization opportunities might be

missed.

At this point is where the polyhedral model can become useful. This model is

well-known for applying transformations to optimize computationally-intensive

applications, focusing on aspects such as data locality or memory usage. However, the tight

restrictions imposed by the polyhedral model force most of the tools to work at compile-

time, as Polly [16], Graphite [17] or Pluto [18]. To the best of our knowledge, the only tool

that extends the polyhedral scope to overcome these limitations is APOLLO (Automatic

speculative POLyhedral Loop Optimizer) [19].

APOLLO applies polyhedral optimizations on-the-fly to loop nests (for loops or any kind

of loop nests) that cannot be optimized at compile time. To do so, APOLLO relies on a

speculative system that builds a prediction model to support dynamic transformations.

To efficiently combine PREESM with APOLLO, a mechanism called multi-versioning has

been included in APOLLO to test different transformations and choose the most efficient

one during the execution of the first iterations of the dataflow loop. In addition, to enable

the execution in parallel of several actors, a thread-safe version of APOLLO has been made

which includes libraries such as Pluto and Piplib.

H2020-ICT-2016-1-732105 - CERBERO

WP5 – D5.1: CERBERO Holistic Methodology and Integration Interfaces (Final Version)

Page 53 of 58

Therefore, the combination of a dataflow framework as PREESM with a tool like APOLLO

leads to exploit the hidden optimization possibilities within the actors in dataflow models.

This integration has been achieved.

H2020-ICT-2016-1-732105 - CERBERO

WP5 – D5.1: CERBERO Holistic Methodology and Integration Interfaces (Final Version)

Page 54 of 58

7. Conclusion

7.1. Lesson Learned

In the Table 7-1 below we have compared the two approached (CIF and Tool to Tool

connection) used for tools integration in CERBERO in order to highlight the lesson learned

and to give guidelines for the after-CERBERO project future.

The first lesson is that the two approaches are not in competition, but they have solved and

simplify different issues related to integration of CPS tools. In general, CIF turned out to

be effective when tools using different model of computation or placed at different level of

abstractions needed to be connected to each other. On the contrary, mainly at the computing

level, for code instrumentation or code generation direct integration of new back-ends into

already existing tools was more straightforward. Moreover, it is a powerful instrument to

allow accessibility to the toolchain. Indeed, any new complementary tool could be added

and interact with one or more tools without the need of building specific dedicated

interfaces. On the contrary, mainly at the computing level, for code instrumentation, code

generation or direct hardware synthesis direct integration of new back-ends into already

existing tools was more straightforward, normally in this cases information exchange at the

model level is not needed. In fact:

Why tool to tool connection

PREESM/Spider-PAPIFY/PAPIFY Viewer: Here a tool-to-tool connection (without CIF) is needed

because connections between the tools requires deep changes in the way PREESM works. Notably, the

PAPIFY parameterization by the system developer needs to be made at a high level of abstration,

integrated with the scenario edition GUI of PREESM. To connect the developed system with PAPIFY

viewer, the code generated by PREESM must integrate specific code, which can only be done by

integrating PAPIFY concerns directly into the code generation of PREESM. Using CIF for any of these

concerns would be overly complex and largely inefficient, without any real benefits since these concerns

are specific to the PREESM/PAPIFY connection.

PREESM/ARTICo3 connection is also not compatible with CIF, since the connection is supported by

integrating Artico concerns directly into the code generation of PREESM.

MDC-ARTICo3: MDC generates HDL codes and Xilinx-compliant IP for Vivado Environment. On the

other hand, ARTICo3 takes as input HDL code. The abstraction and computation levels are the same, so

no model transformations are required to exchange data between the two tools. In this case a direct

connection was straightforward and avoided the presence of an intermediate layer among the tools.

SAGE-DynAA: in this case, a tool-to-tool connection has been implemented because the modelling stage

of the discrete part of a model using Promela is placed on the top of the tool-chain, during the early phase

of the design process. Given the compact synthax of Promela with respect to the Java counterpart needed

by DynAA, the advantage of this solution is twofold. On the one hand, this let the designer to focus on the

modelling avoiding programming details; on the other hand, off-the-shelf tools such as SPIN can be used

to verify the model with respect to the requirements formulated using ReqV.

PAPIFY-MDC: given that PAPIFY has been designed to be able to access every PAPI-component, this

integration relies on the insertion of properly designed performance monitoring counters in the MDC-

generated accelerators, and in the development of a PAPI-compliant MDC-component. Done that, both

the PAPI calls and the MDC calls to the accelerator can be inserted in the application, and there is no need

of any further interface to make them exchange data.

H2020-ICT-2016-1-732105 - CERBERO

WP5 – D5.1: CERBERO Holistic Methodology and Integration Interfaces (Final Version)

Page 55 of 58

PREESM/SPIDER-MDC: the integration is based on the possibility to control MDC-compliant

accelerators by software tasks designed in PREESM and dynamically handled by SPIDER. The developer

can exploit the drivers generated by MDC to call the acceleration from the C code description of the

application blocks. Thus, the combination of these tools does not need any further layers. However,

including accelerator in a high-level description in PREESM/SPIDER is application-dependent and a

custom implementation is required.

