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1. Executive Summary 

This document complements D4.3 – CERBERO Multi-Layer Adaptation Strategies (Ver. 

1), where the overall adaptation scenario for the CERBERO project, as well as its main 

components are presented. Adaptation is addressed in three different fabrics: hardware-

based processing, software-based processing and sensor layer. Moreover, and coupled with 

each of these fabrics, there is a set of adaptation engines that are in charge of enforcing all 

adaptation decisions made by the CERBERO Self-Adaptation Manager. This is achieved 

by actively changing the working point of the computing/sensor fabrics.  

The approach followed in this document revises the State of the Art to complement the 

original prospections, and thoroughly documents all extensions and new developments 

made on each of the adaptation fabrics/engines. 

Please, note that, for complete understanding, this document is to be read after D4.3 to get 

the whole picture of the various adaptation strategies proposed and developed in the 

project. Nevertheless, this D4.1 document is written to be as complete as possible.  

1.1. Structure of Document 

This document is meant to be an extended and updated version of D4.3, highlighting recent 

updates in both the State of the Art and CERBERO developments. Section 2 presents the 

updated components in the CERBERO adaptation loop, Section 3 focuses on hardware 

adaptation techniques, Section 4 focuses on software adaptation techniques, and Section 5 

focuses on sensor-based adaptation techniques. The document finishes with a revision of 

the use of the proposed adaptation strategies on the use cases in Section 6. 

1.2. Relation with CERBERO Requirements 

Deliverable D2.2 of the CERBERO project defines a list of CERBERO Technical 

Requirements (CTRs) the project should achieve. The CERBERO adaptation strategy, and 

its related components and techniques, described in this document contribute to the 

fulfilment of the mentioned requirements in the following various aspects. The table below 

shows the means and the components achieved to fulfil these core requirements. The 

updates with respect to the equivalent table in D4.3 are shown with underlined text.  

 

CTR 

id 

CTR Description Link with the D5.6  document on CERBERO 

framework components 

0001 CERBERO framework 

SHOULD increase the level of 

abstraction at least by one for 

HW/SW co-design and for 

System Level Design. 

The support provided by PREESM for the abstraction of SW 

and HW tasks, the capability of SPIDER to decide, at 

runtime, task migration between fabrics, the unified PAPI 

access scheme to monitors for HW and SW are the key 

contributions to this requirement. 

0003 CERBERO framework 

SHOULD provide incremental 

prototyping capabilities for 

HW/SW co-design. 

Incremental prototyping capabilities are envisioned at the 

tools/components level: 

• MDC will be provided with an enhanced HLS support; 

• DPR features will be improved thanks to JIT HW 

implementation and composition tool (IMPRESS); 
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• the runtime monitoring of ARTICo³, JIT HW and MDC 

reconfigurable hardware accelerators will be enabled 

thanks to PAPIFY integration; 

• PREESM, SPIDER and PAPI will be used to drive 

ARTICo³, JIT HW and MDC prototyping features. 

0006 CERBERO framework 

SHOULD ensure energy 

efficient and dependable 

HW/SW co-design using cross-

layer runtime adaptation of 

reconfigurable HW. 

Energy is a main KPI, and it is addressed in most of the 

techniques described in this deliverable, including all HW 

fabric types, SW agents,  and sensor infrastructure and 

physical layer. 

Monitors and adaptation techniques for energy efficiency and 

dependability are foreseen in the three kinds of adaptation 

fabrics, also. 

0009 CERBERO SHALL develop 

integration methodology and 

framework. 

The adaptation infrastructure and the associated tools are part 

of the CERBERO framework.  

0014 CERBERO WP and task 

leaders SHALL organize 

scheduled face to face and 

remote meetings. 

WP4 periodic management meetings have been organised in 

order to track progress, deviations and risks. Adaptation-

specific seminars have been produced externally (CPS Week 

and Summer School) and internally (Haifa GA). 

0016 CERBERO tools SHOULD be 

tested vs state-of-the-art  

Section 6 in this deliverable contains information about the 

use of the various components and technologies in the three 

use cases. Updated state of the art is included. 

0018 CERBERO technology 

providers SHALL prepare face 

to face or online tutorials / 

education for use case 

engineers. 

Tutorials on HW and SW adaptation have been prepared for 

the Summer School 2017 and CPS Week 2018. Academic 

engineers have received these courses in order to have 

feedback. CERBERO adaptation strategy was the key topic 

of a keynote in Summer School 2018. 

0019 CERBERO technology 

providers SHALL coordinate 

technical support for their tools 

with use case engineers. 

A preliminary version of some of WP4-related tools 

(PREESM, ARTICo3, MDC) has been delivered for the 

Summer School 2017. Use case integration meetings have 

been periodically achieved during the last months, 

0020 CERBERO framework 

SHALL provide methodology 

and tools for development of 

adaptive applications. 

This deliverable provides information about the components 

(mainly) and tools (partially) involved in the adaptivity 

support. 

 

1.3. Related Documents 

• D4.3 – CERBERO Multi-Layer Runtime Adaptation Strategies (Ver. 1): the initial 

version of this deliverable. It contains detailed technical information on the 

different strategies to support adaptivity in CERBERO-compliant systems. D4.1 

extends D4.3 to cover new developments/features and revised state of the art. 

• D4.2 – CERBERO Self-Adaptation Manager (Final version): The CERBERO Self-

Adaptation Manager uses the strategies presented in D4.1 to orchestrate adaptation. 

Hence, D4.1 is an input for D4.2. 

• D5.2 – CERBERO Framework Components (Final version): all the specific 

adaptation techniques and components described in D4.1 are bounded by specific 

framework components (detailed in D5.2). 
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2. Overall Adaptation Strategies 

2.1. The CERBERO Adaptation Components 

Figure 1 shows an updated view of the multi-layer adaptation scheme identified in 

CERBERO as the background for building all dependencies and interactions between 

elements. If compared with the previous figure, contributions are centred on the adaptation 

to CPSoS layer, where, now, two adaptation loops (CPS and CPSoS) can be identified, and 

to show the possible interactions with the Physical part.  

 

 

 
Figure 1 – CERBERO (Self-)Adaptation Infrastructure 

As it can be seen, the identification of the elements that comprise the adaptation loops at 

both CPSoS and CPS level have been defined comprehensively and using the same 

terminology, since we are having the intention of being able to integrate and generalise as 

much as possible any type if adaptation, for any type of system, for all elements that 

compose the loop and  for any layer. In other words, there will always be, no matter of the 

considered abstraction level, some elements that can be mapped into one the categories: 
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• Adaptation Fabrics, which hold  all the computing and sensing resources.  

• Adaptation Monitors: they comprise hardware and software components to track 

the state of the Adaptation Fabrics and of the Physical subsystem.  

• Adaptation Engines are the components that drive the changes in the adaptation 

Fabrics, according to decisions taken from the adaptation manager.  

• Adaptation Manager: are the entities with runtime decision-making capabilities. 

They uses the information provided by the Adaptation Monitors, made 

comprehensive and perhaps simplified and estimated via a model,  to decide 

whether to trigger adaptation or not. 

When putting together the adaptation loops at CPSoS and CPS level, it must be pointed out 

that: 

• Every CPS subsystem, considered as a single entity, acts as an adaptation fabric 

for the CPSoS adaptation loop level. Therefore, individual CPSs should respond 

to adaptation triggers produced by the adaptation engine at the higher level.  

• The adaptation managers of single CPSs should be capable of processing the 

information obtained  from their own monitors in order to provide  

simplified/merged/normalised/forecasted KPI information to the higher layer.  

• KPI information should be obtained by aggregation or fusion of the info obtained 

from individual lower layer subsystems as well as from the physical subsystem. 

2.2. The CERBERO Adaptation Components 

 

The following table identifies some of the basic components addressed in CERBERO 

within this double-loop adaptation scheme. 

 

              
Layer 

Comp. 

