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1. Executive Summary 

This document is an update of D4.4, detailing the status of CERBERO work on self-
adaptation management at M30. 

In order to speed up and ease the reading and review process the text of sections and 

paragraphs that have NOT been signif icantly updated and revised are in dark gray. Sections  

that have been deeply updated and revised are written in black. 

1.1. Structure of the Document 

While Section 2 relates advances since M15 on the different tool-to-tool integrations, 
Section 3 focuses on adaptation framework integration as a whole. Section 4 gives 
updates on the applicability of the CERBERO self-adaptation capabilities to the 
CERBERO use cases. Finally, Section 5 concludes on the built self-adaptation 
framework. 

1.2. Related Documents 

Deliverable D4.4 (M15) has detailed the rationale for the selected tools and the 
integration activities conducted within the CERBERO project in order to support self-
adaptation in the contexts of CERBERO use cases. This update aims at explaining the 

actions conducted since M15 and at comparing them to the initial plan. The presented 
tool integration activities follow the integration methodology presented in D5.5. 

 

Deliverable D2.1 has defined the Key Performance Indicators (KPIs) to be observed in 
the CERBERO use cases. The technologies presented in this document, while aiming at a 
generic adaptation support of applicative and architectural modifications, target primarily 
the KPIs listed in D2.1. 

 

Deliverable D4.1 (M30) has described the different multi-layer adaptation strategies of 
the project. The CERBERO approach for self-adaptation has also been compared in 
Deliverable D4.4 to the state-of-the-art of system adaptation management. This document 
complements D4.1 by explaining how tool-to-tool and multi-tool integrations are 
conducted in order to support these adaptation strategies. 

 

Deliverable D5.6 and its update D5.2 present the features of individual tools in the 
CERBERO framework, including design-time and run-time tools. This document 
concentrates on run-time tools and focuses on their integration. For more details on 
design-time tools and their integration, please refer to Deliverable D5.2.  

1.3. Related CERBERO Requirements 

Deliverable D2.7 of the CERBERO project defines a list of CERBERO Technical 
Requirements (CTRs) the project should achieve. Each of them is referenced with a 
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unique identifier ranging from 0001 to 0020. The self-adaptation manager integration 
activities described in the current document address 6 CTRs, as  described in Table 1.

Table 1: CERBERO Technical Requirements driving self-adaptation manager integration activities. 

CTR 
id 

CTR Description Link with the D4.2 document on Self-Adaptation 
Manager 

0001 CERBERO framework SHOULD 
increase the level of abstraction at least 
by one for HW/SW co-design and for 
System Level Design. 

The integration of the CERBERO self-adaptation tool 
chain increases the design level of abstraction by 
automating tasks that, in state-of-the-art systems, are 
manually conducted, including e.g. HW/SW co-design, 

coordination of environment, system and human, and 
reconfigurability.  

0003 CERBERO framework SHOULD 
provide incremental prototyping 
capabilities for HW/SW co-design. 

The CERBERO self-adaptation managing framework 
aims at helping the designer to build fast HW/SW 
hybrid and heterogeneous prototypes with adaptation 

capabilities. 

0006 CERBERO framework SHOULD ensure 
energy efficient and dependable HW/SW 
co-design using cross-layer runtime 
adaptation of reconfigurable HW. 

Through system and environment monitoring, and self-
adaptation, combined with SW and HW 
reconfiguration, the CERBERO self-adaptation manager 
provides a framework for raising energy efficiency and 

dependability. 

0009 CERBERO SHALL develop integration 
methodology and framework. 

The adaptation infrastructure and tools are part of the 
CERBERO framework. 

0016 CERBERO tools SHOULD be tested vs. 

state-of-the-art. 

The CERBERO integrated tools are tested vs. state-of-

the-art solutions. The built self-adaptation manager 
brings unique design automation features, as explained 
in the following sections and in Deliverable D4.1. 

0019 CERBERO technology providers 
SHALL coordinate technical support for 

their tools with use case engineers. 

Use cases are aligned with the CERBERO proposed 
technology. Live and online tutorials are proposed to 

synchronize partners.  

0020 CERBERO framework SHALL provide 
methodology and tools for development 

of adaptive applications. 

This document develops the tooling part of CERBERO 
adaptive systems development. 
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2. M30 Progress w.r.t. Self-Adaptation Manager Integration 

Plan 

Figure 1 and Figure 2 recall the tool integration plan stated in D4.4. Five parallel 
activities have been conducted within the consortium to build the CERBERO self-
adaptation management, numbered (1) to (5) hereafter. Self-adaptation is a combination 
of awareness and reconfiguration. To implement self-adaptation, the CERBERO self-

adaptation manager relies on of four types of elements: fabrics, monitors, managers and 
engines. While monitors provide sensing capabilities to the decision process conducted 
by managers, engines provide processing reconfiguration capabilities at different levels. 
Fabrics are either software or hardware facilities that implement processing, 

reconfiguration, or sensing operations. The details of the CERBERO multi-layer runtime 
adaptation strategies are explained in Deliverable D4.1. 

 

The CERBERO integration activities aim at the management of adaptivity at two 
different scales, as depicted in Figure 1 and explained in Deliverable D4.1:  

- At the Cyber-Physical System of Systems level (CPSoS), 
- At the Cyber-Physical System level (CPS). 

The two scales of adaptivity can be combined for the study of a single system. The 
adaptation technologies built in CERBERO are all generic to the different triggers of 
adaptation (e.g. user or environment related), and cover software, hardware, and sensor 
fabrics. 

 
 Figure 1: Overview of the main runtime tools integration activities. 

 

The next sections will refer to the integration plan displayed in Figure 2 and stated at 
M15 in D4.4. The main objective of this document is to present an update of this plan at 
M30. 
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Figure 2: Self-Adaptation Manager Plan for Integration  

The following list details the different planned phases, as displayed in D4.4: 

 

 (1)  DynAA, SCANeR & MECA Integration 
o Phase 1 

 Detail one reference scenario, set up test environment with 

SCANeR, MECA and DyNAA, data fusion and synchronization, 
 Define and implement tool interfaces, integration verification. 

o Phase 2 
 Detail scenarios, develop and integrate CERBERO intermediate 

format, add AOW for optimization of route planning 
 use additional CERBERO tools (like Preesm/SPIDER and 

Verification tool) to optimize / validate solution 

 (2)  Papify & SPIDER Integration 

o Phase 1 
 automatically insert Papify eventLib function calls within SPIDER 

jobs and Local Runtimes (LRT), 

o Phase 2 
 derive generalized models to translate LRT (Papify Parameters) 

measurements into relevant CERBERO KPIs, 
o Phase 3 

 enable system self-adaptation, including KPI estimated values as 
inputs to the Global Runtime Self-Adaptation manager. 

