
Information and Communication Technologies (ICT)

Programme

Project N
o
: H2020-ICT-2016-1-732105

D4.2: Self-adaptation Manager

Lead Beneficiary: INSA

Workpackage: WP4

Date: 30/06/2019

Distribution - Confidentiality: Public

Abstract: This document presents an update of the tools integration activities, conducted

for building the CERBERO self-adaptation management. It focuses on the integration

plan of the CPS and CPSoS adaptation managing solutions.

© 2019 CERBERO Consortium, All Rights Reserved.

Ref. Ares(2019)4139807 - 30/06/2019

H2020-ICT-2016-1-732105 - CERBERO

WP4 – D4.2: Self-adaptation Manager

Page 2 of 33

Disclaimer

This document may contain material that is copyright of certain CERBERO beneficiaries,

and may not be reproduced or copied without permission. All CERBERO consortium
partners have agreed to the full publication of this document. The commercial use of any
information contained in this document may require a license from the proprietor of that
information.

The CERBERO Consortium is the following:

Num. Beneficiary name Acronym Country

1 (Coord.) IBM Israel – Science and Technology LTD IBM IL

2 Università degli Studi di Sassari UniSS IT

3 Thales Alenia Space Espana, SA TASE ES

4 Università degli Studi di Cagliari UniCA IT

5
Institut National des Sciences Appliquees de
Rennes

INSA FR

6 Universidad Politecnica de Madrid UPM ES

7 Università della Svizzera Italiana USI CH

8 Abinsula SRL AI IT

9 Ambiesense LTD AS UK

10
Nederlandse Organisatie Voor Toegepast
Natuurwetenschappelijk Ondeerzoek TNO

TNO NL

11 Science and Technology S&T NL

12 Centro Ricerche FIAT CRF IT

For the CERBERO Consortium, please see the http://cerbero-h2020.eu web-site.

Except as otherwise expressly provided, the information in this document is provided by

CERBERO to members "as is" without warranty of any kind, expressed, implied or
statutory, including but not limited to any implied warranties of merchantability, fitness
for a particular purpose and non infringement of third party’s rights.

CERBERO shall not be liable for any direct, indirect, incidental, special or consequential
damages of any kind or nature whatsoever (including, without limitation, any damages
arising from loss of use or lost business, revenue, profits, data or goodwill) arising in
connection with any infringement claims by third parties or the specification, whether in

an action in contract, tort, strict liability, negligence, or any other theory, even if advised
of the possibility of such damages.

The technology disclosed herein may be protected by one or more patents, copyrights,
trademarks and/or trade secrets owned by or licensed to CERBERO Partners. The
partners reserve all rights with respect to such technology and related materials. Any use

of the protected technology and related material beyond the terms of the License without
the prior written consent of CERBERO is prohibited.

http://cerbero-h2020.eu/

H2020-ICT-2016-1-732105 - CERBERO

WP4 – D4.2: Self-adaptation Manager

Page 3 of 33

Document Authors

The following list of authors reflects the major contribution to the writing of the
document.

Name(s) Organization Acronym

Maxime Pelcat INSA

Julio Oliveira TNO

Claudio Rubattu UniSS/INSA

Carlo Sau UniCA

Tiziana Fanni UniCA

Leonardo Suriano UPM

Daniel Madroñal UPM

Katiuscia Zedda AI

Leszek Kaliciak AS

Hans Myrhaug AS

Ayse Goker AS

Stuart Watt AS

Michael Masin IBM

Pablo Sanchez de Rojas Mendez TASE

Francesco Regazzoni USI

The list of authors does not imply any claim of ownership on the Intellectual Properties described
in this document. The authors and the publishers make no expressed or implied warranty of any

kind and assume no responsibilities for errors or omissions. No liability is assumed for incidental

or consequential damages in connection with or arising out of the use of the information

contained in this document.

Document Revision History

Date Ver. Contributor (Beneficiary) Summary of main changes

2019.05.06 0.4 Maxime Pelcat (INSA) Table of content draft, Ack by
partners.

2019.05.23 0.5 Maxime Pelcat (INSA) Individual invitations to edit.

2019.05.31 0.6 Maxime Pelcat (INSA) Integration of sections by
UNICA, UNISS, UPM, and TNO

2019.06.11 0.9 Maxime Pelcat (INSA) Integration of sections by other
partners.

H2020-ICT-2016-1-732105 - CERBERO

WP4 – D4.2: Self-adaptation Manager

Page 4 of 33

2019.06.12 1.0 Maxime Pelcat (INSA) Finalization of a version for
review.

2019.06.26 1.1 Maxime Pelcat (INSA) Integration of reviews by F.
Palumbo and A. Goker.

H2020-ICT-2016-1-732105 - CERBERO

WP4 – D4.2: Self-adaptation Manager

Page 5 of 33

Table of contents

1. Executive Summary... 6
1.1. Structure of the Document .. 6
1.2. Related Documents ... 6
1.3. Related CERBERO Requirements.. 6

2. M30 Progress w.r.t. Self-Adaptation Manager Integration Plan 8
2.1. Integration Activity (1): DynAA, SCANeR & MECA...10
2.2. Integration Activity (2): Papify & SPIDER..12
2.3. Integration Activity (3): SPIDER & MDC ..16
2.4. Integration Activity (4): MDC & CAPH ..18
2.5. Integration Activity (5): MDC & Papify & ARTICo 3 ...19

3. CERBERO Framework-Level Integration to Support the CERBERO Self-
Adaptation Strategy ... 25

3.1. Integration of CPS and CPSoS Multi-Layer Strategies..25
3.2. Novelties on Assessing CERBERO Adaptivity at Design Time through
Mathematical Programming ..26
3.3. Novelties on Enhancing CERBERO Adaptive Runtime Security and Reliability
 27

4. Applicability of the CERBERO Self-Adaptation Capabilities to Use Cases .. 28
4.1. Planetary Exploration (PE) ...28
4.2. Ocean Monitoring (OM)...29
4.3. Smart Travelling (ST)...30

5. Conclusions ... 32

6. References ... 33

H2020-ICT-2016-1-732105 - CERBERO

WP4 – D4.2: Self-adaptation Manager

Page 6 of 33

1. Executive Summary

This document is an update of D4.4, detailing the status of CERBERO work on self-
adaptation management at M30.

In order to speed up and ease the reading and review process the text of sections and

paragraphs that have NOT been signif icantly updated and revised are in dark gray. Sections

that have been deeply updated and revised are written in black.

1.1. Structure of the Document

While Section 2 relates advances since M15 on the different tool-to-tool integrations,
Section 3 focuses on adaptation framework integration as a whole. Section 4 gives
updates on the applicability of the CERBERO self-adaptation capabilities to the
CERBERO use cases. Finally, Section 5 concludes on the built self-adaptation
framework.

1.2. Related Documents

Deliverable D4.4 (M15) has detailed the rationale for the selected tools and the
integration activities conducted within the CERBERO project in order to support self-
adaptation in the contexts of CERBERO use cases. This update aims at explaining the

actions conducted since M15 and at comparing them to the initial plan. The presented
tool integration activities follow the integration methodology presented in D5.5.

Deliverable D2.1 has defined the Key Performance Indicators (KPIs) to be observed in
the CERBERO use cases. The technologies presented in this document, while aiming at a
generic adaptation support of applicative and architectural modifications, target primarily
the KPIs listed in D2.1.

Deliverable D4.1 (M30) has described the different multi-layer adaptation strategies of
the project. The CERBERO approach for self-adaptation has also been compared in
Deliverable D4.4 to the state-of-the-art of system adaptation management. This document
complements D4.1 by explaining how tool-to-tool and multi-tool integrations are
conducted in order to support these adaptation strategies.