CPS layer CPSoS layer 

Adaptation 
fabric 

HW fabrics SW 
fabric 

Sensor SW Sensor 
ARTICo3 MDC JIT 

Adaptation 
engine 

DPR 
block 

CGR 
DPR block 

+ FGR 
Spider 

Weights 
in Fusion 

Model 
  

Adaptation 
manager 

Spider Spider+EA Spider  DynAA  

Adaptation 
monitors 

Papify Papify Papify Papify MECA  
MECA 
(user) 
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3. Hardware Adaptation 

his section addresses updates in the state of the art technologies due to a continuous 

technology monitoring effort of the involved partners, as well as updates in the 

developments achieved within the HW-based fabrics, namely, the combined granularity 

achieved by combining ARTICo3 and MDC architecture types, advances in the Just-In-

Time HW composition techniques for adaptive and deterministic HW creation, and a 

discussion on security and reliability related issues.  

3.1. State of the Art: Hardware Adaptation outside CERBERO 

Hardware adaptation is highly studied in literature, at different levels of granularity, and 

D4.3 provided an overview of the studies presented at the State of the Art. This section 

provides an update with the solutions presented in 2018 related to hardware adaptation and 

CERBERO topics. 

Le Lann at al. [Le-Lann’18] proposed Argen, an integrated toolflow for Overlay-centric 

System-on-chip. The presented overlay is based on a homogenous regular array of cells 

composed of several logic elements containing look-up tables and registers. The Argen 

toolchain takes care of all the steps of the design flow: architectural and application design, 

application mapping and synthesis, as well as final binary code generation, for both the 

overlay and the application.  

Liu et al. [Liu’18] proposed a hybrid-grained reconfigurable architecture (HReA) to 

process 13-Dwarfs computation [Asanovic’06] (a dwarf is an algorithmic method that 

captures a pattern of computation and communication). HReA combines a 32-bit Coarse-

Grained Reconfigurable (CGR) datapath with a 1-bit Fine-Grain Reconfigurable (FGR) 

datapath to accommodate co-existence of multiple computing granularities in 13-Dwarfs. 

The two datapaths with different granularities can interact with each other in an arithmetic 

logic unit. 

Fuchs et al. [Fuchs’18] presented a tiled multiprocessor system-on-a-chip (MPSoC) design 

able to provide fault detection, isolation, and recovery (FDIR) for very small spacecraft. 

They exploit a multi-stage fault tolerant approach that implements forward error correction 

and utilizes coarse-grain lockstep of weakly coupled cores to generate a distributed 

majority decision across tiles. FPGA reconfiguration is exploited to recover from upsets in 

tile logic, and cover permanent faults using alternative configuration variants. If too few 

healthy tiles are available due to accumulation of permanent faults, re-allocation of 

resources to high-criticality applications, by sacrificing performance of lower-criticality 

threads, is performed. 

The research conducted on hardware adaptation outside CERBERO either consider only 

one kind of adaptivity or mesh-based arrays. Both Le Lann at al. [Le-Lann’18] and Liu et 

al. [Liu’18] exploits a hardware-to-application approach in which the application is 

mapped on an existing regular array of homogenous processing elements, and 

reconfiguration is based only on virtual reconfiguration (multiplexing resources in time by 

means of multiplexers). Furthermore, none of them address repair-oriented adaptivity. 

While Fuchs et al. presented a reconfigurable architecture to provide fault tolerance, but 
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they do not address any other type of adaptivity, neither they provide hardware 

accelerations. 

3.2. CERBERO Advances in Hardware Adaptation 

Hw-Adaptation in CERBERO is supported by the ARTICo3, MDC and Just-In-Time (JIT) 

composable HW overlays. ARTICo3 and MDC support DPR (Dynamic and Partial 

Reconfiguration) at block-level and CGR (Coarse-Grain Reconfiguration) respectively. 

The combination of ARTICo3 and MDC offer a new level of flexibility implementing a 

multi-grain heterogenous reconfigurable fabric. 

MDC accelerators have been embodied into ARTICo3 wrappers and set as new ARTICo3 

compatible HW accelerators that may be configured to obtain HW scalability (ARTICo3 

feature), dynamic fault tolerance (ARTICo3), and fast functional and non-functional 

adaptive ity (MDC feature) with HW reuse (MDC feature). The availability of previous 

results before CERBERO in ARTICo3and MDC, together with the work achieved in T4.3, 

allowed a successful integration of the tools and the development of a consistent 

methodology to support the combined granularities from both approaches. 

Just-In-Time composition, on the other side, was identified since the very beginning as a 

less mature approach, with associated risks and challenges, that invited at the moment of 

writing the CERBERO proposal to go for a longer-term integrated architecture and 

toolflow. In few words, JIT composable HW offers yet another degree of reconfiguration 

(we call it fine-grain), and requires the definition of, on one side, new tools to support it 

(IMPRESS, [Zamacola’18]) and, on the other side, two design approaches to make designs 

on top of them: 

• A deterministic circuit design method, based on intermediate representations and 

mapping into HW blocks.  

• An iterative approach based on training/evolutionary methods on which the circuit 

is obtained by composition of blocks whose global functionality is verified 

against an objective function to be optimized in order to obtained a circuit that 

matches as much as possible the expected behavior for the system at hand. 

ARTICo3 – MDC is reported in section 3.2.1, whereas the advances in JIT composition 

(mainly on the iterative approach) are shown on section 3.2.2.  

3.2.1. ARTICo3 – MDC integrated adaptation 

With respect to the State of the Art, the hardware adaptivity provided in CERBERO is 

based on the multi-grain reconfiguration, given by the combination of ARTICo3 framework 

and MDC tool. Practically speaking, in terms of architecture, depicted at the bottom Figure 

2, MDC compliant accelerators (as those reported in D4.3) are wrapped within ARTICo3 

slots (described in D4.3 as well). This type of integration delivers the best of both CGR 

and DPR approaches into an adaptive multi-grain heterogenous reconfigurable fabric, 

which can meet the changing of functional, non-functional and repair-oriented 

requirements of CPS designs. Moreover, with respect to the above-mentioned works in 

literature, the CERBERO approach is not simply meant to provide a novel architecture, 
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rather it aims at offering support the design of the different parts of the system, their 

deployment and runtime management [Fanni’18] [Rodríguez’18]. 

The hardware generation flow starts from high-level dataflow descriptions of the 

configurations/behaviors to be implemented in the configurable logic, and the integrated 

toolchain derives the corresponding CGR HDL computational kernel, properly wrapping 

it with the glue logic necessary to serve as an ARTICo3 DPR reconfigurable partition. Both 

reconfiguration mechanisms are transparently managed by the user code running in a host 

processor. With respect to the standalone MDC and ARTICo3 flows, an adaptation step 

(Kernel Adapter) is needed to make the MDC-generated kernels compliant with kernels 

expected by ARTICo3 Wrapper Automation step. 

Figure 2 illustrates the whole MDC-ARTICo3 design flow, through a Step-by-Step 

example that considers three input dataflow networks. (1) Firstly, MDC merges the user-

defined dataflow specifications and generates the CGR computing core as described in 

D5.6. (2) Then, the generated mm-TIL is modified by the Kernel Adapter which delivers 

an HDL ARTICo3-compliant CGR kernel. (3) Finally, the ARTICo3 framework processes 

the input HDL CGR kernel to implement the whole reconfigurable processing system (see 

D5.6 for details on ARTICo3 framework). (4) The bottom part of Figure 2 depicts an 

example of multi-grain reconfiguration. In this example the CGR approach offered by 

MDC is exploited for low-power fast-switching of functionality, while the DPR supported 

by ARTICo3 is exploited for changing the number of slots working in parallel to increase 

the throughput or provide fault tolerance. 
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Figure 2 - Multi-grain design flow and adaptation. 
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3.2.2. JIT composition of HW 

Adaptation fabric 

JIT hardware composition refers to the ability to implement, at runtime, hardware 

accelerators on FPGAs without a pre-synthesized design. Hardware accelerators are 

mapped onto an overlay, a 2D highly regular mesh-type architecture composed by multiple 

processing elements (PEs) placed on top of an FPGA. Overlays can be fixed, (i.e., they 

have a predefined PE composition that cannot be changed) or can be reconfigurable (i.e., 

PEs can be reconfigured to change their functionality).  

As explained in deliverable 4.3, two different methods to compose accelerators were 

envisaged. A deterministic approach where a software algorithm is converted to a dataflow 

graph that is mapped to the overlay, and an iterative/evolutionary approach where the 

accelerator is composed using an evolutionary heuristic to find an overlay configuration 

that solves a given problem (e.g., how to control a cart-pole system).  