 (3)  SPIDER & MDC Integration 
o Phase 1 

 Integrate MDC & SPIDER by combining software and hardware 
adaptation based on varying application parameters, 

o Phase 2 
 verify this approach with respect to relevant CERBERO KPIs, 

o Phase 3 
 derive a proof of concept of the proposed approach in the context 

of CERBERO use case scenarios. 
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 (4)  MDC & CAPH Integration 
o Phase 1 

 complete, debug and assess the MDC & CAPH integration for 
coarse grain adaptive HW, 

o Phase 2  
 verify this approach with respect to relevant CERBERO KPIs 

o Phase 3 
 derive a proof of concept of the proposed approach in the context 

of the CERBERO use case scenarios 

 (5)  MDC & Papify & ARTICo3 Integration 

o Phase 1 
 provide a unified hardware/software monitoring interface using 

Papify, 
 extend MDC generation code, to generate ARTICo3 compliant 

CGR accelerators, 
o Phase 2 

 provide an automated instrumentation methodology for 
heterogeneous hardware/software setups 

 experiment with multi-grain adaptivity, proposing different 
reconfiguration strategies according to relevant CERBERO KPIs 

o Phase 3 
 derive generalized models to translate heterogeneous 

hardware/software measurements into relevant CERBERO KPIs 
and enable system self-adaptation, providing KPIs to the 
CERBERO Self-Adaptation Manager. 

 derive a proof of concept of the proposed approaches in the context 
of the CERBERO use case scenarios 

Next sections detail the tool integration activities conducted until M30 for building 

CERBERO self-adaptation management, and progress w.r.t. the plan drawn in D4.4 
(M15). 

2.1. Integration Activity (1): DynAA, SCANeR & MECA 

This integration activity brings together two simulation tools, DynAA and SCANeR, and 
a decision tool, MECA, to adapt at application level the system to a large set of triggers. 

In Figure 3, a schematic overview is given of the DynAA, SCANeR and MECA tools 

enhanced within the CERBERO project. As an application-level tool chain, the links 
between DynAA, SCANeR and MECA are tailored to the Smart Travelling use case. 
MECA receives monitoring data from a vehicle (via the SCANeR simulator), sensor data 
from the system environment (via DynAA) or user input from a driver (indicating for 

example a new destination). Based on the data received, MECA determines if adaptation 
is required.   

The adaptation itself can be, for example: 
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 starting an investigation of alternative routes, in case planned charging poles are 
found to be out of service.  This is an adaptation triggered by the changes in the 

environment;  

 proposing advised routes based on impact analysis performed on DynAA, or 
triggered by route request from driver.  This is an adaptation triggered by the user; 
or 

 advising the user to reduce energy consumption by reducing or switching off the 
air- conditioning.  This happens in case the battery charge is found to be critically 
low.  Such adaptation is triggered by the system state. 

MECA allows for some self-adaptation: the adaption is either triggered by the user 
(through the UI), or by modifications of the system’s environment and detection of 
potential problems (e.g. limited availability of charging poles). The test of self-adaptation 

based on environment is done via manipulating charging-pole status (force out of 
service), which triggers MECA to re-plan.  Environmental changes such as traffic jams 
and weather conditions are currently not simulated. 

 

 
Figure 3: Schematic overview of MECA, DynAA, SCANeR, and Abinsula HMI interworking. 

The adaptivity is controlled by functions developed on the MECA tool, which possesses 
basic functionality for storing knowledge, monitor, and trigger adaptation on received 
data, as well as generation or adaptation of travelling plans. 

 

Current state of integration:  

There are no significant modifications to the integration plan, nor to the adaptation 
mechanisms in the actual demonstration setup.  All continue to work as depicted in the 
picture. At the current integration state, all major integration activities between the 
different components have been completed.  We are currently refining and extending the 

interfaces with more capabilities.  For example , MECA will report to DynAA the battery 
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state-of-charge read from SCANeR.  This information is used to improve the DynAA 
routing analysis. 

Specifically, TNO included advanced simulation library versions in DynAA for the 
Battery and Motor models.  They will be used in future demonstrators.  Implementation 

using DynAA system-in-the-loop version for this part will be an optional extension for 
the final demonstration in December 2019. 

Furthermore, a Human-Machine user Interface (HMI) was added between SCANeR and 
MECA to allow for real time car monitoring on the map at the same time reduce the 
previous number of interfaces between the modules.  The Human Machine Interface is 
implemented and provided by Abinsula. 

2.2. Integration Activity (2): Papify  & SPIDER 

 

Current state of integration:  

The Papify toolbox performs automatic PAPI-based instrumentation of dynamic dataflow 
applications. This toolbox is the result of combining Papify with the dataflow Y-chart 

based design framework, PREESM, and its counterpart run-time reconfiguration 
manager, SPIDER. The built toolbox takes the form of an automatic code generation for 
static and dynamic applications, a dedicated library to manage run-time monitoring and 
two User Interfaces (UIs) to ease both the configuration and the analysis of the 
monitoring. 

 

Phase 1 of integration is finished, i.e. Papify eventLib function calls are automatically 
inserted within SPIDER jobs and Local Runtimes (LRT). Additionally, the support for 
monitoring heterogeneous architectures has been included. 

 

For Phase 2, four goals have been defined to derive generalized models to translate LRT 
(Papify Parameters) measurements into a relevant KPI. A bottom-up approach has been 

adopted, starting from implementation and measurements to build a relevant mode l. 
System energy consumption has been chosen as the main target KPI, as it is important to 
both Planetary Exploration and Ocean Monitoring use cases (cf. Deliverable D2.1). A 
Massively Parallel Processor Array (MPPA-256-N) platform has been selected as a 

challenging experimental platform. This platform gathers 16 clusters with 16 cores within 
each of them, i.e., there are 256 processors working in parallel. 

 

The four successive conducted activities have been: 

1. Analyze the different ways to report instantaneous power consumption of the 
platform for system adaptation 

Two different mechanisms have been studied: 1) to use an application called k1-power, 
which has a high sample rate but low precision; 2) to use a multimeter plugged on the 

power supply of the platform, which has a low sample rate but high voltage resolution. 
Finally, it has been decided to develop a custom monitor based on accessing a sensor (not 
available from k1-power) and to correct its low precision by applying a correction 
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function. This correction function has been obtained by characterizing the current 
measured by the sensor and comparing it with the one measured with the multimeter. 
Finally, a linear regression technique has been applied to obtain the correction function. 
With this new methodology, both a high sample rate and a high precision are reached. 