Deliverable D5.6 and its update D5.2 present the features of individual tools in the
CERBERO framework, including design-time and run-time tools. This document
concentrates on run-time tools and focuses on their integration. For more details on
design-time tools and their integration, please refer to Deliverable D5.2.

1.3. Related CERBERO Requirements

Deliverable D2.7 of the CERBERO project defines a list of CERBERO Technical
Requirements (CTRs) the project should achieve. Each of them is referenced with a

H2020-ICT-2016-1-732105 - CERBERO

WP4 – D4.2: Self-adaptation Manager

Page 7 of 33

unique identifier ranging from 0001 to 0020. The self-adaptation manager integration
activities described in the current document address 6 CTRs, as described in Table 1.

Table 1: CERBERO Technical Requirements driving self-adaptation manager integration activities.

CTR
id

CTR Description Link with the D4.2 document on Self-Adaptation
Manager

0001 CERBERO framework SHOULD
increase the level of abstraction at least
by one for HW/SW co-design and for
System Level Design.

The integration of the CERBERO self-adaptation tool
chain increases the design level of abstraction by
automating tasks that, in state-of-the-art systems, are
manually conducted, including e.g. HW/SW co-design,

coordination of environment, system and human, and
reconfigurability.

0003 CERBERO framework SHOULD
provide incremental prototyping
capabilities for HW/SW co-design.

The CERBERO self-adaptation managing framework
aims at helping the designer to build fast HW/SW
hybrid and heterogeneous prototypes with adaptation

capabilities.

0006 CERBERO framework SHOULD ensure
energy efficient and dependable HW/SW
co-design using cross-layer runtime
adaptation of reconfigurable HW.

Through system and environment monitoring, and self-
adaptation, combined with SW and HW
reconfiguration, the CERBERO self-adaptation manager
provides a framework for raising energy efficiency and

dependability.

0009 CERBERO SHALL develop integration
methodology and framework.

The adaptation infrastructure and tools are part of the
CERBERO framework.

0016 CERBERO tools SHOULD be tested vs.

state-of-the-art.

The CERBERO integrated tools are tested vs. state-of-

the-art solutions. The built self-adaptation manager
brings unique design automation features, as explained
in the following sections and in Deliverable D4.1.

0019 CERBERO technology providers
SHALL coordinate technical support for

their tools with use case engineers.

Use cases are aligned with the CERBERO proposed
technology. Live and online tutorials are proposed to

synchronize partners.

0020 CERBERO framework SHALL provide
methodology and tools for development

of adaptive applications.

This document develops the tooling part of CERBERO
adaptive systems development.

H2020-ICT-2016-1-732105 - CERBERO

WP4 – D4.2: Self-adaptation Manager

Page 8 of 33

2. M30 Progress w.r.t. Self-Adaptation Manager Integration

Plan

Figure 1 and Figure 2 recall the tool integration plan stated in D4.4. Five parallel
activities have been conducted within the consortium to build the CERBERO self-
adaptation management, numbered (1) to (5) hereafter. Self-adaptation is a combination
of awareness and reconfiguration. To implement self-adaptation, the CERBERO self-

adaptation manager relies on of four types of elements: fabrics, monitors, managers and
engines. While monitors provide sensing capabilities to the decision process conducted
by managers, engines provide processing reconfiguration capabilities at different levels.
Fabrics are either software or hardware facilities that implement processing,

reconfiguration, or sensing operations. The details of the CERBERO multi-layer runtime
adaptation strategies are explained in Deliverable D4.1.

The CERBERO integration activities aim at the management of adaptivity at two
different scales, as depicted in Figure 1 and explained in Deliverable D4.1:

- At the Cyber-Physical System of Systems level (CPSoS),
- At the Cyber-Physical System level (CPS).

The two scales of adaptivity can be combined for the study of a single system. The
adaptation technologies built in CERBERO are all generic to the different triggers of
adaptation (e.g. user or environment related), and cover software, hardware, and sensor
fabrics.

 Figure 1: Overview of the main runtime tools integration activities.

The next sections will refer to the integration plan displayed in Figure 2 and stated at
M15 in D4.4. The main objective of this document is to present an update of this plan at
M30.

H2020-ICT-2016-1-732105 - CERBERO

WP4 – D4.2: Self-adaptation Manager

Page 9 of 33

M
1

3

M
1

4

M
1

5

M
1

6

M
1

7

M
1

8

M
1

9

M
2

0

M
2

1

M
2

2

M
2

3

M
2

4

M
2

5

M
2

6

M
2

7

M
2

8

M
2

9

M
3

0

(1) DynAA, SCANeR & MECA Phase 1 Phase 2

(2) Papify & SPIDER Phase 1 Phase 2 Phase 3

(3) SPIDER & MDC Phase 1 Phase 2 Phase 3

(4) MDC & CAPH Phase 1 Phase 2 Phase 3

(5) MDC & Papify & ARTICo3 Phase 1 Phase 2 Phase 3

Figure 2: Self-Adaptation Manager Plan for Integration

The following list details the different planned phases, as displayed in D4.4:

 (1) DynAA, SCANeR & MECA Integration
o Phase 1

 Detail one reference scenario, set up test environment with

SCANeR, MECA and DyNAA, data fusion and synchronization,
 Define and implement tool interfaces, integration verification.

o Phase 2
 Detail scenarios, develop and integrate CERBERO intermediate

format, add AOW for optimization of route planning
 use additional CERBERO tools (like Preesm/SPIDER and

Verification tool) to optimize / validate solution

 (2) Papify & SPIDER Integration

o Phase 1
 automatically insert Papify eventLib function calls within SPIDER

jobs and Local Runtimes (LRT),

o Phase 2
 derive generalized models to translate LRT (Papify Parameters)

measurements into relevant CERBERO KPIs,
o Phase 3

 enable system self-adaptation, including KPI estimated values as
inputs to the Global Runtime Self-Adaptation manager.

 (3) SPIDER & MDC Integration
o Phase 1

 Integrate MDC & SPIDER by combining software and hardware
adaptation based on varying application parameters,

o Phase 2
 verify this approach with respect to relevant CERBERO KPIs,

o Phase 3
 derive a proof of concept of the proposed approach in the context

of CERBERO use case scenarios.

H2020-ICT-2016-1-732105 - CERBERO

WP4 – D4.2: Self-adaptation Manager

Page 10 of 33

 (4) MDC & CAPH Integration
o Phase 1

 complete, debug and assess the MDC & CAPH integration for
coarse grain adaptive HW,

o Phase 2
 verify this approach with respect to relevant CERBERO KPIs

o Phase 3
 derive a proof of concept of the proposed approach in the context

of the CERBERO use case scenarios

 (5) MDC & Papify & ARTICo3 Integration

o Phase 1
 provide a unified hardware/software monitoring interface using

Papify,
 extend MDC generation code, to generate ARTICo3 compliant

CGR accelerators,
o Phase 2

 provide an automated instrumentation methodology for
heterogeneous hardware/software setups

 experiment with multi-grain adaptivity, proposing different
reconfiguration strategies according to relevant CERBERO KPIs

o Phase 3
 derive generalized models to translate heterogeneous

hardware/software measurements into relevant CERBERO KPIs
and enable system self-adaptation, providing KPIs to the
CERBERO Self-Adaptation Manager.

 derive a proof of concept of the proposed approaches in the context
of the CERBERO use case scenarios

Next sections detail the tool integration activities conducted until M30 for building

CERBERO self-adaptation management, and progress w.r.t. the plan drawn in D4.4
(M15).

2.1. Integration Activity (1): DynAA, SCANeR & MECA

This integration activity brings together two simulation tools, DynAA and SCANeR, and
a decision tool, MECA, to adapt at application level the system to a large set of triggers.