Traditional reconfigurable overlays have a predefined virtualization where specific regions 

of the FPGA are reserved to allocate different PEs. Therefore, in these overlays even if the 

PEs are reconfigurable, the overlay structure (i.e., mesh location, communication between 

PEs, PE shapes) is fixed. For this method, we propose the use of a run-time composable 

overlay. We propose to create just one reconfigurable region (which could be later on 

embodied into an ARTICo3 slot) in the FPGA that defines the communication with the 

static system (i.e., the rest of the design that is not reconfigured over time). This 

reconfigurable region is then loaded with PEs with different shapes. These PEs interface 

with other modules through their borders, thus it is possible place PEs that connect to their 

neighbour PEs. This solution allows to build multiple different overlays specialized for 

different application domains without being constrained to a fixed overlay architecture. 

This overlay composition makes it highly recommended to use relocatable partial 

bitstreams (PBS) so that one PE can be allocated in compatible FPGA regions (i.e., regions 

that share the same resource footprint). Moreover, these overlays can use modules spanning 

less than a clock region, therefore it is necessary to allow a finer granularity by allowing to 

stack several modules in one clock region. 

Currently, it is not possible to build run-time composable overlays with commercial tools. 

Therefore, the first step to build these architectures has been to create IMPRESS 

[Zamacola'18] (IMplementation of Partial REconfigurable SystemS) a TCL-based 

reconfigurable tool which incorporates the following features: decouples the 

implementation of the reconfigurable and the static system, allows RM to RM 

communication, enables hierarchical reconfiguration, RM reallocation, and makes it 

possible to stack multiple RPs in the same vertical columns, within the same clock region. 

All these features enable just-in-time overlay composition. 

There is, however, one big limitation of these run-time composable mesh-type overlays. 

This is how to access inner PEs (that do not have a direct connection with the static system) 

in the mesh to change hardwired parameters, datapath or even functionality in a fast way 

without having to reconfigure the entire PE. To tackle this problem IMPRESS have been 

incremented with LUT-based reconfiguration. Several LUT-based parameterized 

components have been created, so that the user can instantiate them in their HDL (hardware 

description language) PEs. The available LUT-based components are: a constant, 

multiplexer and a functional unit that can implement several functions. Once the user 
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instantiates them in their PEs, IMPRESS is in charge of packing all the LUTs in the 

minimum number of columns. These components can be reconfigured at run-time in a fast 

way as only the LUT truth tables need to be reconfigured while the rest of the PE is left 

unaltered.  

The first overlay built using just-in-time HW composition tools is a block-based neural 

network (BBNN). BBNNs are highly regular 2D architectures in where each PE can 

contain 1 one to 3 neurons of the network. Differently to classical neural networks the 

structure of the network is not fixed as each cell can adopt multiple configurations (i.e., it 

can be connected with different blocks and use a variable number of cells). Therefore, 

training of these neural networks works not only to obtain a set of weights and bias for 

each cell but also a specific network configuration.  BBNNs can be considered as a specific 

case of JIT hardware composition based on the iterative/evolutionary approach. In this case 

instead of changing between different processing elements, we reconfigure each cell 

parameters (i.e., weights, bias and cell type). 

The proposed BBNN shown in Figure 3 is based on the proposals in [2], however the cell 

structure has been modified to reduce resource usage. To that end, only one DSP is used 

for MAC (multiply and accumulation) operation. There is one FSM (finite state machine) 

that controls the operation of the cell which has a latency of seven cycles. The neural 

network is constructed using JIT in time HW composition by composing the BBNN cells 

in an initially empty reconfigurable region. The configurable parameters of the cell (i.e., 

weights, bias and cell type) are implemented with reconfigurable LUT-based components. 

The proposed BBNN is trained using an evolutionary algorithm that tries different 

solutions until finding a valid one. The main benefit of using an evolutionary algorithm 

instead of gradient-based algorithm is that online training is possible as we use the same 

processing array for the training and inference phases. The BBNN has been used to solve 

control problems. The cart-pole and mountain car python simulation provided by the 

openAI framework have been used to show the effectiveness of the proposed solution. 

 
Figure 3 - block-based neural network structure 
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Regarding the deterministic just-in-time HW composition approach we can distinguish 

three steps: dataflow graph extraction, overlay design and lastly the place & route of the 

dataflow graph onto the overlay. The first step, the dataflow graph extraction, has been 

realized in two steps. First, from a SW description the LLVM intermediate representation 

(IR) is obtained and then the dataflow graph is extracted. There are still improvements to 

achieve in this step like support loop unrolling and if to multiplexer conversions in LLVM 

IR code. The overlay design and place & route steps will be tackled in the following 

months.  

 

Fine-Grain Adaptation engine  

This subsection addresses the new type of reconfiguration granularity that complements 

the block-based one (used in ARTICo3) 

IMPRESS not only provides support for generating the static system and reconfigurable 

processing elements (PEs). It also provides run-time support (adaptation engine) to 

compose overlays at run-time. This adaptation engine is made of one software layer that 

provides an API to compose overlay at run-time and two reconfiguration engines (REs). A 

reconfiguration engine is a component in charge of reconfiguring the FPGA configuration 

memory to modify the circuit implementation. The proposed adaptation engine is 

composed of two different REs. The first one is a generic SW-based RE that is in charge 

of changing entire reconfigurable PEs using the PCAP reconfiguration port while the 

second one is a specialized RE implemented in HW that can rapidly reconfigure LUT-

based components using the ICAP reconfiguration port. 

 

 
Figure 4 - Adaptation engine for JIT HW composition 
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Figure 4 shows an overview of the adaptation engine. The SW layer is composed of three 

main components: 

• A PE library: this library is made by the user at design time and contains all the 

different elements that are available for composing different overlays at run-time. 

Each element of the library contains the information on PE size, partial bitstream 

and reconfigurable LUT-based components used inside the PE. This library can be 

visualized as the pieces (PEs) that can be used to make different puzzles (overlays). 

• 2D virtual architecture: this matrix variable is an internal representation of the 

overlay implemented in the FPGA. Each element has information on the PE 

location and a pointer to a specific PE from the PE library. Once an element of the 

matrix is updated with a new PE, the new PE partial bitstream is sent to the generic 

SW-based reconfiguration engine. Therefore, the internal matrix representation 

always resembles the implemented overlay. It is the responsibility of the user to 

ensure that the processing elements have compatible interfaces with the neighbour 

PEs. 

• LUT-based component representation: these variables represent the configuration 

of LUT-based components. As explained before, LUT-based components are 

packed in columns at design time by IMPRESS. Therefore, each of these variables 

represent one column filled with LUT-based components. Once the user changes a 

specific component of a specific processing element of the overlay, automatically 

the adaptation engine searches for the component location and modifies the affected 

internal representation of the column. The user can initiate the fast LUT 

reconfiguration by sending to the specialized HW-based RE each of the columns 

that have been modified using an AXI lite interface. 

Overlay composition procedure  

The first step is to design the static system, which must contain all the elements that will 

remain unaltered during the system operation. It must also include, at least, one region 

reserved to implement the overlay at run-time. This region is initially empty and only 

includes dummy logic instantiated by IMPRESS that interfaces with the static system. 

Then, it is necessary to design all the processing elements (PEs) that can be used for overlay 

composition. The PE interface is defined selecting the borders that can be used (e.g., the 

north side). It is responsibility of the user to create PEs that have compatible interfaces. 

Many overlays are just composed with one PE that is replicated over a lattice, in this case 

it is really easy to ensure a PE design with an interface that can be replicated ensuring a 

correct communication.  

The previous two steps generate a full bitstream of the static system and a partial bitstream 

for each PE. The user needs to fill the PE library explained in the adaptation engine section 

with the information of each PE, including the information of every LUT-based component 

that the PE integrates. Then the partial bitstreams are stored in an SD card and the static 

bitstream is loaded into the FPGA.  

Then the user can modify the matrix variable “2D virtual architecture” shown in Figure 4. 

Each element of this matrix contain a location of the FPGA and pointer to a PE element 

from the PE library. Once the user modifies an element, the SW-based reconfiguration 

engine is used to update the configuration memory adding the selected processing element 
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to the specified position. This process is repeated until all the overlay processing elements 

have been reconfigured. 