 

2. Include Performance Monitoring Counters (PMCs), and test KPI retrieval on a 
relevant embedded platform 

As a preliminary step, the available monitoring infrastructure already existing w ithin the 
platform has been analyzed. During this analysis it has been stated that the infrastructure 
was complete enough to be used to characterize the different resources of the platform, as 

each of the 256 cores of the platform has its own counters and all can be monitored 
simultaneously. As a second step, PAPI, the standard monitoring library has been ported 
to the platform. This library provides access to the PMCs and the different events that 
occur in the processor during the execution of applications. Additionally, this library is 

divided into two layers: the lower one is architecture-specific and it is aimed to deal with 
the peculiarities of each platform, while the upper layer aims at transparently managing 
the low level and to provide the user with an abstraction layer to uniformly access to the 
PMCs of any of the employed platforms. The work done supports the low level of both 

the second and third generations of the MPPA architecture, where the second generation 
is the one previously referred as MPPA-256-N (Bostan version), while the third one will 
be called Coolidge (available soon). 

 

3. Create a benchmark for testing Papify/Spider integration 

During this step, a set of stress applications has been built, where the resources of the 
platform (cache memory, communication resources, floating point units, etc) are stressed 

differently. In this sense, the benchmark has been divided in two: communication stress 
and processing stress.  

The former is composed of applications where the different clusters (16) existing within 
the platform exchange data with other clusters or with the Input/Output (I/O) subsystem. 
In these tests, 4 communication situations may happen:  

a. Cluster sending (or receiving) data to (from) another cluster. In this test the shared 

memory (SMEM) existing within the clusters will be both read to and written 
from. 

b. Cluster sending data to the I/O subsystem. In this test the SMEM will be read 
from while the DDR memory existing in the I/O will be written to. 

c. Cluster receiving data from the I/O subsystem. In this test the SMEM will be 
written to while the DDR memory will be read from. 

d. I/O subsystem sending data to itself. In this test the DDR memory will be both 
read from and written to. This test is based on stressing the computation resources 
inside each cluster. 

 Each of the tests composing this part of the benchmark aims at stressing the computation 

resources differently. For example, there are tests focused on stressing the instructions 
executions, the cache memory usage, or performing matrix multiplications to stress the 
whole system. 
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4. Demonstrate the use of the built Model of Architecture in SPIDER/Papify 

The objective of this part is to develop a Linear System-Level Architecture (LSLA) 
Model of Architecture (MoA) of the MPPA-256-N platform. This model is characterized 
for isolating the communication and the processing from each other. Consequently, the 

benchmark developed has been used to obtain linear models representing each part of the 
architecture. Additionally, the technique used to extract the equations that characterize 
the resources, again, has been the linear regression. 

 

For the communication part, it has been decided to use the size of the data token 
transmitted to compute the energy employed during its transmission. To properly  

characterize this part of the platform, the source and the destination of the token are taken 
into account, as using the DDR memory has been proven to be 10 times more energy 
consuming than using the SMEM of the clusters. Figure 4 gathers the results obta ined for 
this part of the model. As it can be seen, the differences in the energy consumption when 
using (or not) the DDR memory are clear and properly reflected in the estimation. 

Figure 4 - Communication model of the MPPA. 

 

For the computational part, the different workloads of the tests composing the stress 
benchmark have been characterized using the events extracted through the PMCs and the 

PAPI library. By doing so, a linear and cumulative model has been extracted and, as a 
first approach, it has been validated with some samples of the benchmark obtained an 
average accuracy of 85%. Figure 5 depicts the estimation for the computation when 
stressing the MPPA-256 board with different workloads and different type of 
computation. 
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Figure 5 - Computational model of the MPPA. 

 

 

For phase 3, to enable system self-adaptation based on internal system state triggers, 
there is one component of SPIDER that suffers the deepest change: the mapping 
algorithm. Using multi-objective optimization, both timing and energy can be taken into 
account, considering: 1) a performance objective (e.g. a minimum of X fps), 2) the static 

energy consumed by the system (the more PEs are used, the more static energy will have 
the system), 3) the communication energy cost (for example, on the MPPA, sending to 
the I/O (represented as one type of PE) costs more than sending data between clusters 
(represented as another type of PE) and 4) the dynamic energy consumption (one actor 

could consume different amount of energy depending on the type of PE executing the 
actor). A multi-objective optimization algorithm has been assessed by simulation and 
offers promising results on trading-off between time and energy, validating the proposed 
multi-KPI API an efficient way to feed self-adaptation. 

 

Progress w.r.t. the initial plan: 

 Phase 1: automatically insert Papify  eventLib function calls within SPIDER jobs 

and Local Runtimes (LRT): this work has been conducted w.r.t. the plan, and the 
obtained support is generic to many types of platforms,  

 Phase 2:  derive generalized models to translate LRT (Papify Parameters) 

measurements into relevant CERBERO KPIs: this work has been conducted w.r.t. 

the plan. Model building has been conducted on many-core energy estimation 

models and experimented on a complex MPPA-256-N platform. 

 Phase 3 : enable system self-adaptation, including KPI estimated values as inputs 

to the Global Runtime Self-Adaptation manager: this work has been conducted 

w.r.t. the plan. The Papify time PMC interface combined with the precise energy 
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KPI model offer the appropriate input for multi-objective optimization algorithms 

in the Global Runtime Self-Adaptation manager. 

 

Maturity of the built self-adaptation management:  

The integration has led to Papify being tightly integrated to SPIDER and to both PMC 

and model-based KPIs being extractable from an execution. Manual steps are still 

required for using model-based adaptation while PMC-based adaptation is fully 

automated. 

2.3. Integration Activity (3): SPIDER & MDC 

 

Current state of integration:  

The integration activity between the SPIDER dataflow-based runtime manager and the 

MDC dataflow-to-hardware suite has been conducted in order to combine Coarse-Grain 

Reconfigurable (CGR) hardware accelerators with multi-core software architectures. 

Both tools are based on a dataflow Model of Computation (MoC, cf. deliverable D3.3) 

that can be used to separate temporal/parallelism problems from functional problems in 

hardware design. Moreover, the modularity of the dataflow representations favors a 

natural splitting of the computation into different blocks without side effects, making it 

possible to automatically map these blocks onto heterogeneous software and hardware 

Processing Elements (PEs). Thus, the idea behind this SPIDER-MDC integration is to 

leverage on a software-hardware datapath design flow and to develop and manage 

dataflow-based autonomous reconfigurable systems, as requested by the CERBERO 

model-based approach to system design. 