In Figure 3, a schematic overview is given of the DynAA, SCANeR and MECA tools

enhanced within the CERBERO project. As an application-level tool chain, the links
between DynAA, SCANeR and MECA are tailored to the Smart Travelling use case.
MECA receives monitoring data from a vehicle (via the SCANeR simulator), sensor data
from the system environment (via DynAA) or user input from a driver (indicating for

example a new destination). Based on the data received, MECA determines if adaptation
is required.

The adaptation itself can be, for example:

H2020-ICT-2016-1-732105 - CERBERO

WP4 – D4.2: Self-adaptation Manager

Page 11 of 33

 starting an investigation of alternative routes, in case planned charging poles are
found to be out of service. This is an adaptation triggered by the changes in the

environment;

 proposing advised routes based on impact analysis performed on DynAA, or
triggered by route request from driver. This is an adaptation triggered by the user;
or

 advising the user to reduce energy consumption by reducing or switching off the
air- conditioning. This happens in case the battery charge is found to be critically
low. Such adaptation is triggered by the system state.

MECA allows for some self-adaptation: the adaption is either triggered by the user
(through the UI), or by modifications of the system’s environment and detection of
potential problems (e.g. limited availability of charging poles). The test of self-adaptation

based on environment is done via manipulating charging-pole status (force out of
service), which triggers MECA to re-plan. Environmental changes such as traffic jams
and weather conditions are currently not simulated.

Figure 3: Schematic overview of MECA, DynAA, SCANeR, and Abinsula HMI interworking.

The adaptivity is controlled by functions developed on the MECA tool, which possesses
basic functionality for storing knowledge, monitor, and trigger adaptation on received
data, as well as generation or adaptation of travelling plans.

Current state of integration:

There are no significant modifications to the integration plan, nor to the adaptation
mechanisms in the actual demonstration setup. All continue to work as depicted in the
picture. At the current integration state, all major integration activities between the
different components have been completed. We are currently refining and extending the

interfaces with more capabilities. For example , MECA will report to DynAA the battery

H2020-ICT-2016-1-732105 - CERBERO

WP4 – D4.2: Self-adaptation Manager

Page 12 of 33

state-of-charge read from SCANeR. This information is used to improve the DynAA
routing analysis.

Specifically, TNO included advanced simulation library versions in DynAA for the
Battery and Motor models. They will be used in future demonstrators. Implementation

using DynAA system-in-the-loop version for this part will be an optional extension for
the final demonstration in December 2019.

Furthermore, a Human-Machine user Interface (HMI) was added between SCANeR and
MECA to allow for real time car monitoring on the map at the same time reduce the
previous number of interfaces between the modules. The Human Machine Interface is
implemented and provided by Abinsula.

2.2. Integration Activity (2): Papify & SPIDER

Current state of integration:

The Papify toolbox performs automatic PAPI-based instrumentation of dynamic dataflow
applications. This toolbox is the result of combining Papify with the dataflow Y-chart

based design framework, PREESM, and its counterpart run-time reconfiguration
manager, SPIDER. The built toolbox takes the form of an automatic code generation for
static and dynamic applications, a dedicated library to manage run-time monitoring and
two User Interfaces (UIs) to ease both the configuration and the analysis of the
monitoring.

Phase 1 of integration is finished, i.e. Papify eventLib function calls are automatically
inserted within SPIDER jobs and Local Runtimes (LRT). Additionally, the support for
monitoring heterogeneous architectures has been included.

For Phase 2, four goals have been defined to derive generalized models to translate LRT
(Papify Parameters) measurements into a relevant KPI. A bottom-up approach has been

adopted, starting from implementation and measurements to build a relevant mode l.
System energy consumption has been chosen as the main target KPI, as it is important to
both Planetary Exploration and Ocean Monitoring use cases (cf. Deliverable D2.1). A
Massively Parallel Processor Array (MPPA-256-N) platform has been selected as a

challenging experimental platform. This platform gathers 16 clusters with 16 cores within
each of them, i.e., there are 256 processors working in parallel.

The four successive conducted activities have been:

1. Analyze the different ways to report instantaneous power consumption of the
platform for system adaptation

Two different mechanisms have been studied: 1) to use an application called k1-power,
which has a high sample rate but low precision; 2) to use a multimeter plugged on the

power supply of the platform, which has a low sample rate but high voltage resolution.
Finally, it has been decided to develop a custom monitor based on accessing a sensor (not
available from k1-power) and to correct its low precision by applying a correction

H2020-ICT-2016-1-732105 - CERBERO

WP4 – D4.2: Self-adaptation Manager

Page 13 of 33

function. This correction function has been obtained by characterizing the current
measured by the sensor and comparing it with the one measured with the multimeter.
Finally, a linear regression technique has been applied to obtain the correction function.
With this new methodology, both a high sample rate and a high precision are reached.

2. Include Performance Monitoring Counters (PMCs), and test KPI retrieval on a
relevant embedded platform

As a preliminary step, the available monitoring infrastructure already existing w ithin the
platform has been analyzed. During this analysis it has been stated that the infrastructure
was complete enough to be used to characterize the different resources of the platform, as

each of the 256 cores of the platform has its own counters and all can be monitored
simultaneously. As a second step, PAPI, the standard monitoring library has been ported
to the platform. This library provides access to the PMCs and the different events that
occur in the processor during the execution of applications. Additionally, this library is

divided into two layers: the lower one is architecture-specific and it is aimed to deal with
the peculiarities of each platform, while the upper layer aims at transparently managing
the low level and to provide the user with an abstraction layer to uniformly access to the
PMCs of any of the employed platforms. The work done supports the low level of both

the second and third generations of the MPPA architecture, where the second generation
is the one previously referred as MPPA-256-N (Bostan version), while the third one will
be called Coolidge (available soon).

3. Create a benchmark for testing Papify/Spider integration

During this step, a set of stress applications has been built, where the resources of the
platform (cache memory, communication resources, floating point units, etc) are stressed

differently. In this sense, the benchmark has been divided in two: communication stress
and processing stress.

The former is composed of applications where the different clusters (16) existing within
the platform exchange data with other clusters or with the Input/Output (I/O) subsystem.
In these tests, 4 communication situations may happen:

a. Cluster sending (or receiving) data to (from) another cluster. In this test the shared

memory (SMEM) existing within the clusters will be both read to and written
from.

b. Cluster sending data to the I/O subsystem. In this test the SMEM will be read
from while the DDR memory existing in the I/O will be written to.

c. Cluster receiving data from the I/O subsystem. In this test the SMEM will be
written to while the DDR memory will be read from.

d. I/O subsystem sending data to itself. In this test the DDR memory will be both
read from and written to. This test is based on stressing the computation resources
inside each cluster.

 Each of the tests composing this part of the benchmark aims at stressing the computation

resources differently. For example, there are tests focused on stressing the instructions
executions, the cache memory usage, or performing matrix multiplications to stress the
whole system.

H2020-ICT-2016-1-732105 - CERBERO

WP4 – D4.2: Self-adaptation Manager

Page 14 of 33

4. Demonstrate the use of the built Model of Architecture in SPIDER/Papify

The objective of this part is to develop a Linear System-Level Architecture (LSLA)
Model of Architecture (MoA) of the MPPA-256-N platform. This model is characterized
for isolating the communication and the processing from each other. Consequently, the

benchmark developed has been used to obtain linear models representing each part of the
architecture. Additionally, the technique used to extract the equations that characterize
the resources, again, has been the linear regression.

For the communication part, it has been decided to use the size of the data token
transmitted to compute the energy employed during its transmission. To properly

characterize this part of the platform, the source and the destination of the token are taken
into account, as using the DDR memory has been proven to be 10 times more energy
consuming than using the SMEM of the clusters. Figure 4 gathers the results obta ined for
this part of the model. As it can be seen, the differences in the energy consumption when
using (or not) the DDR memory are clear and properly reflected in the estimation.