Once the overlay has been placed it is possible to tune LUT-based constants, multiplexers 

and functional units that are part of the processing elements. The user just has to select a 

specific processing element and the component to change and it new value. Automatically 

the tool updates the internal frame representation of the LUT-based components updating 

it with the new contents. Once the user has changed all the LUT-based components it can 

send the new representation to the specialized reconfiguration engine that changes these 

components using the ICAP port. 

3.3. Adaptation Strategies for security and reliability 

In this section we discuss how to address the security needs within CERBERO, and 

adaptation and reliability are used in this context. Our security needs consist in 

guaranteeing, in a reliable way, the confidentiality of the information and in providing 

authentication of the message. Both requirements can be fulfilled by using authenticated 

encryption algorithms. Several authenticated encryption algorithms, addressing different 

goals and needs, have been proposed in the past, especially within the CAESAR contest 

[Caesar’17]. The choice of the most suitable algorithm should be dictated by the needed 

level of security, the required performance, and by the target power and energy 

consumption. However, this choice is not always possible, since it is often imposed by a 

standard to which a specific communication link must be complaint with. This is our case, 

were the authenticated encryption should be provided using the AES algorithm in CRT 

mode [Dworkin’01], supporting a key size of at least 128 bits, and the authenticated 

encryption has to be provided by AES used in GCM [Dworkin’07] mode, with a MAC of 

size 128 bit. Despite the restriction on the algorithm type, designers are still free to decide 

the specific implementation strategies that are most suitable for optimizing other 

parameters, such as performance, reliability, and area occupation. 

Addressing these needs, we designed modular hardware accelerators and software routines 

implementing the required encryption and authenticated encryption algorithm, capable of 

providing reliability thanks to the appropriate error detection and correction methodology. 

The parameters of the algorithm and the level of reliability can be adapted at run time. 

Adaptation, in the context of security, is often considered synonymous of crypto-agility, 

which, informally, is often defined as the capability of quickly switching between different 

cryptography primitives and algorithms. In our context, we use adaptation to rapidly offer 

the possibility of changing parameters of the algorithm under execution. In our case, 

changing the parameter of the algorithm mainly means  to be able to configure, at run time, 

the desired length of the key. In AES changing the level of the key requires also to change 

the number of rounds, and to modify the key unrolling function. These changes are handled 

automatically by the architecture. 

Our accelerators have to operate reliably, thus they need to provide support for detection 

and correction of errors. In security error detection and correction are important for two 

reasons. The first, is to guarantee the resistance of the algorithm to accidental faults. The 

second is that, thanks to error detection and correction schema, it is possible to mitigate the 

so called fault attacks [4] (these attacks aim at gain sensitive information from a device by 

inducing it into an erroneous state and by analyzing the difference between the correct and 
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the wrong execution). Several fault detection and correction have been proposed for AES, 

which is our target algorithm, and for block ciphers in general. Proposes schema range 

from a simple parity bit, added at a granularity of a byte [Bertoni’05], to more complex 

codes capable of providing also correction [Regazzoni’12]. 

We augmented our accelerators with different algorithm for detection and correction of 

errors. This support for reliability is modular and can be activated at run time. Depending 

on the desired level of reliability, our design can provide simple error detection capability 

using a single bit of parity or much more complex correction capability using an advanced 

hamming code. The selection of the specific reliability mechanism is driven by a trigger 

that can come from an internal monitor (in case complete insulation of the cryptographic 

module is required) or can come from an external monitor. 

Despite designed for the AES algorithm, the proposed modular approach is sufficiently 

generic for being applied to any block ciphers. To demonstrate this fact, we used the same 

methodology to realize a modular and adaptable accelerator for lightweight algorithms. We 

focused on lightweight algorithm as second case of study because they are used in resource 

constrained designs (as several CPSs are) and because they will be soon standardized. In 

the next months, the designed architecture will be demonstrated within the CERBERO use 

case. 
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4. Software Adaptation 

4.1. State of the Art: Software Adaptation outside CERBERO 

In this section, we first present the main challenges addressed on software adaptation 

within the CERBERO project. Then, we present existing techniques and frameworks in the 

context of reconfigurable dataflow MoCs, and the approach chosen within the CERBERO 

project to tackle the problem. 

4.2. Challenges 

As explained in Deliverable D3.5 on Models of Computation, the CERBERO project 

develops tools and methods that rely on precise Models of Computation and Models of 

Architecture in order to foster reuse and tool reusability. As for software reconfigurability, 

we consider a reconfigurable dataflow MoC such as the PiSDF MoC [Desnos’13] or the 

SPDF MoC [Fradet’12] for their capacity to represent a complex datapath with limited and 

partly predictable control.  A review of State of the Art on system reconfiguration in a 

broader context can be found in D4.3 on the CERBERO Self-Adaptation Manager. This 

section concentrates on parameterized dataflow-based software reconfiguration. 

In the considered context, reconfigurable means that the application graph may evolve at 

runtime with changes in both data rates and in the graph topology itself. The software 

platform management system needs to evolve accordingly and exploit the resources of the 

underlying parallel execution platform. Using a reconfigurable dataflow MoC, a full static 

analysis of an application is generally not possible at compile time and needs to be handled 

at runtime. For instance, the degree of parallelism or amount of exchanged data are likely 

to change at runtime. However, when parameters remain static and application topology is 

stable for a long time, runtime management should exploit this conservation of properties 

to reduce management complexity and cost.  

SPDF and PiSDF  MoCs lend themselves well to quasi-static scheduling [Bhattacharyya 

‘00], deriving at compile time a set of pre-computed schedules, removing a part of the 

runtime overhead.  Conversely, when dealing with dynamic behavior such as graph 

reconfiguration, a first challenge is to perform graph analysis and scheduling of the 

application with an overhead as low as possible with regard to the application execution 

time.  Ideally, the time allowed for those analyses should always be negligible when 

compared to effective computation time. 

A second challenge is on the memory footprint of the runtime manager. Analysis 

techniques need to store application state information that is used only for analysis and 

decision purpose.  

In embedded architectures such as the Kalray MPPA manycore processor [De Dinechin 

‘13], memory consumption is a major concern. The MPPA processor is exemplary of the 

current challenges faced by software reconfiguration. Its architecture features 16 clusters 

of 16 VLIW processing cores. Each of the clusters has a local memory of 2MB and, 

although it has access to a larger external shared-memory, reading and writing to this 

external memory is excessively expensive and should be avoided as much as possible. In 

this context, storing additional information for analysis purpose in the runtime manager 
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can result to more frequent accesses to the shared-memory and thus in a strong downgrade 

of overall software performance. In the CPS context of the Cerbero project, all the 

considered energy efficient software processing architectures share these concerns, i.e. 

parallelism exploitation and difficult resources scheduling. 

We now present a State of the Art of dataflow-based runtimes and approaches for 

reconfigurable dataflow-based self-adaptation. We show that most State of the Art methods 

and all available software for software adaptation from dataflow MoCs use a directed 

acyclic graph intermediate representation that can raise problems in terms of data storage 

and management time. A major objective of the CERBERO project software adaptation 

strategy will be to free the runtime system from this intermediate representation. 

4.3. State of the Art 

HI-HTGS ( HMBE-Integrated-HTGS) [Wu’18] is a design tool that aims at automating 

analysis and optimizations of Windowed Synchronous DataFlow (WSDF) graphs  [Keinert 

‘06].  HI-HTGS provides a lock-free and race-condition-free scheduler that dynamically 

adapts to changes in actor execution times and copes with nondeterministic characteristics 

of a thread-based execution. HI-HTGS works in two distinct phases: a compile time phase 

and a run-time phase. During the compile time phase, HI-HTGS builds a Single-Rate 

Directed Acyclic Graph (srDAG) representation of the WSDF user graph and performs 

various analysis that will serve during the run-time phase.  

 

 
Figure 5 - Transformation of a hierarchical PiSDF graph into an srDAG 

 

An srDAG, also called Acyclic Precedence Expansion Graph (APEG) [Lee 1987] is a 

specialization of an SDF graph that does not contain cycles and all the data rates on edges 

are unitary (i.e. carrying one data token).  Figure 5 shows the transformation of a PiSDF 
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graph, upper part of the figure, to the equivalent srDAG, lower part of the figure. Under 

each PiSDF actor of are indicated the repetition value relatively to their containing graph. 