 

A proof of concept of the proposed approach has been derived and was fully functional at 

M24. As a first step, the P iSDF-based description of an edge detection application, that 

implies one actor with reconfigurable workloads requiring hardware acceleration with 

low reconfiguration overheads, has been implemented. In a second step, starting from the 

description of two single kernels (Sobel and Roberts filtering) and using the CAPH 

language to generate hardware, a Coarse-Grained Reconfigurable accelerator using MDC 

has been generated. One instance of such accelerator has been deployed onto an FPGA 

device implemented in a system on chip including 2 ARM processors (Xilinx Zynq-7000 

ARM/FPGA SoC). In this setup, the SPIDER runtime manager schedules and maps at 

runtime the whole application graph. It sends the execution orders to different slave 

(processors and accelerator) transparently. The user can trigger the hardware 

reconfiguration using switches present on the PYNQ-Z1 board. 

 

SPIDER-MDC integration requires the decision-making code of SPIDER to have 

information on the performance of the execution to decide mapping, scheduling and 

memory management (among others). This information is either gathered reactively 
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(from execution of previous iterations of the algorithm by e.g. Papify) or predictively 

(from a model of future performances). The capacity to predict performances is 

particularly important in the context of SPIDER-MDC where parameters may change 

constantly and a very limited and imprecise knowledge may be extracted from the study 

of previous code iterations. As a consequence, a study on latency-based adaptation 

methods has been conducted within the SPIDER-MDC integration activities. This study 

complements the energy-oriented study presented in the previous section and necessity 

has arisen from the need of real-time systems to act predictively. The idea of this study is 

to build and train simple Models of Architecture (MoA), executable at run-time, to 

predict the full hardware/software performance of SPIDER-MDC based on limited 

information on the platform and algorithm. To handle the complete heterogeneous 

system, the runtime system can then use either the MoA predicted latency or the Papify 

measured latency. To build the MoA, it is necessary to retrieve a certain “application 

activity” related to the latency of the I/O paths that are present in the application graph. 

Indeed, only one path (i.e. one chain of processing actors and communications) causes 

the latency between arrival of data and production of results, even if data and task 

parallelisms create many concurrent paths. Once a model of application activity is built, a 

training phase has to be performed with multiple applications in order to get a model of 

the architecture that is capable of providing latency estimation valid for several 

applications. This model should be usable from limited application and architecture 

information. The objective of this MoA study is to offer early information for SPIDER to 

decide the adaptation strategy starting from a latency model for the chosen hardware 

solution. 

 

As the connection to PREESM and SPIDER have a strong impact on the internal 
behavior of MDC, the tool-to-tool connection is also discussed extensively in Deliverable 
D5.2. 

 

Progress w.r.t. the initial plan: 

The implementation is quite aligned with respect to the initial plan: 

 Phase 1 (Integrate MDC & SPIDER by combining software and hardware 
adaptation based on varying application parameters) has been 

implemented and tested on a proof of concept application; 

 Phase 2 (verify this approach with respect to relevant CERBERO KPIs) 
has been conducted, focusing on the processing latency KPI that is 
essential to the different use cases. Indeed, deliverable D2.1 “CERBERO 

Scenarios Description” shows that latency (also called “response time”) is 
central to CERBERO use cases. The built model of architecture is defined 
to be very lightweight and support adaptivity at runtime with respect to the 
different configurations of the system; 

 Phase 3 (derive a proof of concept of the proposed approach in the context 
of CERBERO use case scenarios). Proof-of-concept algorithms (SIFT 
keypoint detector, and stereo matching) have been implemented and used 
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to train and test the built the model. These algorithms are coherent with 
the contexts of the PE and OM use cases. 

Maturity of the built self-adaptation management:  

The combination of the MDC and SPIDER tools has been achieved and allows a user to 
switch between hardware and software tasks at runtime through the rescheduling and the 
remapping the application onto the proper processing elements depending on the 

parameters. The new Model of Architecture offers a valuable input to the self-adaptation 
loop, making it possible to schedule based on predicted future performance. The use of 
the built MoA in SPIDER still requires manual steps while user-triggered adaption is 
fully automated. 

2.4. Integration Activity (4): MDC & CAPH 

CAPH is external to the CERBERO consortium but its integration has been a strong asset 
for the support of coarse grain reconfiguration within the CERBERO engines. Indeed, the 
CAPH compiler provide advanced constructs to build and manipulate complex data-paths 
to which MDC can insert coarse grain reconfiguration support. 

 

Current state of integration:  

The integration between MDC and CAPH was already in a good shape at M15: the tools 
were connected together by providing CAPH with a RVC-CAL backend, in order to 
generate also dataflow models compliant with the MDC supported ones; and by 
providing MDC with a hardware communication protocol generalization, so that it has 

been made able to manipulate any kind of hardware actor, generated either manually or 
by means of high level synthesis tools like CAPH. 

Going from M15 to M30, only refinements and tests have been applied to the integration 
between MDC and CAPH. In particular, besides debugging the integration, on the MDC 
side the protocol generalization has been aligned with the MDC co-processor generator 

additional feature (see D5.2). Moreover, the integration has been validated on a real test 
case involving several versions of interpolation filters adopted in latest video coding 
algorithms (HEVC) for motion estimation/compensation purposes. The MDC/CAPH 
integrated flow has been compared with commercial solutions aiming at the development 

of reconfigurable HEVC interpolation filters, resulting in more efficient and predictable 
(in terms of latency, one of the CERBERO KPIs) solutions [RUBATTU 2018]. 

 

Progress w.r.t. the initial plan: 

With respect to the initial plan: 

 Phase 1 (complete, debug and assess the MDC & CAPH integration for 
coarse grain adaptive HW) has been completed; 

 Phase 2 (verify this approach with respect to relevant CERBERO KPIs) 

has been done, since the CERBERO KPI that is currently relevant for the 
test case (that is latency) has been verified with the integrated MDC and 
CAPH approach; 
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 Phase 3 (derive a proof of concept of the proposed approach in the context 
of the CERBERO use case scenarios) has been partially done, since 

HEVC coding is an interesting test case transversal for all the CERBERO 
use cases, especially the ones where environmental monitoring is 
necessary. Even if they can be possible topics of extensions for the 
CERBERO use cases, video coding aspects will not be investigated during 
the CERBERO project. 

Maturity of the built self-adaptation management:  

This integration is not properly part of the self-adaptation management, but serves as a 

design time support to complete the automation of the adaptable hardware accelerators 
design flow. 