Figure 4 - Communication model of the MPPA.

For the computational part, the different workloads of the tests composing the stress
benchmark have been characterized using the events extracted through the PMCs and the

PAPI library. By doing so, a linear and cumulative model has been extracted and, as a
first approach, it has been validated with some samples of the benchmark obtained an
average accuracy of 85%. Figure 5 depicts the estimation for the computation when
stressing the MPPA-256 board with different workloads and different type of
computation.

H2020-ICT-2016-1-732105 - CERBERO

WP4 – D4.2: Self-adaptation Manager

Page 15 of 33

Figure 5 - Computational model of the MPPA.

For phase 3, to enable system self-adaptation based on internal system state triggers,
there is one component of SPIDER that suffers the deepest change: the mapping
algorithm. Using multi-objective optimization, both timing and energy can be taken into
account, considering: 1) a performance objective (e.g. a minimum of X fps), 2) the static

energy consumed by the system (the more PEs are used, the more static energy will have
the system), 3) the communication energy cost (for example, on the MPPA, sending to
the I/O (represented as one type of PE) costs more than sending data between clusters
(represented as another type of PE) and 4) the dynamic energy consumption (one actor

could consume different amount of energy depending on the type of PE executing the
actor). A multi-objective optimization algorithm has been assessed by simulation and
offers promising results on trading-off between time and energy, validating the proposed
multi-KPI API an efficient way to feed self-adaptation.

Progress w.r.t. the initial plan:

 Phase 1: automatically insert Papify eventLib function calls within SPIDER jobs

and Local Runtimes (LRT): this work has been conducted w.r.t. the plan, and the
obtained support is generic to many types of platforms,

 Phase 2: derive generalized models to translate LRT (Papify Parameters)

measurements into relevant CERBERO KPIs: this work has been conducted w.r.t.

the plan. Model building has been conducted on many-core energy estimation

models and experimented on a complex MPPA-256-N platform.

 Phase 3 : enable system self-adaptation, including KPI estimated values as inputs

to the Global Runtime Self-Adaptation manager: this work has been conducted

w.r.t. the plan. The Papify time PMC interface combined with the precise energy

H2020-ICT-2016-1-732105 - CERBERO

WP4 – D4.2: Self-adaptation Manager

Page 16 of 33

KPI model offer the appropriate input for multi-objective optimization algorithms

in the Global Runtime Self-Adaptation manager.

Maturity of the built self-adaptation management:

The integration has led to Papify being tightly integrated to SPIDER and to both PMC

and model-based KPIs being extractable from an execution. Manual steps are still

required for using model-based adaptation while PMC-based adaptation is fully

automated.

2.3. Integration Activity (3): SPIDER & MDC

Current state of integration:

The integration activity between the SPIDER dataflow-based runtime manager and the

MDC dataflow-to-hardware suite has been conducted in order to combine Coarse-Grain

Reconfigurable (CGR) hardware accelerators with multi-core software architectures.

Both tools are based on a dataflow Model of Computation (MoC, cf. deliverable D3.3)

that can be used to separate temporal/parallelism problems from functional problems in

hardware design. Moreover, the modularity of the dataflow representations favors a

natural splitting of the computation into different blocks without side effects, making it

possible to automatically map these blocks onto heterogeneous software and hardware

Processing Elements (PEs). Thus, the idea behind this SPIDER-MDC integration is to

leverage on a software-hardware datapath design flow and to develop and manage

dataflow-based autonomous reconfigurable systems, as requested by the CERBERO

model-based approach to system design.

A proof of concept of the proposed approach has been derived and was fully functional at

M24. As a first step, the P iSDF-based description of an edge detection application, that

implies one actor with reconfigurable workloads requiring hardware acceleration with

low reconfiguration overheads, has been implemented. In a second step, starting from the

description of two single kernels (Sobel and Roberts filtering) and using the CAPH

language to generate hardware, a Coarse-Grained Reconfigurable accelerator using MDC

has been generated. One instance of such accelerator has been deployed onto an FPGA

device implemented in a system on chip including 2 ARM processors (Xilinx Zynq-7000

ARM/FPGA SoC). In this setup, the SPIDER runtime manager schedules and maps at

runtime the whole application graph. It sends the execution orders to different slave

(processors and accelerator) transparently. The user can trigger the hardware

reconfiguration using switches present on the PYNQ-Z1 board.

SPIDER-MDC integration requires the decision-making code of SPIDER to have

information on the performance of the execution to decide mapping, scheduling and

memory management (among others). This information is either gathered reactively

H2020-ICT-2016-1-732105 - CERBERO

WP4 – D4.2: Self-adaptation Manager

Page 17 of 33

(from execution of previous iterations of the algorithm by e.g. Papify) or predictively

(from a model of future performances). The capacity to predict performances is

particularly important in the context of SPIDER-MDC where parameters may change

constantly and a very limited and imprecise knowledge may be extracted from the study

of previous code iterations. As a consequence, a study on latency-based adaptation

methods has been conducted within the SPIDER-MDC integration activities. This study

complements the energy-oriented study presented in the previous section and necessity

has arisen from the need of real-time systems to act predictively. The idea of this study is

to build and train simple Models of Architecture (MoA), executable at run-time, to

predict the full hardware/software performance of SPIDER-MDC based on limited

information on the platform and algorithm. To handle the complete heterogeneous

system, the runtime system can then use either the MoA predicted latency or the Papify

measured latency. To build the MoA, it is necessary to retrieve a certain “application

activity” related to the latency of the I/O paths that are present in the application graph.

Indeed, only one path (i.e. one chain of processing actors and communications) causes

the latency between arrival of data and production of results, even if data and task

parallelisms create many concurrent paths. Once a model of application activity is built, a

training phase has to be performed with multiple applications in order to get a model of

the architecture that is capable of providing latency estimation valid for several

applications. This model should be usable from limited application and architecture

information. The objective of this MoA study is to offer early information for SPIDER to

decide the adaptation strategy starting from a latency model for the chosen hardware

solution.

As the connection to PREESM and SPIDER have a strong impact on the internal
behavior of MDC, the tool-to-tool connection is also discussed extensively in Deliverable
D5.2.

Progress w.r.t. the initial plan:

The implementation is quite aligned with respect to the initial plan:

 Phase 1 (Integrate MDC & SPIDER by combining software and hardware
adaptation based on varying application parameters) has been

implemented and tested on a proof of concept application;

 Phase 2 (verify this approach with respect to relevant CERBERO KPIs)
has been conducted, focusing on the processing latency KPI that is
essential to the different use cases. Indeed, deliverable D2.1 “CERBERO

Scenarios Description” shows that latency (also called “response time”) is
central to CERBERO use cases. The built model of architecture is defined
to be very lightweight and support adaptivity at runtime with respect to the
different configurations of the system;

 Phase 3 (derive a proof of concept of the proposed approach in the context
of CERBERO use case scenarios). Proof-of-concept algorithms (SIFT
keypoint detector, and stereo matching) have been implemented and used

H2020-ICT-2016-1-732105 - CERBERO

WP4 – D4.2: Self-adaptation Manager

Page 18 of 33

to train and test the built the model. These algorithms are coherent with
the contexts of the PE and OM use cases.

Maturity of the built self-adaptation management:

The combination of the MDC and SPIDER tools has been achieved and allows a user to
switch between hardware and software tasks at runtime through the rescheduling and the
remapping the application onto the proper processing elements depending on the

parameters. The new Model of Architecture offers a valuable input to the self-adaptation
loop, making it possible to schedule based on predicted future performance. The use of
the built MoA in SPIDER still requires manual steps while user-triggered adaption is
fully automated.