IMPRESS + ARTICo3: the modularity in the ARTICo3 toolchain enables the replacement of the original

TCL scripts (i.e., Xilinx Partial Reconfiguration flow) by IMPRESS. Since both tools operate at a very

low implementation level, a direct connection between tools is required.

PAPIFY + ARTICo3: Both tools work at low level (i.e.: hardware), so there is no need of providing access

to higher layers., since PAPIFY provides access to HW counters and registers available at hardware

architecture level

ARTICo3 + MDC + PAPIFY: The integration of these three tools, taken two by two, are based on direct

tool to tool links with no dependencies on upper layers. The access from PAPIFY to monitors and counters

on both MDC and ARTICo3 is done in a consistent way and, in case MDC accelerators are embedded into

ARTICo3 containers, an encapsulation method is used, which is solved by the runtime libraries of both

reconfigurable fabric types.

Why connection through CIF

HW-SW co-design facilitated by PREESM uses AOW for Design Space Exploration (DSE) of optimal

mapping and scheduling of functional actors on a heterogeneous hardware. The resulted design is further

analyzed in DynAAsimulation. All tools are connected through the CIF interface. Moreover, MDC to CIF

interface has been created to facilitate cross-layer interconnection and prospectively to complement MDC

with new features offered by other tools, as automatic test generation or faster (and larger) design space

exploration using e.g. AOW.

In both examples, the usage of CIF in this case was needed to facilitate the access to tools leveraging on

different models and semantics.

Table 7-1: Comparison between tool to tool connection and connection through CIF

7.2. Operational Objectives Deliverable Contribution

In the Table 7-2 a report on how the activities reported in the present deliverable have

contributed to reach proposal operational objectives.

CH# Operational Objectives D5.1 Contribution

1.1 Provide reusable Libraries of

KPIs, Cross-Layer Models and

Adaptivity support.

PREESM/Spider connection with PAPIFY automates the

monitoring of KPIs in synthesized CPS components, at a high

level of abstraction (Dataflow MoC-level).

Different flavours of disjoined and combined adaptivity run-

time support have been enabled by the stand-alone and

combined usage of MDC and ARTICo3.

1.2 Provide a comprehensive

framework, customizable upon

the UC needs, extending and

making interoperable a large set

of tools.

The large effort spent on T5.4 in building all tool connections

(direct and through CIF) has led to define the comprehensive

set of tools to support all the needs of the CERBERO use-

case that span across sectors and level of abstractions.

2.1 Reduce DSE by an order of

magnitude.

Multi-view design requires multiple iteration between

corresponding tools. Creation and maintenance of the

connections between tools become a critical bottleneck in

H2020-ICT-2016-1-732105 - CERBERO

WP5 – D5.1: CERBERO Holistic Methodology and Integration Interfaces (Final Version)

Page 56 of 58

many cases resolved by CIF and direct connections described

above.

2.2 Reduce by 50% the design

efforts required to build a CPS of

a given performance.

The large effort spent on T5.4 in building all tool connections

(direct and through CIF) has led to define a comprehensive

set of tools. Cross layer connections and design automation

help achieving this purpose.

2.3 Reduce by 50% cost of

maintenance.

Adaptivity could have a positive impact on both short-term

and long-term maintenance. Having invested on integrating

tools capable of offering different flavours of adaptivity

indirectly contribute to reduce maintenance costs.

3.1 Provide a fully marketable

version of the CERBERO

modelling and design

environment.

Not promoting a single tool, but an ensemble of tool. You can

benefit from the integration having a more complete available

environment. Raise the level of abstraction and training

hiding many low level details. Moreover, CIF can be

beneficial thanks to interoperability and openess to external

new connections.

3.2 Foster Interoperability CIF considerably reduces interoperability effort to create and

maintain connections between design tools.

Table 7-2: D5.1 Contribution to CERBERO Operational Objectives

H2020-ICT-2016-1-732105 - CERBERO

WP5 – D5.1: CERBERO Holistic Methodology and Integration Interfaces (Final Version)

Page 57 of 58

8. References

1) Michael Masin, Lior Limonad, Aviad Sela, David Boaz, Lev Greenberg, Nir Mashkif, Ran Rinat,

“Pluggable Analysis Viewpoints for Design Space Exploration”, Procedia Computer Science,

Volume 16, 2013, Pages 226-235.

2) MBSE case study, International Council on Systems Engineering, January 2012.

incoseonline.org.uk.

3) Functional Mock-up Interface (FMI) Standard, fmi-standard.org.

4) Presentation of Modelica, Sébastien FURIC, INSA Lyon and LMS Engineering Innovation, France.