2.5. Integration Activity (5): MDC & Papify & ARTICo 3   

The planned Papify-MDC-ARTICo
3
 integration aimed at providing monitoring support to 

HW accelerators. This integration activity has built a tightly connected set of 

technologies on hardware reconfiguration. A first step in this work was done by the 
preliminary Papify-ARTICo

3
 integration [SURIANO 2018]. This integration provided a 

custom approach that used Papify for reading the hardware monitors available in the 
ARTICo

3
 slots. 

 

The following steps have been necessary to complete the integration: 

 Integrating MDC and ARTICo
3
 to provide support for a multi-grain 

reconfigurable approach, capable of managing both Coarse-Grain Reconfiguration 
(CGR) and Dynamic Partial Reconfiguration (DPR). This integration required the 
ARTICo

3
 toolchain to be extended to take into consideration both the memory 

banks and the configuration registers in the slots, and MDC code generation to be 

modified to provide processor-coprocessor systems compliant with the ARTICo
3
 

register/memory structure (i.e. embedding the custom logic in the ARTICo
3
 

wrapper instead of doing it in a standard AXI4 slave template). 

 Providing a generic monitoring approach for HW accelerators, suitable to provide 

proper feedbacks of both MDC accelerators and ARTICo
3
 architecture, as well as 

feedbacks of their combination given by the multi-grain reconfiguration. This 
integration required developing a generic PAPI-based approach for monitoring 

the HW accelerators, that could be valid for both MDC-generated accelerators 
(in which the number and kind of events may change according to the profiled 
application), and for ARTICo

3
 accelerators (in which the number of slots may 

vary according to the user-requested level of parallelism and to the available 
board).  

Current state of integration:  

The MDC-ARTICo
3
 integration has been successfully achieved according to the plans. 

Figure 6 depicts the integrated multi-grain toolflow. Applications to be accelerated are 
defined as dataflow specifications and merged in an ARTICo3-compliant CGR kernel. 
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Then ARTICo
3
 toolchain processes this kernel to embed it in the HW architecture 

[FANNI 2018, RODRIGUEZ 2018].   

 
Figure 6 - Multi-grain design flow and adaptation. 

The first step, offering support for monitoring DPR HW accelerators, has been conducted 
in the preliminary Papify-ARTICo

3
 integration [SURIANO 2018]. In this integration a 

first PAPI-ARTICo
3
 component, to be read using Papify monitors available in the 

ARTICo
3
 slots, was developed. Figure 7 illustrates a schematic view of ARTICo³ 

infrastructure and highlights the integrated PMCs for Performance and Fault monitoring  
[SURIANO 2018].  

 
Figure 7 - ARTICo³ hardware architecture with Performance and Fault Monitors. 

In order to make this monitoring support more generic, and provide a monitoring for 
CGR accelerators, the integration of Papify with MDC has then been conducted 
[MADRONAL 2019]. In this work, we have defined two levels of HW monitoring (see 
Figure 8):  

1. the accelerator-level: homogeneous for every ARTICo
3
-supported accelerator;  

2. the low-level: specific to a given accelerator whose code is generated with MDC, 
e.g. by profiling the bottleneck PEs internally. 



H2020-ICT-2016-1-732105 - CERBERO 

WP4 – D4.2: Self-adaptation Manager 

Page 21 of 33 

 
Figure 8 - HW Monitoring at two level of abstraction: (1) accelerator level; (2) low-level. 

As illustrated in Figure 8 the HW monitors are accessed through the configuration 
registers of the accelerator. Since the base address of the accelerator may change in 

different accelerators, as well as the number and type of events to be monitored, we 
developed a configurable PAPI-MDC component that is automatically configured when 
the application is launched. The configuration xml file is similar to the following one:  

<?xml version="1.0" encoding="UTF-8"?> 

<mdcInfo> 

<baseAddress>0xADDRESS</baseAddress> 

<nbEvents>N</nbEvents> 

<event>  

<index>M</index> 

<name>MDC_EVENT_NAME</name> 

<desc>Event Description</desc> 

</event> 

</mdcInfo> 

 

When configured through this API, the PAPI-MDC component is compliant with the 

existing standard SW components and events can be naturally accessed using Papify from 
a software interface to monitor the current behavior of the system. 

 

Following the same approach to provide a consistent methodology for accessing 
instrumented HW, an XML-based PAPI-ARTICo³ configuration procedure was also 
designed in order to be compliant with PAPI and Papify from one side and with ARTICo

3
 

accelerators from the other side. The following listing shows the structure of this xml 
description: 

<?xml version="1.0" encoding="UTF-8"?> 

<artico3Info> 

             <nbEventsArtico3>N</ nbEventsArtico3 > 
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             <eventArtico3> 

                            <index>M</index> 

                            <name>ARTICo3_EVENT_NAME</name> 

                            <desc>Event Description</desc> 

             </eventArtico3> 

             <nbKernels>K</nbKernels> 

             <kernel> 

                            <kernelName>ARTICo3_KERNEL_NAME</kernelName> 

                            <nbEvents>N</nbEvents> 

                            <event> 

                                           <index>M</index> 

                                           <name>ARTICo3_KERNEL_EVENT_NAME</name> 

                                           <desc>Event Description</desc> 

                            </event> 

             </kernel> 

<nbEvents>N</nbEvents> 

</artico3Info> 

 

It is worth noting that there are two different types of events: 

 the generic events associated to the ARTICo³ infrastructure (always present) such 
as ERRORS and CLOCK-CYCLES (as explained in [SURIANO 2018]). Other 
generic events are planned to be developed for extending the monitoring 
capabilities of the ARTICo³ hardware structure. 

 Specific kernel events associated to hardware accelerators. These are not part of 
the ARTICo³ infrastructure but, instead, are part of the internal structure of the 
accelerators and can be associated, also, to MDC-specific events as well as to any 
other custom event. 

Regarding the second type of events, the built hardware component is compliant with 
standard PAPI calls and events can be naturally accessed using Papify. Moreover, 

knowing that an ARTICo³ slot can host an MDC hardware accelerator, the internal 
structure of the XML file in charge of describing the events is fully compatible with the 
PAPI-MDC component:  

<?xml version="1.0" encoding="UTF-8"?> 

<artico3Info> 

             <nbEventsArtico3>N</ nbEventsArtico3 > 

             < eventArtico3> 

                            <index>M</index> 

                            <name>ARTICo3_EVENT_NAME</name> 

                            <desc>Event Description</desc> 

             </ eventArtico3> 

             <nbKernels>K</nbKernels> 
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             <kernel> 

                            <kernelName>ARTICo3_KERNEL_NAME</kernelName> 

<baseAddress>0xADDRESS</baseAddress> 

<nbEvents>N</nbEvents> 

<event>  

<index>M</index> 

<name>MDC_EVENT_NAME</name> 

<desc>Event Description</desc> 

</event> 

             </kernel> 

<nbEvents>N</nbEvents> 

</artico3Info> 

 

The portion of the xml file containing the PAPI-MDC-powered accelerator description is 
highlighted in red. This file is known and generated at design time because it must reflect 
the hardware monitor infrastructure of the designed hardware. At runtime, the 
Papify/PAPI layer is in charge of selecting and initializing only the meaningful events. In 

the ARTICo
3
 architecture each DPR slot may have its own registers (in any number, 

including none), as specified in the hardware project and reflected in the configuration 
file. 