2.4. Integration Activity (4): MDC & CAPH

CAPH is external to the CERBERO consortium but its integration has been a strong asset
for the support of coarse grain reconfiguration within the CERBERO engines. Indeed, the
CAPH compiler provide advanced constructs to build and manipulate complex data-paths
to which MDC can insert coarse grain reconfiguration support.

Current state of integration:

The integration between MDC and CAPH was already in a good shape at M15: the tools
were connected together by providing CAPH with a RVC-CAL backend, in order to
generate also dataflow models compliant with the MDC supported ones; and by
providing MDC with a hardware communication protocol generalization, so that it has

been made able to manipulate any kind of hardware actor, generated either manually or
by means of high level synthesis tools like CAPH.

Going from M15 to M30, only refinements and tests have been applied to the integration
between MDC and CAPH. In particular, besides debugging the integration, on the MDC
side the protocol generalization has been aligned with the MDC co-processor generator

additional feature (see D5.2). Moreover, the integration has been validated on a real test
case involving several versions of interpolation filters adopted in latest video coding
algorithms (HEVC) for motion estimation/compensation purposes. The MDC/CAPH
integrated flow has been compared with commercial solutions aiming at the development

of reconfigurable HEVC interpolation filters, resulting in more efficient and predictable
(in terms of latency, one of the CERBERO KPIs) solutions [RUBATTU 2018].

Progress w.r.t. the initial plan:

With respect to the initial plan:

 Phase 1 (complete, debug and assess the MDC & CAPH integration for
coarse grain adaptive HW) has been completed;

 Phase 2 (verify this approach with respect to relevant CERBERO KPIs)

has been done, since the CERBERO KPI that is currently relevant for the
test case (that is latency) has been verified with the integrated MDC and
CAPH approach;

H2020-ICT-2016-1-732105 - CERBERO

WP4 – D4.2: Self-adaptation Manager

Page 19 of 33

 Phase 3 (derive a proof of concept of the proposed approach in the context
of the CERBERO use case scenarios) has been partially done, since

HEVC coding is an interesting test case transversal for all the CERBERO
use cases, especially the ones where environmental monitoring is
necessary. Even if they can be possible topics of extensions for the
CERBERO use cases, video coding aspects will not be investigated during
the CERBERO project.

Maturity of the built self-adaptation management:

This integration is not properly part of the self-adaptation management, but serves as a

design time support to complete the automation of the adaptable hardware accelerators
design flow.

2.5. Integration Activity (5): MDC & Papify & ARTICo 3

The planned Papify-MDC-ARTICo
3
 integration aimed at providing monitoring support to

HW accelerators. This integration activity has built a tightly connected set of

technologies on hardware reconfiguration. A first step in this work was done by the
preliminary Papify-ARTICo

3
 integration [SURIANO 2018]. This integration provided a

custom approach that used Papify for reading the hardware monitors available in the
ARTICo

3
 slots.

The following steps have been necessary to complete the integration:

 Integrating MDC and ARTICo
3
 to provide support for a multi-grain

reconfigurable approach, capable of managing both Coarse-Grain Reconfiguration
(CGR) and Dynamic Partial Reconfiguration (DPR). This integration required the
ARTICo

3
 toolchain to be extended to take into consideration both the memory

banks and the configuration registers in the slots, and MDC code generation to be

modified to provide processor-coprocessor systems compliant with the ARTICo
3

register/memory structure (i.e. embedding the custom logic in the ARTICo
3

wrapper instead of doing it in a standard AXI4 slave template).

 Providing a generic monitoring approach for HW accelerators, suitable to provide

proper feedbacks of both MDC accelerators and ARTICo
3
 architecture, as well as

feedbacks of their combination given by the multi-grain reconfiguration. This
integration required developing a generic PAPI-based approach for monitoring

the HW accelerators, that could be valid for both MDC-generated accelerators
(in which the number and kind of events may change according to the profiled
application), and for ARTICo

3
 accelerators (in which the number of slots may

vary according to the user-requested level of parallelism and to the available
board).

Current state of integration:

The MDC-ARTICo
3
 integration has been successfully achieved according to the plans.

Figure 6 depicts the integrated multi-grain toolflow. Applications to be accelerated are
defined as dataflow specifications and merged in an ARTICo3-compliant CGR kernel.

H2020-ICT-2016-1-732105 - CERBERO

WP4 – D4.2: Self-adaptation Manager

Page 20 of 33

Then ARTICo
3
 toolchain processes this kernel to embed it in the HW architecture

[FANNI 2018, RODRIGUEZ 2018].

Figure 6 - Multi-grain design flow and adaptation.

The first step, offering support for monitoring DPR HW accelerators, has been conducted
in the preliminary Papify-ARTICo

3
 integration [SURIANO 2018]. In this integration a

first PAPI-ARTICo
3
 component, to be read using Papify monitors available in the

ARTICo
3
 slots, was developed. Figure 7 illustrates a schematic view of ARTICo³

infrastructure and highlights the integrated PMCs for Performance and Fault monitoring
[SURIANO 2018].

Figure 7 - ARTICo³ hardware architecture with Performance and Fault Monitors.

In order to make this monitoring support more generic, and provide a monitoring for
CGR accelerators, the integration of Papify with MDC has then been conducted
[MADRONAL 2019]. In this work, we have defined two levels of HW monitoring (see
Figure 8):

1. the accelerator-level: homogeneous for every ARTICo
3
-supported accelerator;

2. the low-level: specific to a given accelerator whose code is generated with MDC,
e.g. by profiling the bottleneck PEs internally.

H2020-ICT-2016-1-732105 - CERBERO

WP4 – D4.2: Self-adaptation Manager

Page 21 of 33

Figure 8 - HW Monitoring at two level of abstraction: (1) accelerator level; (2) low-level.

As illustrated in Figure 8 the HW monitors are accessed through the configuration
registers of the accelerator. Since the base address of the accelerator may change in

different accelerators, as well as the number and type of events to be monitored, we
developed a configurable PAPI-MDC component that is automatically configured when
the application is launched. The configuration xml file is similar to the following one:

<?xml version="1.0" encoding="UTF-8"?>

<mdcInfo>

<baseAddress>0xADDRESS</baseAddress>

<nbEvents>N</nbEvents>

<event>

<index>M</index>

<name>MDC_EVENT_NAME</name>

<desc>Event Description</desc>

</event>

</mdcInfo>

When configured through this API, the PAPI-MDC component is compliant with the

existing standard SW components and events can be naturally accessed using Papify from
a software interface to monitor the current behavior of the system.

Following the same approach to provide a consistent methodology for accessing
instrumented HW, an XML-based PAPI-ARTICo³ configuration procedure was also
designed in order to be compliant with PAPI and Papify from one side and with ARTICo

3

accelerators from the other side. The following listing shows the structure of this xml
description:

<?xml version="1.0" encoding="UTF-8"?>

<artico3Info>

 <nbEventsArtico3>N</ nbEventsArtico3 >

H2020-ICT-2016-1-732105 - CERBERO

WP4 – D4.2: Self-adaptation Manager

Page 22 of 33

 <eventArtico3>

 <index>M</index>

 <name>ARTICo3_EVENT_NAME</name>

 <desc>Event Description</desc>

 </eventArtico3>

 <nbKernels>K</nbKernels>

 <kernel>

 <kernelName>ARTICo3_KERNEL_NAME</kernelName>

 <nbEvents>N</nbEvents>

 <event>

 <index>M</index>

 <name>ARTICo3_KERNEL_EVENT_NAME</name>

 <desc>Event Description</desc>

 </event>

 </kernel>

<nbEvents>N</nbEvents>

</artico3Info>

It is worth noting that there are two different types of events:

 the generic events associated to the ARTICo³ infrastructure (always present) such
as ERRORS and CLOCK-CYCLES (as explained in [SURIANO 2018]). Other
generic events are planned to be developed for extending the monitoring
capabilities of the ARTICo³ hardware structure.