5) Janne Luoma, Steven Kelly and Juha-Pekka Tolvanen, "Defining Domain-Specific Modeling

Languages: Collected Experiences", MetaCase, Ylistönmäentie 31, FI-40500 Jyväskylä, Finland.

6) Domain-Specific Modeling Languages: Moving from Writing Code to Generating It, Steven Kelly,

Microsoft, December 2007. https://msdn.microsoft.com/en-us/library/cc168592.aspx.

7) Gabor Simko, David Lindecker, Tihamer Levendovszky, Sandeep Neema, Janos Sztipanovits,

“Specification of Cyber-Physical Components with Formal Semantics – Integration and

Composition”, Springer, Part of the Lecture Notes in Computer Science book series (LNCS, volume

8107).2013 pp 471-487.

8) Manel Ammar, Mouna Baklouti, Maxime Pelcat, Karol Desnos, Mohammed Abid. “MARTE to

PiSDF transformation for data-intensive applications analysis”, Design & Architectures for Signal

& Image Processing (DASIP), Oct 2014, Madrid, Spain. 2014.

9) Heiko Paulheim, Chapter 9, Ontology-based Application Integration, 2011, Springer, Berlin, ISBN

1461414296.

10) L Suriano, D Madroñal, A Rodríguez, E Juárez, C Sanz, E de la Torre ; “A Unified

Hardware/Software Monitoring Method for Reconfigurable Computing Architectures Using

PAPI”; 2018 13th International Symposium on Reconfigurable Communication-centric Systems

on Chip; Lille (France), 2018.

11) Desnos K, Pelcat M, Nezan JF, Bhattacharyya SS, Aridhi S. Pimm: Parameterized and interfaced

dataflow meta-model for mpsocs runtime reconfiguration. In2013 International Conference on

Embedded Computer Systems: Architectures, Modeling, and Simulation (SAMOS) 2013 Jul 15 (pp.

41-48). IEEE.

12) Pelcat, M., Nezan, J.F., Piat, J., Croizer, J. and Aridhi, S., 2009, September. A system-level

architecture model for rapid prototyping of heterogeneous multicore embedded systems.

13) Rodríguez A, Valverde J, Portilla J, Otero A, Riesgo T, de la Torre E. Fpga-based high-performance

embedded systems for adaptive edge computing in cyber-physical systems: The artico3 framework.

Sensors. 2018 Jun;18(6):1877.

14) Tiziana Fanni, Alfonso Rodríguez, Carlo Sau, Leonardo Suriano, Francesca Palumbo, Luigi Raffo,

Eduardo de la Torre; “Multi-Grain Reconfiguration for Advanced Adaptivity in Cyber-Physical”;

Systems; 2018 International Conference on ReConFigurable Computing and FPGAs (ReConFig)¸

2018.

15) Madroñal Quintín, Daniel; Morvan, Antoine; Lazcano López, Raquel; Salvador Perea, Rubén;

Desnos, Karol; Juárez Martínez, Eduardo y Sanz, César (2018). Automatic Instrumentation of

Dataflow Applications using PAPI. En: "CF ’18: Computing Frontiers Conference", 8-11, 2018.

file:///D:/data/Box/Box%20Sync/CERBERO/Deliverables/WP5/incoseonline.org.uk
file:///D:/data/Box/Box%20Sync/CERBERO/Deliverables/WP5/fmi-standard.org
https://msdn.microsoft.com/en-us/library/cc168592.aspx

H2020-ICT-2016-1-732105 - CERBERO

WP5 – D5.1: CERBERO Holistic Methodology and Integration Interfaces (Final Version)

Page 58 of 58

16)
Grosser, Tobias, et al. "Polly-Polyhedral optimization in LLVM." Proceedings of the First

International Workshop on Polyhedral Compilation Techniques (IMPACT). Vol. 2011.

17)
Pop, Sebastian & Cohen, Albert & Bastoul, Cédric & Girbal, Sylvain & Silber, Georges-André &

Vasilache, Nicolas. (2006). GRAPHITE: Polyhedral analyses and optimizations for GCC.

Proceedings of the GCC Developers' Summit 2006.

18)
Uday Bondhugula, M. Baskaran, S. Krishnamoorthy, J. Ramanujam, A. Rountev, and P.

Sadayappan. Automatic Transformations for Communication-Minimized Parallelization and

Locality Optimization in the Polyhedral Model International Conference on Compiler Construction

(ETAPS CC), Apr 2008, Budapest, Hungary.

19) Caamaño, Juan Manuel Martinez, et al. "APOLLO: Automatic speculative polyhedral loop

optimizer." IMPACT 2017-7th International Workshop on Polyhedral Compilation Techniques.

2017.

20) Jeffrey Parsons, Yair Wand; Emancipating Instances from the Tyranny of Classes in Information

Modelling, ACM Transactions on Database Systems, Vol. 25, No. 2, 2000.

http://www.csa.iisc.ernet.in/~uday/publications/uday-cc08.pdf
http://www.csa.iisc.ernet.in/~uday/publications/uday-cc08.pdf