 

Progress w.r.t. the initial plan: 

Phase 1 of the working plan has been completed: MDC and ARTICo
3
 have been 

integrated and Papify is able to provide a HW/SW monitoring interface. 

The automated instrumentation methodology for heterogenous HW/SW setups, 
envisioned in phase 2, has been developed for MDC and for ARTICo

3
 by 

 extending the use of PAPI and Papify to every generic hardware accelerators 
[SURIANO 2018], 

 proposing a runtime monitoring approach for hardware accelerators based on 
PAPI and Papify [MADRONAL 2019]. 

Within the monitoring of MDC accelerators, we have defined the accelerator-level 

monitoring insertion, to keep trace of important dataflow metrics during execution, such 
as the execution time, the number of input tokens and the number of output tokens. 
However, low-level monitoring still requires manual steps to be used within the code 
generation flow. 

The multi-grain adaptivity has been demonstrated to be effective [FANNI 2018]. We 

have also performed phase 3, providing PoCs of the MDC-ARTICo
3
 integration [FANNI 

2018, RODRIGUEZ 2018], a PoC on the MDC-Papify integration [MADRONAL 2019] 
and a PoC on the ARTICo

3
-Papify integration [SURIANO 2018]. 
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Maturity of the built self-adaptation management:  

The different steps of integration of MDC, Papify and ARTICo
3
 are rather mature, and 

have been tested on different standalone PoC applications. The feedback on the current 

status of the HW execution to the SW adaptation manager (SPIDER) is less mature and 

requires manual steps to feed the scheduler with hardware-related information. The 

presented work opens for generalizing the models, combining measurements and models 

to drive CERBERO adaptation. 
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3. CERBERO Framework-Level Integration to Support the 

CERBERO Self-Adaptation Strategy 

This section goes beyond tooling integration and explains how the complete adaptation 

framework benefits from CERBERO advances on security, mathematical programming 
and from the CERBERO integration approach. The following table summarizes the state 
of the integrated tools implementing the CERBERO self-adaptation strategy described in 
Deliverable D4.1. It is an update of Deliverable D4.4 Table 1 and shows that the set of 
integrated tools now covers the span of originally targeted adaptation capabilities. 

 

Table 2: CERBERO Integrated tools for self-adaptation management - UPDATED. 

 CERBERO 

Internal 

Model 

ling 

Optimi 

zation 

HW/SW 

Design 

Runtime 

Support 

In Loop 

Simulation 

Open 

Source 

DynAA Yes S S   S  

SCANeR No     S  

MECA Yes S   S   

SPIDER Yes  S S S  S 

Papify  Yes    S  S 

ARTICo³ Yes  S S S  S 

MDC Yes  S S S  S 

CAPH No S  S    

Supported: S. 

 

The next sections successively detail framework-level integration activities, mathematical 

programming and security related advances and their impact on the self-adaptation 

manager. 

3.1. Integration of CPS and CPSoS Multi-Layer Strategies 

From the previously presented integration activities, one of the key goals of CERBERO 

is to produce an integration framework capable of combining and interlinking consortium 

tools semantically across different tooling layers, in such a way that an advanced self-

adaptivity of the target highly-heterogeneous CPS is supported. 

CERBERO integration approach, as discussed in WP5 deliverables, has progressed in 

two directions: tool-to-tool direct integration (when same models and semantics were 

adopted) and the definition of a middleware to provide the interconnection of the tools 

together, in a layered fashion, to facilitate exchange of information and control data 

between these components or subsystems and insuring that the integrated system meets 
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performance and behavioural expectations. This latter is called the CERBERO 

Intermediate Format (CIF), and aims at achieving easy exchange of relevant information 

between all connected tools. Unlike tool-to-tool integration, CIF provides a unified 

platform for model and data transformation that allows for implementing automatic 

transformation capabilities. Within the CIF framework, meta-models (or schemas) of all 

input and output data are defined in a declarative way, supporting the definition of 

transformation processes as a mapping between corresponding schemas. Such unification 

results in achieving easy integration of multiple tools having multiple views and/or 

providing multiple functionalities.  

Currently, the CIF integration approach has been demonstrated thought a Proof of 

Concept (PoC) connection of 3 CERBERO design-time tools:  PREESM – AOW – 

DynAA. The purpose of the PoC has been to calculate optimized scheduling of a 

software application, provided as an SDF graph, on a hardware, provided as a hardware 

architecture description. The optimization can be performed with respect to several goals, 

such as minimal latency, maximum throughput, and minimum energy, and subject to 

different constraints, such as computation and memory capacity. At the moment there is 

no support of CIF in CERBERO run-time tools but the methodology built in CIF for rich 

tool inter-operability remains fully valid in the CERBERO runtime management context.  

3.2. Novelties on Assessing CERBERO Adaptivity at Design Time 
through Mathematical Programming 

Adaptivity of CPS should be considered at design time in order to find CPS architectures 

capable to adapt themselves to potential changes in environment and internal state. As 

CERBERO methodology for design space exploration considers the modeling of system 

and environment uncertainty at design time (please see D3.3. for more details), these 

models can be used also to provide self-adaptation policies together with CPS 

architecture. The basis for this technology is already included in the domain of Robust 

and Stochastic optimization methods. 

In CERBERO we can apply stochastic optimization during HW/SW co-design using two-
stage and multi-stage models. In two-stage models, variables of first stage are design 
variables that are non-adaptive, while variables of the second stage depend on uncertainty 
realizations that can be modeled by the set of possible scenarios. Thus, the optimization 

result here is two-fold: on one hand, we obtain an optimal CPS architecture described by 
variables from first stage and on the other hand we obtain optimal policies for each 
modeled scenario. A multi-stage model is even more expressive because it considers 
changes in uncertainty realizations, and therefore policies obtained from multi-stage 
models can be used in order to adopt CPS for uncertainties that changes over time. 