Actors D and E have repetition vector values of 1 and 2, respectively, within 1 iteration of 

actor B but a total repetition value of 2 and 4, respectively. For more details on dataflow 

representation, one may refer to Deliverable D3.5 on Models of Computation. 

The srDAG is useful because it exposes the available application concurrency. The 

transformation to an intermediate srDAG is however very costly, as it creates one vertex 

in the intermediate application graph for each execution (firing) of the corresponding task 

(actor). At run-time, HI-HTGS uses the built srDAG and additional metadata of the 

compile time phase to perform dynamic scheduling on a multi-core processor. However, 

due to its compile time construction of the srDAG intermediate representation, HI-HTGS 

can only handle static applications with constant data rates. 

SPIDER [Heulot’14] is a runtime manager designed for the execution of reconfigurable 

PiSDF applications on heterogeneous Multi-Processor System on Chip (MPSoC) 

platforms.  SPIDER manages a PiSDF graph  high-level description of the application as 

input. Due to the reconfigurable nature of the PiSDF MoC, SPIDER derives an SRDAG at 

runtime and performs graph optimizations, mapping and scheduling of the application at 

runtime, as opposed to HI-HTGS [Wu’18]. The transformation to SRDAG may take non 

negligible time on reconfigurable applications with high-level of task and data parallelism 

and with low complexity computation kernel. 

The OpenVX language and standard [Rainey 2014] is a graph-based Application 

Programming Interface (API) proposed by the Khronos group for developing and 

deploying computer vision applications on embedded platforms. OpenVX uses a dataflow 

MoC which enables programmers to design their application in an architecture  agnostic 

fashion while exposing high-level optimization and parallelism opportunities. The MoC 

used by the  OpenVX standard is an SRDAG specialization of the Synchronous Dataflow 

(SDF) MoC [Lee’1987]. srDAGs, when used to manually model the application, are less 

expressive and more restrictive than SDF graphs but allow for global high-level 

optimization. This choice is motivated in OpenVX by the fact that each node is supposed 

be a coarse-grain computer vision, or deep-learning computation kernel, representing 

thousands or millions of instructions. Task/Actor granularity is an essential concern when 

building dataflow-based software adaptation, as it influences both programming languages 

and intermediate representations. 

In SDF graphs, data-parallelism comes implicitly from the property of the graph to have 

non-unitary data rates, allowing for each computation kernel to be further parallelized 

because they do not require the full data to fire. As a consequence of its srDAG 

representation with unitary tokens, the OpenVX standard mostly relies on task parallelism. 

Other runtimes exist, such as StarPU [Augonnet’11] or XKaapi [Gautier’13], that 

manipulate task graphs.  Similarly to OpenVX, StarPU and XKaapi use a DAG dataflow 

model to schedule the different tasks. The main difference between these  runtime systems 

lies in the used  scheduling policies. While StarPU uses a Heterogeneous Earliest-Finish-

Time (HEFT) scheduling [Topcuoglu’02] algorithm, XKaapi uses a work-stealing based 

scheduling .  

StarPU and XKaapi mainly focus on High Performance Computing (HPC) applications ran 

on heterogeneous architectures composed of networked multi-core CPUs and GPUs 
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whereas the OpenVX main focus is on embedded computer vision applications. It is 

important to note that contrary to OpenVX, StarPU schedules the application graph at the 

same time the graph is constructed, thus limiting its vision of the full application for 

resources allocation decisions and making greedy algorithms compulsory. 

To limit the explosion of nodes in the SRDAG transformation, clustering of the original 

SDF graph is proposed in [Pino 1995], where four clustering criteria are identified. These 

clustering criteria provide sufficient conditions for checking the introduction of deadlocks 

in resulting clustered graph. Pino et al. then propose a hierarchical scheduling algorithm 

and shows that clustered SDF graph result in faster scheduling with very low impact on the 

obtained makespan compared to scheduling the full SRDAG.  Using a MoC that is 

hierarchical and compositional by nature, as in the Interfaced Based Synchronous Dataflow 

(IBSDF) MoC [Piat’09] or the PiSDF MoC removes the need of the clustering step and the 

hierarchical scheduling algorithm may be used directly.  

Another approach to avoid the full-expansion of the srDAG is called the vectorization of 

the SDF graph [Ritz 2993]. In the work of Ritz et al., optimal vectorization of the SDF 

graph is achieved by multiplying the rates of the original graph by integers resulting in less 

invocation of the actors of the SDF graph. A Partial Expansion Graph (PEG) formulation 

[Zaki’17] provides a framework in which vectorization of actors is integrated efficiently 

for multiprocessor scheduling context. Zaki et al. use Particle Swarm Optimization (PSO) 

to find and adjust the amount of expansion, or vectorization, of the actors of the graph. In 

the CERBERO adopted approach, fast heuristics are developed based on the topological 

structure of the graph in order to achieve vectorization of actors at the scheduling level. 

Schedule-Extended SDF graphs [Damavandpeyma’13] constitute another class of SDF 

graphs that aims at providing a more compact representation for throughput analysis and 

buffer sizing than srDAGs.  Damavandpeyma et al. show that encompassing scheduling 

information directly into the original SDF graph significantly reduces time for iterative 

throughput and buffer sizes analysis. Additionally, authors show that srDAG 

representations may lead to overestimated buffer sizes compared to applying same 

technique on schedule-extended SDF graphs. Authors also mention that construction time 

of the srDAG is very low compared to the analysis time. Although this is true in the context 

of static analysis at compile time, the same assumption can not be made when construction 

of srDAG is performed at runtime.   

All existing works presented in this section show that using an srDAG transformation for 

scheduling and analysis of dataflow graphs is the most classical approach. srDAG offers a 

complete exposure of task and data parallelism available in the application. However, most 

of the presented work use static dataflow MoCs and srDAG computation time is neglected, 

as it can be computed at compile time.  In the context of a reconfigurable MoC such as the 

PiSDF MoC, embedded runtimes need to compute srDAG on-the-fly and this 

transformation may have a significant impact on application performance, especially in the 

context of embedded platforms. 

4.4. CERBERO Advances in Software Adaptation 

Building the srDAG from an SDF or hierarchically modeled application to feed runtime 

management does not always provide the best performance. The resulting srDAG graph 

often contains more parallelism than what can actually be exploited by the targeted 
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architecture. Moreover, the exponential growth of the SRDAG with respect to the original 

SDF graph increases the complexity of scheduling algorithms for MPSoC platforms.  

In this context, the CERBERO software adaptation method and tooling aim at building a 

srDAG-free adaptation method and confront it to the srDAG-based State of the Art runtime 

management strategy in terms of resources and time behavior. A tunable numerical model 

of the SR-DAG is introduced which allows for faster scheduling, less overhead and more 

flexibility. This model is compared to current approach on various real case computer 

vision and machine learning applications. This work is currently under submission. 
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5. Sensor Adaptation 

Here we consider sensor adaptation based on fusion of information from multiple sensors. 

Specifically, using sensor fusion to enable adaptivity. Information from multiple sources 

is combined into a unified space in order to paint a more accurate picture of observed 

phenomena and make better decisions.    

5.1. State of the Art: Sensor Adaptation outside CERBERO 

The state of the art in sensor fusion and adaptation is usually based on methods presented 

in D4.3, such as: 

• Central limit theorem 

• Kalman filter 

• Bayesian networks 

• Dempster-Shafer 

• Convolutional neural network 

Here we present a few recent advances in state-of-the-art in sensor fusion and adaptation 

in the context of unmanned vehicles and robotics.  

Manzanilla et al. [Manzanilla’2019] used extended Kalman filter (EKF) to fuse visual 

information with data from an inertial measurement unit, in order to recover the scale of 

the map and improve the pose estimation. A proportional integral derivative controller with 

compensation of the restoring forces was proposed to accomplish trajectory tracking, 

where a pressure sensor and a magnetometer provided feedback for depth control and yaw, 

respectively, while the remaining states were provided by the EKF. 