 Specific kernel events associated to hardware accelerators. These are not part of
the ARTICo³ infrastructure but, instead, are part of the internal structure of the
accelerators and can be associated, also, to MDC-specific events as well as to any
other custom event.

Regarding the second type of events, the built hardware component is compliant with
standard PAPI calls and events can be naturally accessed using Papify. Moreover,

knowing that an ARTICo³ slot can host an MDC hardware accelerator, the internal
structure of the XML file in charge of describing the events is fully compatible with the
PAPI-MDC component:

<?xml version="1.0" encoding="UTF-8"?>

<artico3Info>

 <nbEventsArtico3>N</ nbEventsArtico3 >

 < eventArtico3>

 <index>M</index>

 <name>ARTICo3_EVENT_NAME</name>

 <desc>Event Description</desc>

 </ eventArtico3>

 <nbKernels>K</nbKernels>

H2020-ICT-2016-1-732105 - CERBERO

WP4 – D4.2: Self-adaptation Manager

Page 23 of 33

 <kernel>

 <kernelName>ARTICo3_KERNEL_NAME</kernelName>

<baseAddress>0xADDRESS</baseAddress>

<nbEvents>N</nbEvents>

<event>

<index>M</index>

<name>MDC_EVENT_NAME</name>

<desc>Event Description</desc>

</event>

 </kernel>

<nbEvents>N</nbEvents>

</artico3Info>

The portion of the xml file containing the PAPI-MDC-powered accelerator description is
highlighted in red. This file is known and generated at design time because it must reflect
the hardware monitor infrastructure of the designed hardware. At runtime, the
Papify/PAPI layer is in charge of selecting and initializing only the meaningful events. In

the ARTICo
3
 architecture each DPR slot may have its own registers (in any number,

including none), as specified in the hardware project and reflected in the configuration
file.

Progress w.r.t. the initial plan:

Phase 1 of the working plan has been completed: MDC and ARTICo
3
 have been

integrated and Papify is able to provide a HW/SW monitoring interface.

The automated instrumentation methodology for heterogenous HW/SW setups,
envisioned in phase 2, has been developed for MDC and for ARTICo

3
 by

 extending the use of PAPI and Papify to every generic hardware accelerators
[SURIANO 2018],

 proposing a runtime monitoring approach for hardware accelerators based on
PAPI and Papify [MADRONAL 2019].

Within the monitoring of MDC accelerators, we have defined the accelerator-level

monitoring insertion, to keep trace of important dataflow metrics during execution, such
as the execution time, the number of input tokens and the number of output tokens.
However, low-level monitoring still requires manual steps to be used within the code
generation flow.

The multi-grain adaptivity has been demonstrated to be effective [FANNI 2018]. We

have also performed phase 3, providing PoCs of the MDC-ARTICo
3
 integration [FANNI

2018, RODRIGUEZ 2018], a PoC on the MDC-Papify integration [MADRONAL 2019]
and a PoC on the ARTICo

3
-Papify integration [SURIANO 2018].

H2020-ICT-2016-1-732105 - CERBERO

WP4 – D4.2: Self-adaptation Manager

Page 24 of 33

Maturity of the built self-adaptation management:

The different steps of integration of MDC, Papify and ARTICo
3
 are rather mature, and

have been tested on different standalone PoC applications. The feedback on the current

status of the HW execution to the SW adaptation manager (SPIDER) is less mature and

requires manual steps to feed the scheduler with hardware-related information. The

presented work opens for generalizing the models, combining measurements and models

to drive CERBERO adaptation.

H2020-ICT-2016-1-732105 - CERBERO

WP4 – D4.2: Self-adaptation Manager

Page 25 of 33

3. CERBERO Framework-Level Integration to Support the

CERBERO Self-Adaptation Strategy

This section goes beyond tooling integration and explains how the complete adaptation

framework benefits from CERBERO advances on security, mathematical programming
and from the CERBERO integration approach. The following table summarizes the state
of the integrated tools implementing the CERBERO self-adaptation strategy described in
Deliverable D4.1. It is an update of Deliverable D4.4 Table 1 and shows that the set of
integrated tools now covers the span of originally targeted adaptation capabilities.

Table 2: CERBERO Integrated tools for self-adaptation management - UPDATED.

 CERBERO

Internal

Model

ling

Optimi

zation

HW/SW

Design

Runtime

Support

In Loop

Simulation

Open

Source

DynAA Yes S S S

SCANeR No S

MECA Yes S S

SPIDER Yes S S S S

Papify Yes S S

ARTICo³ Yes S S S S

MDC Yes S S S S

CAPH No S S

Supported: S.

The next sections successively detail framework-level integration activities, mathematical

programming and security related advances and their impact on the self-adaptation

manager.

3.1. Integration of CPS and CPSoS Multi-Layer Strategies

From the previously presented integration activities, one of the key goals of CERBERO

is to produce an integration framework capable of combining and interlinking consortium

tools semantically across different tooling layers, in such a way that an advanced self-

adaptivity of the target highly-heterogeneous CPS is supported.

CERBERO integration approach, as discussed in WP5 deliverables, has progressed in

two directions: tool-to-tool direct integration (when same models and semantics were

adopted) and the definition of a middleware to provide the interconnection of the tools

together, in a layered fashion, to facilitate exchange of information and control data

between these components or subsystems and insuring that the integrated system meets

H2020-ICT-2016-1-732105 - CERBERO

WP4 – D4.2: Self-adaptation Manager

Page 26 of 33

performance and behavioural expectations. This latter is called the CERBERO

Intermediate Format (CIF), and aims at achieving easy exchange of relevant information

between all connected tools. Unlike tool-to-tool integration, CIF provides a unified

platform for model and data transformation that allows for implementing automatic

transformation capabilities. Within the CIF framework, meta-models (or schemas) of all

input and output data are defined in a declarative way, supporting the definition of

transformation processes as a mapping between corresponding schemas. Such unification

results in achieving easy integration of multiple tools having multiple views and/or

providing multiple functionalities.

Currently, the CIF integration approach has been demonstrated thought a Proof of

Concept (PoC) connection of 3 CERBERO design-time tools: PREESM – AOW –

DynAA. The purpose of the PoC has been to calculate optimized scheduling of a

software application, provided as an SDF graph, on a hardware, provided as a hardware

architecture description. The optimization can be performed with respect to several goals,

such as minimal latency, maximum throughput, and minimum energy, and subject to

different constraints, such as computation and memory capacity. At the moment there is

no support of CIF in CERBERO run-time tools but the methodology built in CIF for rich

tool inter-operability remains fully valid in the CERBERO runtime management context.

3.2. Novelties on Assessing CERBERO Adaptivity at Design Time
through Mathematical Programming

Adaptivity of CPS should be considered at design time in order to find CPS architectures

capable to adapt themselves to potential changes in environment and internal state. As

CERBERO methodology for design space exploration considers the modeling of system

and environment uncertainty at design time (please see D3.3. for more details), these

models can be used also to provide self-adaptation policies together with CPS

architecture. The basis for this technology is already included in the domain of Robust

and Stochastic optimization methods.