Robust optimization may provide both robust designs that require rare adaptations and 
Affinely Adjustable Robust Counterpart (AARC) that provides adaptation policies. 
AARC defines two kinds of decision variables: adjustable and non-adjustable. Adjustable 
variables represent affine functions of uncertainty realizations. Unlike policies in 

scenario-based optimization, AARC provides policies that are suitable for all possible 
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uncertainty realizations, modeled by a number of uncertainty sources that defines ranges 
of possible values for uncertain parameters. Moreover, robust optimization can combine 
scenario-based uncertainties together with AARC in order to provide adaptation policies 

that are suitable for many different real-life problems. In CERBERO we extend theory of 
Robust Optimization to hybrid environments in continuous time. 

Thus, appropriate modeling adaptation at design time within the CERBERO project will 
lead to adaptation policies, which will be implemented at runtime, and will provide 
optimal CPS adaptation to uncertain and changing environment and internal state. 

3.3. Novelties on Enhancing CERBERO Adaptive Runtime 
Security and Reliability 

Cyber-physical systems (CPS) should work in a reliable and secure way. The 
functionality needed to guarantee the secure operation of a CPS are strongly dependent 
on the specific application and could vary from the simple presence of an encryption 

algorithm to the request of implementing the system in way that is resistant against 
physical attacks. CPS are often deployed in hostile environments and have a lifespan 
usually much longer than usual consumer electronics. Furthermore, these systems should 
be capable of reacting to changes in the environment. As a result, it is fundamental that 

also security and reliability included in the system is adaptable. Despite being critical 
however, the capability of adapting security and reliability to a desired level is st ill 
generally not provided by current system design methods and, when available, is 
extremely limited. Previous approaches addressing this need are developed for specific 

applications and, often, they are not sufficiently general to be applied to a large variety of 
systems.  

In CERBERO we addressed this problem by proposing architectures that allow adapting 
security functionalities to the changes of environment. The first adaptation explored in 
CERBERO has been the dynamic selection of different implementat ion of the same 
algorithm for trading the performance with the energy consumed by the accelerator. 

In the last months we added the capability of adapting the level of security and the 
amount of redundancy added to provide reliability. As discussed in D4.1, we 
concentrated on AES used in GCM mode, with a MAC size of 128 bit, since this was is 
the standard required by our target application. The architecture we propose is capable of 

dynamically changing the size of the encryption key used (from 128 to 256) and the type 
of error detection and correction used (from simple parity to complex hamming codes). 
The accelerator can be enhanced to provide first order resistance against physical attacks. 
These choices are triggered by monitors. Currently, the self-adapting capability of the 

accelerator have been demonstrated using dedicated monitors embedded in the 
accelerator and using triggers external to the accelerator (for instance, the ones coming 
from the global monitors). In the next months, the technology will be demonstrated 
within the CERBERO use cases. 
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4. Applicability of the CERBERO Self-Adaptation 

Capabilities to Use Cases  

The following sections update the discussion, started in Deliverable D4.4, on the 

applicability of CERBERO self-adaptation strategies within the context of the project’s 
use cases. 

4.1. Planetary Exploration (PE) 

Since the achievements discussed in the deliverable D4.4, many advances have taken 
place. The adaptation motion planning algorithm based on Nelder-Mead optimization has 

already been implemented and validated through both the physical arm and a Python 
simulator. The development and integration of the different CERBERO tools and 
technologies have been completed on M30 and set up different capabilities at design time 
and run time, i.e. automatic instrumentation for ARTICo³ accelerators, a novel MDC + 
ARTICo³ integrated design toolchain and multi-grain reconfiguration, etc. 

A number of layers were considered for the PE use case runtime adaptation support in 
this deliverable. According to the advances previously mentioned, specific updates in 
each one of these layers are outlined below: 

 Triggers: information for adaptation comes from both external sensors and 
internal monitors. On one hand, time-of-flight laser sensors provide 

measurements of distance to physical objects, enabling the exteroceptive 
adaptation to the environment. On the other hand, the performance monitors 
provide the different KPIs that will be used for evaluating the internal state of the 
computing platform and feed proprioceptive adaptation (i.e. adaptation triggered 

from self-awareness information). Current sensors will not be used in the final 
demonstrator; a model of the power consumption of the actuators will be inserted 
instead in order to estimate this parameter 

 Adaptation fabrics: The crux for adaptation in this use-case will be the 

integration between the different CERBERO tools and technologies at 
computation level. SPIDER will be used to dynamically change the processing 
scheduling at runtime. ARTICo³ will implement dynamic partial reconfiguration 

to enable transparent scalability and automatic degree of ruggedization of the 
system. MDC virtual reconfiguration will provide fast switching between 
different implementations of the algorithm. Just-In-Time hardware composition 
introduces a higher degree of granularity for reconfiguration, although the usage 

of this technology in the final demonstrator is still being assessed and will depend 
on its degree of maturity. 

 Adaptation monitors : the automatic instrumentation of the code provided by 
Papify facilitates the implementation of performance monitors inside the 

processing system. The integration between Papify, ARTICo³ and MDC makes it 
possible to measure the number of errors and determine the value of internal 
parameters of the accelerators such as execution times, power consumption, etc. 
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 Embedded models : two main models are being used. First, a physical model that 
implements the forward kinematics of the robotic arm; and second, a power 

consumption model that predicts the energy requirements of the calculated 
trajectory. 

 Adaptation manager: the manager will put together all the information from the 
adaptation monitors and respond to changes in the environment or inside the 

computing system itself, according to the different tr iggers already described. 
Considering the movement and energy embedded models, it will command the 
architectural and functional reconfiguration fabrics to achieve adaption to the new 
situation. 

4.2. Ocean Monitoring (OM) 

The Ocean Monitoring (OM) use-case incorporates CERBERO technologies and 
methodologies to allow different notions of adaptation. Specifically, CERBERO 
adaptation loop is used to separate and define the interaction between the adaptation 

components. The different types of information used for adaptation purposes are 
combined through information fusion models. 

The OM use-case recent progress relates to the following notions of environment 
triggered sensor adaptation: 

 Object detection and tracking based on fusion of colour and background 
subtraction approaches. 

 Image rectification method based on keypoints matching. 
 Real-time optimization for the motion detection and tracking. 