Research presented in [Devassykutty’2018] addresses an unconventional approach for 

localizing underwater robots through sensor fusion and inverted Long Baseline (LBL) 

method. The output of the localization algorithm is combined with Inertial Navigation 

System (INS) readings by an unscented Kalman Filter.  

Valenti et al. [Valenti’18] presents a combination of techniques enabling vision-based 

autonomous Unmanned Aerial Vehicle (UAV) systems. Various computer vision 

processing algorithms are used to exploit visual information to simultaneously perceive 

obstacles and refine localization in a GPS-denied environment. An omni-directional stereo-

vision based setup is used to build a 3D representation of the surroundings. 

The use of multiple visual sensors, which produce images of a scene taken at different 

viewpoints requires representing them first in the common plane. This process, referred to 

as image rectification, is needed before fusing the information from different sources.  

Current approaches to image rectification are mainly based on keypoints matching for un-

calibrated cameras, and chessboard rectification for the calibrated case. These methods do 

not always guarantee good results and the rectification process often needs to be repeated. 

This in turn makes the process time consuming and to some degree manual.  

Ciurea et al. [Ciurea’16] proposed a method to automatically detect and correct for errors 

in geometric calibration in camera arrays. They exploit the redundancy of a camera array 

system to recover from the variation of calibrated parameters. 

https://en.wikipedia.org/wiki/Central_limit_theorem
https://en.wikipedia.org/wiki/Kalman_filter
https://en.wikipedia.org/wiki/Bayesian_network
https://en.wikipedia.org/wiki/Dempster%E2%80%93Shafer_theory
https://en.wikipedia.org/wiki/Convolutional_neural_network


H2020-ICT-2016-1-732105 - CERBERO 

WP4 – D4.1: CERBERO Multi-Layer Adaptation Strategies (Final version) 

Page 27 of 36 

A new rectification algorithm was proposed for uncalibrated stereo images by Ko et al. 

[Ko’17]. It adopts a generalized homography model to reduce the rectification error and 

incorporates several practical geometric distortions in the cost function as regularization 

terms, which prevent severe perspective distortions in rectified images. 

5.2. CERBERO Advances in Sensor Adaptation 

 

5.2.1 Adaptive Rectification for Visual Sensors 

Regarding CERBERO and advances in sensor adaptation, the current work focuses on 

adaptive image rectification method based on the keypoints matching approach. 

The goal is to adaptively find more and better keypoints matches to continuously improve 

the rectification results over time. This would allow for the self-correction process in the 

case when the viewpoints of the camera sensors change. This could be due to the physical 

stress or damage the sensors may sustain as a result of a rough landing on Mars surface, or 

an electric car or underwater vehicle collision with another object. 

The proposed approach is as follows. We assume that the scene is changing so the new 

keypoints can be found over a certain time period. 

(1) Keypoints detection. Detect a number of characteristic points in the images 

(keypoints) using a detector, e.g. Harris corner detector. 

(2) Keypoints description. Areas around keypoints can be described with one of 

descriptors e.g. Scale Invariant Feature Transform descriptor. 

(3) Keypoints matching. Search for the corresponding patches can be performed by 

similarity/dissimilarity measurement between descriptors e.g. Euclidean, 

Manhattan, cosine of the angle. 

(4) Removal of outliers. Apply Random Sample Consensus method to remove outliers.  

(5) Transformation to common plane. The displacement vector for each feature can be 

used to find the transformation to the common plane. 

(6) Average disparity and geometric distortions as a measure of rectification quality. 

Calculate the average pixel-wise disparity and magnitude of image distortions 

(dissimilarity between rectified and original image) as a measure of the quality of 

image rectification. 

(7) Select matched keypoints which minimize disparity and the magnitude of 

geometric distortions. Choose a minimum number of matches needed for 

perspective transformation based on the similarity measurement.  

(8) Detect new keypoints and adaptively improve the rectification results by repeating 

the  procedure until the desired rectification quality. 

The KPI measured by performance monitor is the average disparity between the images 

produced by the camera sensors, and the magnitude of the geometric distortions which is 

the dissimilarity between rectified and original image. If the KPI is above a predefined 

threshold believed to be the desired disparity and magnitude of distortions the adaptation 

manager triggers adaptation.  

 



H2020-ICT-2016-1-732105 - CERBERO 

WP4 – D4.1: CERBERO Multi-Layer Adaptation Strategies (Final version) 

Page 28 of 36 

 
Figure 6 – New Adaptive Image Rectification 

 

5.2.2 Energy-optimized Sensor-based Adaptation 

 

 
Figure 7 – Sensor-Based Adaptation of Heterogeneous SW 

 

Experiments have been conducted with PREESM and SPIDER tools, together with the 

PAPIFY tool, to demonstrate energy-optimized sensor-based adaptive software on a 

heterogeneous platform. The experimental setup, based on the CERBERO software 

adaptation strategy, is illustrated in Figure 7. The SPIDER adaptation manager, handling 

the parallel actors composing a PiSDF modeled application, is fed with constantly modified 

parameter values. These parameters affect the amount of processing load of the system, as 

well as the instantaneous parallelism. The SPIDER adaptation manager triggers the 

SPIDER adaptation engine that updates memory allocation for communications and 

processing elements allocation for computation. The managed application, displayed in 

white with dashed borders, itself pilots two types of sensors: 
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Exteroceptive sensors, retrieving the environment state, 

Proprioceptive sensors, retrieving the system state. 

 

In current experiments, a camera is used as an exteroceptive sensor and power and time 

sensors are used as proprioceptive sensors. These informations are fed back to the SPIDER 

adaptation manager for influencing heterogeneous SW management. 

The next table shows experimental results on the energy consumption measured per frame 

for an image filter running on an 8-core ARM big.LITTLE architecture managed by 

SPIDER. Two SPIDER cases are considered: with or without platform heterogeneity 

knowledge. SPIDER can also reconfigure between two application configurations. Having 

knowledge on the platform heterogeneity during re-mapping is demonstrated on the 

example to save between 16% and 40% of energy, while SPIDER manages to reduce 

energy when filtering effort is reduced. Code, tutorials and documentation for this 

experimentation are available on preesm.org. A video detailing the results is available at: 

http://youtu.be/a9WIucWfjkU. This setup has been demonstrated in our University Booth 

at DATE 2019. 

 

Algorithm Computational energy with 

platform heterogeneity 

information 

Computational energy without 

platform heterogeneity 

information 

Full image filter 2.35 J/frame > 4 J/frame 

Reduced image filter 1.92 J/frame 2.3 J/frame 

Table – Energy Consumption of an Image Filtering Managed by SPIDER on an 8-core 

Heterogeneous Processor. 

 

 

 

http://youtu.be/a9WIucWfjkU
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6. Adaptation Strategies in Use Cases 

This section addresses the main adaptation characteristics that will be included in the 

different use cases of the project.  

6.1. Adaptation Strategies in Planetary Exploration UC 

The Planetary Exploration use case focuses on hardware adaptation strategies to ensure the 

success of the robotic exploration mission. In this uncertain environment, different flavours 

of functional and architectural reconfiguration can be triggered. 

- Error detection and correction: the computing fabric will be able to recover from 

system malfunctions produced by radiation failures. When incorrect behavior is 

detected in one of the accelerators, this slot is reconfigured by ARTICo3 in order to 

return to its correct operation. Functional fault injection will be used to test this 

feature, as explained on D2.1. 

- Adaptive degree of ruggedization: depending on an estimation of the current 

radiation rate, ARTICo3 is capable of implementing different redundancy 

techniques (DMR, TMR) or even transferring critical execution tasks to software if 

the stringent conditions of the mission require it. 

- Optimization of computing consumption: diverse approaches of the motion 

planning algorithm are being taken into account. The ARTICo3/MDC toolchain 

will generate a CGR architecture with the available implementations of the 

accelerator to enable fast-switching between the different power-demanding 

algorithms, depending on the current operating consumption or the battery levels 

of the spacecraft. 

- Minimizing power consumption in the actuators: Besides the power 

consumption optimization of the computing platform, the energy consumed by the 

actuator joints must be minimized as well. This will be done by generating a set of 

trajectories from different random seeds for each interpolation step, and selecting 

the most power efficient one from the output of an energy model of the arm. 