In CERBERO we can apply stochastic optimization during HW/SW co-design using two-
stage and multi-stage models. In two-stage models, variables of first stage are design
variables that are non-adaptive, while variables of the second stage depend on uncertainty
realizations that can be modeled by the set of possible scenarios. Thus, the optimization

result here is two-fold: on one hand, we obtain an optimal CPS architecture described by
variables from first stage and on the other hand we obtain optimal policies for each
modeled scenario. A multi-stage model is even more expressive because it considers
changes in uncertainty realizations, and therefore policies obtained from multi-stage
models can be used in order to adopt CPS for uncertainties that changes over time.

Robust optimization may provide both robust designs that require rare adaptations and
Affinely Adjustable Robust Counterpart (AARC) that provides adaptation policies.
AARC defines two kinds of decision variables: adjustable and non-adjustable. Adjustable
variables represent affine functions of uncertainty realizations. Unlike policies in

scenario-based optimization, AARC provides policies that are suitable for all possible

H2020-ICT-2016-1-732105 - CERBERO

WP4 – D4.2: Self-adaptation Manager

Page 27 of 33

uncertainty realizations, modeled by a number of uncertainty sources that defines ranges
of possible values for uncertain parameters. Moreover, robust optimization can combine
scenario-based uncertainties together with AARC in order to provide adaptation policies

that are suitable for many different real-life problems. In CERBERO we extend theory of
Robust Optimization to hybrid environments in continuous time.

Thus, appropriate modeling adaptation at design time within the CERBERO project will
lead to adaptation policies, which will be implemented at runtime, and will provide
optimal CPS adaptation to uncertain and changing environment and internal state.

3.3. Novelties on Enhancing CERBERO Adaptive Runtime
Security and Reliability

Cyber-physical systems (CPS) should work in a reliable and secure way. The
functionality needed to guarantee the secure operation of a CPS are strongly dependent
on the specific application and could vary from the simple presence of an encryption

algorithm to the request of implementing the system in way that is resistant against
physical attacks. CPS are often deployed in hostile environments and have a lifespan
usually much longer than usual consumer electronics. Furthermore, these systems should
be capable of reacting to changes in the environment. As a result, it is fundamental that

also security and reliability included in the system is adaptable. Despite being critical
however, the capability of adapting security and reliability to a desired level is st ill
generally not provided by current system design methods and, when available, is
extremely limited. Previous approaches addressing this need are developed for specific

applications and, often, they are not sufficiently general to be applied to a large variety of
systems.

In CERBERO we addressed this problem by proposing architectures that allow adapting
security functionalities to the changes of environment. The first adaptation explored in
CERBERO has been the dynamic selection of different implementat ion of the same
algorithm for trading the performance with the energy consumed by the accelerator.

In the last months we added the capability of adapting the level of security and the
amount of redundancy added to provide reliability. As discussed in D4.1, we
concentrated on AES used in GCM mode, with a MAC size of 128 bit, since this was is
the standard required by our target application. The architecture we propose is capable of

dynamically changing the size of the encryption key used (from 128 to 256) and the type
of error detection and correction used (from simple parity to complex hamming codes).
The accelerator can be enhanced to provide first order resistance against physical attacks.
These choices are triggered by monitors. Currently, the self-adapting capability of the

accelerator have been demonstrated using dedicated monitors embedded in the
accelerator and using triggers external to the accelerator (for instance, the ones coming
from the global monitors). In the next months, the technology will be demonstrated
within the CERBERO use cases.

H2020-ICT-2016-1-732105 - CERBERO

WP4 – D4.2: Self-adaptation Manager

Page 28 of 33

4. Applicability of the CERBERO Self-Adaptation

Capabilities to Use Cases

The following sections update the discussion, started in Deliverable D4.4, on the

applicability of CERBERO self-adaptation strategies within the context of the project’s
use cases.

4.1. Planetary Exploration (PE)

Since the achievements discussed in the deliverable D4.4, many advances have taken
place. The adaptation motion planning algorithm based on Nelder-Mead optimization has

already been implemented and validated through both the physical arm and a Python
simulator. The development and integration of the different CERBERO tools and
technologies have been completed on M30 and set up different capabilities at design time
and run time, i.e. automatic instrumentation for ARTICo³ accelerators, a novel MDC +
ARTICo³ integrated design toolchain and multi-grain reconfiguration, etc.

A number of layers were considered for the PE use case runtime adaptation support in
this deliverable. According to the advances previously mentioned, specific updates in
each one of these layers are outlined below:

 Triggers: information for adaptation comes from both external sensors and
internal monitors. On one hand, time-of-flight laser sensors provide

measurements of distance to physical objects, enabling the exteroceptive
adaptation to the environment. On the other hand, the performance monitors
provide the different KPIs that will be used for evaluating the internal state of the
computing platform and feed proprioceptive adaptation (i.e. adaptation triggered

from self-awareness information). Current sensors will not be used in the final
demonstrator; a model of the power consumption of the actuators will be inserted
instead in order to estimate this parameter

 Adaptation fabrics: The crux for adaptation in this use-case will be the

integration between the different CERBERO tools and technologies at
computation level. SPIDER will be used to dynamically change the processing
scheduling at runtime. ARTICo³ will implement dynamic partial reconfiguration

to enable transparent scalability and automatic degree of ruggedization of the
system. MDC virtual reconfiguration will provide fast switching between
different implementations of the algorithm. Just-In-Time hardware composition
introduces a higher degree of granularity for reconfiguration, although the usage

of this technology in the final demonstrator is still being assessed and will depend
on its degree of maturity.

 Adaptation monitors : the automatic instrumentation of the code provided by
Papify facilitates the implementation of performance monitors inside the

processing system. The integration between Papify, ARTICo³ and MDC makes it
possible to measure the number of errors and determine the value of internal
parameters of the accelerators such as execution times, power consumption, etc.

H2020-ICT-2016-1-732105 - CERBERO

WP4 – D4.2: Self-adaptation Manager

Page 29 of 33

 Embedded models : two main models are being used. First, a physical model that
implements the forward kinematics of the robotic arm; and second, a power

consumption model that predicts the energy requirements of the calculated
trajectory.

 Adaptation manager: the manager will put together all the information from the
adaptation monitors and respond to changes in the environment or inside the

computing system itself, according to the different tr iggers already described.
Considering the movement and energy embedded models, it will command the
architectural and functional reconfiguration fabrics to achieve adaption to the new
situation.

4.2. Ocean Monitoring (OM)

The Ocean Monitoring (OM) use-case incorporates CERBERO technologies and
methodologies to allow different notions of adaptation. Specifically, CERBERO
adaptation loop is used to separate and define the interaction between the adaptation

components. The different types of information used for adaptation purposes are
combined through information fusion models.

The OM use-case recent progress relates to the following notions of environment
triggered sensor adaptation:

 Object detection and tracking based on fusion of colour and background
subtraction approaches.

 Image rectification method based on keypoints matching.
 Real-time optimization for the motion detection and tracking.

In all cases the adaptation fabric provides the processing systems used for visual
information sensed from the environment. In the case of object detection and tracking for
stationary camera, adaptation monitors incorporate background subtraction which is
applied to the current frame and the history of reference frames in order to look for

motion. When motion is detected, the adaptation manager identifies the nature of motion
and decides whether to adapt. Next, the adaptation engine identifies the location of the
moving object and extracts the colour pattern from the motion area. It continuously
adapts processing fabrics to the colour range of the colour-based object detection

approach so that the object can be tracked based on the fusion of two different
frameworks. The aforementioned hybrid approach was developed and implemented in the
OM use-case demonstrator.

The goal of adaptive image rectification method based on keypoints matching approach is
to adaptively find more and better keypoints matches to continuously improve the

rectification results over time. This would allow for the self-correction process in the case
when the viewpoints of the camera sensors change. Although this has been developed for
the OM use case, it could also be applicable to the PE and ST use cases too. This could
be due to the physical stress or damage the sensors may sustain as a result of a rough

landing on Mars surface, or an electric car or underwater vehicle collision with another
object (for OM). Please refer to D4.1 for the details of the proposed framework.