In all cases the adaptation fabric provides the processing systems used for visual 
information sensed from the environment. In the case of object detection and tracking for 
stationary camera, adaptation monitors incorporate background subtraction which is 
applied to the current frame and the history of reference frames in order to look for 

motion. When motion is detected, the adaptation manager identifies the nature of motion 
and decides whether to adapt. Next, the adaptation engine identifies the location of the 
moving object and extracts the colour pattern from the motion area. It continuously 
adapts processing fabrics to the colour range of the colour-based object detection 

approach so that the object can be tracked based on the fusion of two different 
frameworks. The aforementioned hybrid approach was developed and implemented in the 
OM use-case demonstrator.  

The goal of adaptive image rectification method based on keypoints matching approach is 
to adaptively find more and better keypoints matches to continuously improve the 

rectification results over time. This would allow for the self-correction process in the case 
when the viewpoints of the camera sensors change. Although this has been developed for 
the OM use case, it could also be applicable to the PE and ST use cases too. This could 
be due to the physical stress or damage the sensors may sustain as a result of a rough 

landing on Mars surface, or an electric car or underwater vehicle collision with another 
object (for OM). Please refer to D4.1 for the details of the proposed framework. 

The OM use-case has a need to detect and track objects not only from stationary but also 
moving cameras. The camera movement direction can be detected from a clustered 
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motion vector field, for example. There are a number of alternative techniques for 
detecting motion, with advantages and disadvantages in different contexts – evaluation of 
the best techniques for the video data typical of ocean monitoring scenarios is currently in 

progress. However, all techniques, whether they are based on block matching, blob 
tracking, or optical flow, depend on constrained optimization techniques. The OM use-
case therefore explores the possibility of using relevant CERBERO tools capable of 
performing the aforementioned optimization in real-time. 

4.3. Smart Travelling (ST) 

In the Smart Travelling (ST) use case, the targeted self-adaptivity is at the application 
level. New driver support functionalities are developed, relying on the self-adaptive 
DynAA, SCANeR & MECA toolchain (Section 4.2), which will provide advice to the 

driver, based on predictions for possible routes and knowledge on the status of the car. As 
the driver support functionality needs to adapt its advice based on changes in the vehicle 
and the environment, the vehicle and environment will need to be monitored 
continuously and actions will need to be triggered in case situation has changed.  

MECA will need to pose knowledge on the preferences of the driver and the actual 

situation (e.g. speed of the car) to determine the most appropriate advice on each given 
moment. In case of heavy or fast traffic, the driver support functionality should for 
example reduce the number of alternatives given to the driver to select from, and thus 
reduce distraction in the given moment.  

The adaptivity in the ST use case considers CPSoS interactions and the driver actions as 

triggers to launch the reconfiguration of the current execution status, based on SW 
fabrics. Particularly, the system cannot perform self-adaptation without the authorization 
of the driver (except for critical failures or dangerous situations such as a battery short 
circuit), so the use case demonstrator will enable a decision-making process in which the 

driver is another layer of the system. Then, the adaptivity will take place in the three 
following levels: 

 System: Based on the information provided by the different CPSs (e.g., the car 
status, charging poles, battery consumption prediction, etc.) the system can adjust 
different parameters for holding the required safety constraints. 

 Environmental: The interaction with the environment has a fundamental role as 
the driving activities are influenced by the environment (e.g., traffic jams, weather 
conditions, etc.). The system shall monitor the environment to adapt the current 
route based on the current and predicted conditions. 

 Human: The driver has the final decision about the proposed routes given by the 
demonstrator. Such routes could take into consideration driver’s history and/or 
agenda to provide personalized routes adapted to his/her profile. Moreover, the 

demonstrator could monitor the driver health to adapt the route if the driver is 
tired or want to stop at an unplanned location for instance. 

To achieve this adaptivity, the smart travelling use case will exploit the MECA tool to 
perform monitoring of the various levels and trigger the adaptive behaviors. To obtain 
information from the driver and from the system (car), MECA will be integrated with 
SCANeR for the demonstration. In the case of the environmental status, interfacing with 
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map providers and weather forecast services will be done. For performing the route 
planning, a specific decision module will be implemented for this study case, which will 
obtain information from map providers, obtaining a set of potential routes. These routes, 

including information of in-route charging poles, will be supplied to the DynAA tool. 
Using that information, DynAA performs a simulation based on the battery model, 
discarding those routes that cannot be completed and providing a set of itineraries which 
include charging stops (if required). MECA will filter and rank (based on user 

preferences) these itineraries, enabling the user to choose one. Then, during driving, 
MECA sets up route monitoring regarding the user and car status, meanwhile DynAA 
performs battery monitoring and simulation in the loop to ensure that the battery 
performs according to the predictions. 
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5. Conclusions 

This deliverable has reported the final progress of Task 4.4 "System Self-Adaptation". In 
terms of the CERBERO operational objectives detailed in the Table 1 "CERBERO 
Operational Objectives" of the CERBERO project sealed proposal, Task 4.4 has 
contributed primarily to the following objectives: 

 

 CH1.2 - Provide a comprehensive framework, customizable upon the UC needs, 
extending and making interoperable a large set of tools.  

o On this challenge, T4.4 has merged highly customizable tools into an 
implementation of CERBERO adaptation strategies, compatible with a 
large set of platforms and with a large set of stream processing 
applications representative of the ones present in use cases. 

 CH1.1 - Provide reusable Libraries of Key Performance Indicators (KPIs), Cross-
Layer Models and Adaptivity support.  

o On this challenge, T4.4 has built the adaptivity support and KPI retrieval 
facilities necessary to the adaptation loop, as well as models to extract 
KPIs from indirect hardware measurements. 

 CH2.2 - Reduce by 50% the design efforts required to build a CPS of a given 
performance. 

o On this challenge, T4.4 has provided adaptation technologies that 
automate the generation of complex hardware behaviors, strongly saving 
design efforts when building an adaptable system. 

 CH2.3 - Reduce by 50% cost of maintenance. 
o On this challenge, T4.4 has implemented a technology capable of strongly 

modifying the processing of a system to adapt to system modifications, to 
environment modifications, or to user commands autonomously. 

 CH1.3 - Reduce by 30% the energy consumed by a fully CERBERO compliant 
CPS or CPSoS, while maintaining its performance. 

o On this challenge, T4.4 has aggregated a set of reconfiguration 
technologies offering hardware and software customization to the 
application, and capable of large energy savings through specialization. 

As an updated version of Deliverable D4.4, this document has explained how the 
CERBERO M15-M30 activities have built the CERBERO self-adaptation advanced 

technology that combines monitoring and reconfiguration features, as well as hardware-
software coordinated adaptations and application-level adaptation. This document shows 
that the plan provided for in Deliverable D4.4 has been followed and that the tool 
integration efforts have conducted to the implementation of the CERBERO self-
adaptation management strategies presented in Deliverable D4.1. 
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