- Adaptation to physical environment: the robotic arm will be equipped with a 

time-of-flight proximity sensor based on infrared laser in order to enable unknown 

obstacle detection. When the arm gets too close to a physical object, the sensor 

reading will be below the defined threshold, and the selected trajectory will 

modified in order to avoid the obstacle and safely reach the final position. 

In addition to enabling the description of both the algorithm and architecture, the 

PREESM tool provides automatic code instrumentation capabilities thanks to its 

integration with PAPIFY. The hardware and software KPIs measured from the 

performance monitors are fed to the Adaptation Manager, which evaluates the system 

itself and its environment and takes decisions, closing the adaptation loop. The 

scheduling of the system is performed by SPIDER at runtime in order to dynamically 
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manage the available hardware and software resources dedicated to the execution of 

the threads. 

 

 
Figure 8 - Simplified Planetary Exploration adaptation diagram 

6.2. Adaptation Strategies in Ocean Monitoring UC 

Ocean Monitoring employs various adaptation strategies in order to improve its 

performance. The adaptation approaches follow the CERBERO adaptation loop with 

monitors measuring KPIs and adaptation manager taking decisions about when to adapt. 

OM represents user commanded, environment triggered, and context aware adaptation. 

The following adaptation approaches are present in OM use case: 

- Context aware adaptation when pairs of lenses are chosen for different purposes. 

Different camera functionalities use different fusion strategies. 

- Environment triggered adaptation when image brightness is automatically adapted 

to changing lighting conditions.  

- User commanded adaptation when the user changes the level of image enhancement 

to improve his/her situational awareness or the capabilities of computer vision 

methods. 

- Adaptive Hybrid Image Retrieval Model where the strength between each query 

and its corresponding context is measured and used to dynamically adjust the 

weights associated with visual and textual context features.   

- Adaptation of the image rectification approach to progressively improve the 

rectification results. This is an ongoing work. 

 

6.3. Adaptation Strategies in Smart Travelling UC 

In the Smart Travelling use case the following adaptation strategies will be applied: 

• Self-adaptation through the decision support function: The decision support 

function in the Smart Travelling use case acts as the Self-Adaptation Manager, 

responsible for any required adaptation relevant for the driver. Like a software 
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agent the manager will follow the 3T model and follow the sense, plan and act 

paradigm using triggers from the car and its environment. 

• Time synchronisation: In order for DynAA to work as a system in the loop, 

adaptation are included to connect and synchronise real time sensors data to the 

simulations run inside DynAA.  

• Fusion of time-series sensor data: In order to analyse the results of the simulation 

runs, pre-processed data from all the sensors and simulation modules are fused to 

ingle synchronized time-series data set using the data fusion tool. 

• Parallel processing: to keep response times of optimization processes within 

reasonable levels, a set of parallel simulation environments were set up to spread 

the computational load. 

In order to provide immediate location feedback to the driver, an additional Human 

Machine Interface (HMI) was added to the demonstrator which will directly receive 

triggers from the SCANeR simulator to minimize delays. The triggers will be used to plot 

the car on a map, show information like battery status and visually track the executed route. 

The received triggers will be forwarded from the HMI to MECA for status monitoring of 

the car. MECA will act as the adaptation manager and use the HMI to instruct the driver to 

follow or adapt the route based on status of the environment, the car or the driver him-

/herself. The new HMI will also be used to communicate suggested adaptations from 

MECA to the driver and receive input from the driver on choices and specific preferences. 

To detect the status of the driver (tiredness level) special sensors are added to the simulator 

capable of monitoring eye and eye lid movement, which indicates the tiredness of the 

driver. MECA will use signals from this sensors to determine appropriate actions, like warn 

the driver or suggest rest or charging at next station.  

Cyber-physical systems typically require time synchronization methods in order for the 

ICT (simulated) component of the system to keep in line with the physical component. A 

plugin was developed for the DynAA simulation tool that enables this synchronization in 

a fashion similar to some co-simulation strategies [Nicolescu’07][Gomes’17] (and in fact 

was tested with exactly this application). This plugin provides both an input as well as 

output SPI. Developers using this SPI have to provide certain interfaces for their 

sensors/actuators which then subsequently can be embedded in a DynAA model. When 

implementing these time-synchronous methods we categorize them into: 

 

 

 Input to simulation Output from simulation 

Cyber is faster than physical Hold simulation until 

relevant input is available 

Buffer output until real 

world caught up with 

simulation 

Physical is faster than cyber Buffer input until 

simulation caught up with 

real world 

Problems are here 
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The first three categories are not problematic (assuming the simulation can be paused), 

since a simple solution exists in either pausing the simulation or buffering the input/output. 

These solutions are provided to the user in the form of some helper functions that 

implement the buffering and/or halting when necessary. However the real world cannot be 

paused, so in the final category where the simulation has some output, but is lagging behind 

the physical world a problem arises. Here we provide two possible ways out, and leave the 

choice open for the modeler: either the actuator throws an exception, leading to a failed 

simulation meaning that the modeler should simplify his model or run the experiment on 

more potent hardware. The other solution is to accept the lag, which under some conditions 

may be acceptable, for instance when the output is only signaling to the physical world by 

means of a flashing LED, or a display on a monitor. There is potentially a third column, in 

which there is output to the physical world, which eventually leads to input. In this situation 

accepting the delayed output is probably erratic, so one has to make sure the simulation 

outpaces the real world. 

 

 



H2020-ICT-2016-1-732105 - CERBERO 

WP4 – D4.1: CERBERO Multi-Layer Adaptation Strategies (Final version) 

Page 34 of 36 

7. References 

  

[Augonnet’11] Augonnet, C., Thibault, S., Namyst, R., & Wacrenier, P. A. (2011). StarPU: a 

unified platform for task scheduling on heterogeneous multicore architectures. 

Concurrency and Computation: Practice and Experience, 23(2), 187-198. 

[Bhattacharyya’00] Bhattacharya, B., & Bhattacharyya, S. S. (2000). Quasi-static scheduling of 

reconfigurable dataflow graphs for DSP systems. In Proceedings 11th 

International Workshop on Rapid System Prototyping. RSP 2000. Shortening 

the Path from Specification to Prototype (Cat. No. PR00668) (pp. 84-89). IEEE. 

[Bertoni’05] Guido Bertoni, Luca Breveglieri, Israel Koren, Paolo Maistri, Vincenzo Piuri: 

A Parity Code Based Fault Detection for an Implementation of the Advanced 

Encryption Standard. DFT 2002: 51-59 

[Caesar’17] CAESAR competition, https://competitions.cr.yp.to/index.html 

[CERBERO’17] http://www.cerbero-h2020.eu 

[Ciurea’16] Ciurea, F., Lelescu, D., Chatterjee, P. and Venkataraman, K., 2016. Adaptive 

Geometric Calibration Correction for Camera Array. Electronic 

Imaging, 2016(13), pp.1-6. 

[Damavandpeyma‘13] Damavandpeyma, M., Stuijk, S., Basten, T., Geilen, M., & Corporaal, H. 

(2013). Schedule-extended synchronous dataflow graphs. IEEE Transactions 

on Computer-Aided Design of Integrated Circuits and Systems, 32(10), 1495-

1508. 

[Devassykutty’18] Edwin Devassykutty and Gunnar Brink. 2018. Evaluation of High Precision 

Localization Approach for a Fleet of Unmanned Deep Ocean Vehicles. 

In Proceedings of the 2nd International Symposium on Computer Science and 

Intelligent Control (ISCSIC '18). ACM, New York, NY, USA, Article 35, 6 

pages. 

[De Dinechin’13] De Dinechin, B. D., de Massas, P. G., Lager, G., Léger, C., Orgogozo, B., 

Reybert, J., & Strudel, T. (2013). A distributed run-time environment for the 

kalray mppa®-256 integrated manycore processor. Procedia Computer 

Science, 18, 1654-1663. 

[Desnos’13] Desnos, K., Pelcat, M., Nezan, J. F., Bhattacharyya, S. S., & Aridhi, S. (2013, 

July). Pimm: Parameterized and interfaced dataflow meta-model for mpsocs 

runtime reconfiguration. In 2013 International Conference on Embedded 

Computer Systems: Architectures, Modeling, and Simulation (SAMOS) (pp. 

41-48). IEEE. 