The OM use-case has a need to detect and track objects not only from stationary but also
moving cameras. The camera movement direction can be detected from a clustered

H2020-ICT-2016-1-732105 - CERBERO

WP4 – D4.2: Self-adaptation Manager

Page 30 of 33

motion vector field, for example. There are a number of alternative techniques for
detecting motion, with advantages and disadvantages in different contexts – evaluation of
the best techniques for the video data typical of ocean monitoring scenarios is currently in

progress. However, all techniques, whether they are based on block matching, blob
tracking, or optical flow, depend on constrained optimization techniques. The OM use-
case therefore explores the possibility of using relevant CERBERO tools capable of
performing the aforementioned optimization in real-time.

4.3. Smart Travelling (ST)

In the Smart Travelling (ST) use case, the targeted self-adaptivity is at the application
level. New driver support functionalities are developed, relying on the self-adaptive
DynAA, SCANeR & MECA toolchain (Section 4.2), which will provide advice to the

driver, based on predictions for possible routes and knowledge on the status of the car. As
the driver support functionality needs to adapt its advice based on changes in the vehicle
and the environment, the vehicle and environment will need to be monitored
continuously and actions will need to be triggered in case situation has changed.

MECA will need to pose knowledge on the preferences of the driver and the actual

situation (e.g. speed of the car) to determine the most appropriate advice on each given
moment. In case of heavy or fast traffic, the driver support functionality should for
example reduce the number of alternatives given to the driver to select from, and thus
reduce distraction in the given moment.

The adaptivity in the ST use case considers CPSoS interactions and the driver actions as

triggers to launch the reconfiguration of the current execution status, based on SW
fabrics. Particularly, the system cannot perform self-adaptation without the authorization
of the driver (except for critical failures or dangerous situations such as a battery short
circuit), so the use case demonstrator will enable a decision-making process in which the

driver is another layer of the system. Then, the adaptivity will take place in the three
following levels:

 System: Based on the information provided by the different CPSs (e.g., the car
status, charging poles, battery consumption prediction, etc.) the system can adjust
different parameters for holding the required safety constraints.

 Environmental: The interaction with the environment has a fundamental role as
the driving activities are influenced by the environment (e.g., traffic jams, weather
conditions, etc.). The system shall monitor the environment to adapt the current
route based on the current and predicted conditions.

 Human: The driver has the final decision about the proposed routes given by the
demonstrator. Such routes could take into consideration driver’s history and/or
agenda to provide personalized routes adapted to his/her profile. Moreover, the

demonstrator could monitor the driver health to adapt the route if the driver is
tired or want to stop at an unplanned location for instance.

To achieve this adaptivity, the smart travelling use case will exploit the MECA tool to
perform monitoring of the various levels and trigger the adaptive behaviors. To obtain
information from the driver and from the system (car), MECA will be integrated with
SCANeR for the demonstration. In the case of the environmental status, interfacing with

H2020-ICT-2016-1-732105 - CERBERO

WP4 – D4.2: Self-adaptation Manager

Page 31 of 33

map providers and weather forecast services will be done. For performing the route
planning, a specific decision module will be implemented for this study case, which will
obtain information from map providers, obtaining a set of potential routes. These routes,

including information of in-route charging poles, will be supplied to the DynAA tool.
Using that information, DynAA performs a simulation based on the battery model,
discarding those routes that cannot be completed and providing a set of itineraries which
include charging stops (if required). MECA will filter and rank (based on user

preferences) these itineraries, enabling the user to choose one. Then, during driving,
MECA sets up route monitoring regarding the user and car status, meanwhile DynAA
performs battery monitoring and simulation in the loop to ensure that the battery
performs according to the predictions.

H2020-ICT-2016-1-732105 - CERBERO

WP4 – D4.2: Self-adaptation Manager

Page 32 of 33

5. Conclusions

This deliverable has reported the final progress of Task 4.4 "System Self-Adaptation". In
terms of the CERBERO operational objectives detailed in the Table 1 "CERBERO
Operational Objectives" of the CERBERO project sealed proposal, Task 4.4 has
contributed primarily to the following objectives:

 CH1.2 - Provide a comprehensive framework, customizable upon the UC needs,
extending and making interoperable a large set of tools.

o On this challenge, T4.4 has merged highly customizable tools into an
implementation of CERBERO adaptation strategies, compatible with a
large set of platforms and with a large set of stream processing
applications representative of the ones present in use cases.

 CH1.1 - Provide reusable Libraries of Key Performance Indicators (KPIs), Cross-
Layer Models and Adaptivity support.

o On this challenge, T4.4 has built the adaptivity support and KPI retrieval
facilities necessary to the adaptation loop, as well as models to extract
KPIs from indirect hardware measurements.

 CH2.2 - Reduce by 50% the design efforts required to build a CPS of a given
performance.

o On this challenge, T4.4 has provided adaptation technologies that
automate the generation of complex hardware behaviors, strongly saving
design efforts when building an adaptable system.

 CH2.3 - Reduce by 50% cost of maintenance.
o On this challenge, T4.4 has implemented a technology capable of strongly

modifying the processing of a system to adapt to system modifications, to
environment modifications, or to user commands autonomously.

 CH1.3 - Reduce by 30% the energy consumed by a fully CERBERO compliant
CPS or CPSoS, while maintaining its performance.

o On this challenge, T4.4 has aggregated a set of reconfiguration
technologies offering hardware and software customization to the
application, and capable of large energy savings through specialization.

As an updated version of Deliverable D4.4, this document has explained how the
CERBERO M15-M30 activities have built the CERBERO self-adaptation advanced

technology that combines monitoring and reconfiguration features, as well as hardware-
software coordinated adaptations and application-level adaptation. This document shows
that the plan provided for in Deliverable D4.4 has been followed and that the tool
integration efforts have conducted to the implementation of the CERBERO self-
adaptation management strategies presented in Deliverable D4.1.

H2020-ICT-2016-1-732105 - CERBERO

WP4 – D4.2: Self-adaptation Manager

Page 33 of 33

6. References

[FANNI 2018] Fanni, T., Rodríguez, A., Sau, C., Suriano, L., Palumbo, F., Raffo, L., & de la
Torre, E. (2018, December). Multi-Grain Reconfiguration for Advanced
Adaptivity in Cyber-Physical Systems. In 2018 International Conference on

ReConFigurable Computing and FPGAs (ReConFig) (pp. 1-8). IEEE.

[MADRONAL 2019] Madroñal, D., & Fanni, T. (2019, April). Run-time performance monitoring of
hardware accelerators: POSTER. In Proceedings of the 16th ACM International
Conference on Computing Frontiers (pp. 289-291). ACM.

[RODRIGUEZ 2018] Rodriguez, A., & Fanni, T. (2018, December). Multi-Grain Adaptivity in

Cyber-Physical Systems. In 2018 30th International Conference on
Microelectronics (ICM) (pp. 44-47). IEEE.

[RUBATTU 2018] Rubattu, C., Palumbo, F., Sau, C., Salvador, R., Sérot, J., Desnos, K., ... &
Pelcat, M. (2018). Dataflow-Functional High-Level Synthesis for Coarse-

Grained Reconfigurable Accelerators. IEEE Embedded Systems Letters.

[SURIANO 2018] Suriano, L., Madroñal, D., Rodríguez, A., Juárez, E., Sanz, C., & de la Torre, E.
(2018, July). A Unified Hardware/Software Monitoring Method for
Reconfigurable Computing Architectures Using PAPI. In 2018 13th

International Symposium on Reconfigurable Communication-centric Systems-
on-Chip (ReCoSoC) (pp. 1-8). IEEE.