[Dworkin’01] Recommendation for Block Cipher Modes of Operation: Galois/Counter Mode 

(GCM) and GMAC, https://csrc.nist.gov/publications/detail/sp/800-38d/final 

Dworkin’07] Recommendation for Block Cipher Modes of Operation: Galois/Counter 

Mode (GCM) and GMAC, https://csrc.nist.gov/publications/detail/sp/800-

38d/final 

[Fanni’18] Tiziana Fanni, Alfonso Rodríguez, Carlo Sau, Leonardo Suriano, Francesca 

Palumbo, Luigi Raffo and Eduardo de la Torre, “Multi-Grain Reconfiguration 

for Advanced Adaptivity in Cyber-Physical Systems”. 2018 International 

Conference on ReConFigurable Computing and FPGAs (ReConFig’18). 

December 2018. doi: 10.1109/RECONFIG.2018.8641705 

http://www.cerbero-h2020.eu/
https://csrc.nist.gov/publications/detail/sp/800-38d/final


H2020-ICT-2016-1-732105 - CERBERO 

WP4 – D4.1: CERBERO Multi-Layer Adaptation Strategies (Final version) 

Page 35 of 36 

[Fradet 2012] Fradet, P., Girault, A., & Poplavko, P. (2012, March). SPDF: A schedulable 

parametric data-flow MoC. In Proceedings of the Conference on Design, 

Automation and Test in Europe (pp. 769-774). EDA Consortium. 

[Fuchs’18] C. M. Fuchs, N. M. Murillo, A. Plaat, E. van der Kouwe and P. Wang, "Towards 

Affordable Fault-Tolerant Nanosatellite Computing with Commodity 

Hardware," 2018 IEEE 27th Asian Test Symposium (ATS), Hefei, 2018, pp. 127-

132. doi: 10.1109/ATS.2018.00034  

[Gautier’13] Gautier, T., Lima, J. V., Maillard, N., & Raffin, B. (2013, May). Xkaapi: A 

runtime system for data-flow task programming on heterogeneous 

architectures. In 2013 IEEE 27th International Symposium on Parallel and 

Distributed Processing (pp. 1299-1308). IEEE. 

[Gomes’17]  

 

Gomes, C., Thule, C., Broman, D., Larsen, P. G., & Vangheluwe, H. (2017). 

Co-simulation: State of the art. arXiv preprint arXiv:1702.00686. 

[Heulot’14] Heulot, J., Pelcat, M., Desnos, K., Nezan, J. F., & Aridhi, S. (2014, September). 

Spider: A synchronous parameterized and interfaced dataflow-based rtos for 

multicore dsps. In 2014 6th European Embedded Design in Education and 

Research Conference (EDERC) (pp. 167-171). IEEE. 

[Keinert 2006] Keinert, J., Haubelt, C., & Teich, J. (2006, May). Modeling and analysis of 

windowed synchronous algorithms. In 2006 IEEE International Conference on 

Acoustics Speech and Signal Processing Proceedings (Vol. 3, pp. III-III). IEEE. 

[Ko’17] Ko, H., Shim, H.S., Choi, O. and Kuo, C.C.J., 2017. Robust uncalibrated stereo 

rectification with constrained geometric distortions (USR-CGD). Image and 

Vision Computing, 60, pp.98-114. 

[Lee 1987] Lee, E. A., & Messerschmitt, D. G. (1987). Synchronous data flow. Proceedings 

of the IEEE, 75(9), 1235-1245. 

[Le-Lann’18] J.C. Le Lann, T. Bollengier, M. Najem and L. Lagadec, "An Integrated 

Toolchain for Overlay-centric System-on-chip," 2018 13th International 

Symposium on Reconfigurable Communication-centric Systems-on-Chip 

(ReCoSoC), Lille, 2018, pp. 1-8. doi: 10.1109/ReCoSoC.2018.8449388  

[Liu’18] L. Liu, Z. Li, C. Yang, C. Deng, S. Yin, and S.Wei. “HReA: An energy-efficient 

embedded dynamically reconfigurable fabric for 13-dwarfs processing”. IEEE 

Transactions on Circuits and Systems II: Express Briefs, 65(3):381–385, March 

2018. 

[Manzanilla’19] A. Manzanilla, S. Reyes, M. Garcia, D. Mercado and R. Lozano, "Autonomous 

Navigation for Unmanned Underwater Vehicles: Real-Time Experiments Using 

Computer Vision," in IEEE Robotics and Automation Letters, vol. 4, no. 2, pp. 

1351-1356, April 2019 

[Merchant’10]  

 

S. G. Merchant and G. D. Peterson, “Evolvable block-based neural network 

design for applications in dynamic environments,” VLSI Des., vol. 2010, 2010. 

[Nicolescu’07] Nicolescu, G., Boucheneb, H., Gheorghe, L., & Bouchhima, F. (2007). 

Methodology for efficient design of continuous/discrete-events co-simulation 

tools. High Level Simulation Languages and Applications-HLSLA. SCS, San 

Diego, CA, 172-179. 

[Piat’09] Piat, J., Bhattacharyya, S. S., & Raulet, M. (2009, October). Interface-based 

hierarchy for synchronous data-flow graphs. In 2009 IEEE Workshop on Signal 

Processing Systems (pp. 145-150). IEEE. 

[Pino’95] Pino, J. L., Bhattacharyya, S. S., & Lee, E. A. (1995). A hierarchical 

multiprocessor scheduling framework for synchronous dataflow graphs. 



H2020-ICT-2016-1-732105 - CERBERO 

WP4 – D4.1: CERBERO Multi-Layer Adaptation Strategies (Final version) 

Page 36 of 36 

Electronics Research Laboratory, College of Engineering, University of 

California. 

[Rainey 2014] Rainey, E., Villarreal, J., Dedeoglu, G., Pulli, K., Lepley, T., & Brill, F. (2014). 

Addressing system-level optimization with OpenVX graphs. In Proceedings of 

the IEEE Conference on Computer Vision and Pattern Recognition Workshops 

(pp. 644-649). 

[Regazzoni’12] Francesco Regazzoni, Luca Breveglieri, Paolo Ienne, and Israel Koren. 

Interaction between fault attack countermeasures and the resistance against 

power analysis attacks. In Marc Joye and Michael Tunstall, editors, Fault 

Analysis in Cryptography, chapter 15, pages 257–72. Springer, 2012 

[Ritz’93] Ritz, S., Pankert, M., Zivojinovic, V., & Meyr, H. (1993, October). Optimum 

vectorization of scalable synchronous dataflow graphs. In Proceedings of 

International Conference on Application Specific Array Processors (ASAP'93) 

(pp. 285-296). IEEE. 

[Rodríguez’18] Alfonso Rodríguez and Tiziana FANNI, DEMO: “Multi-Grain Adaptivity in 

Cyber-Physical Systems”. Special Session on Energy Efficient Cyber Physical 

Systems held at the 30th International Conference on Microelectronics 

(ICM’18). December 2018. Proceedings in press. 

  

[Topcuoglu’02] Topcuoglu, H., Hariri, S., & Wu, M. Y. (2002). Performance-effective and low-

complexity task scheduling for heterogeneous computing. IEEE transactions on 

parallel and distributed systems, 13(3), 260-274. 

[Valenti’18]  

 
F. Valenti, D. Giaquinto, L. Musto, A. Zinelli, M. Bertozzi and A. Broggi, 

"Enabling Computer Vision-Based Autonomous Navigation for Unmanned 

Aerial Vehicles in Cluttered GPS-Denied Environments," 2018 21st 

International Conference on Intelligent Transportation Systems (ITSC), Maui, 

HI, 2018, pp. 3886-3891. 

[Wu’18] Wu, J., Blattner, T., Keyrouz, W., & Bhattacharyya, S. S. (2018, March). A 

design tool for high performance image processing on multicore platforms. In 

2018 Design, Automation & Test in Europe Conference & Exhibition (DATE) 

(pp. 1304-1309). IEEE. 

[Zaki’17] Zaki, G. F., Plishker, W., Bhattacharyya, S. S., & Fruth, F. (2017). 

Implementation, scheduling, and adaptation of partial expansion graphs on 

multicore platforms. Journal of Signal Processing Systems, 87(1), 107-125. 

[Zamacola’18] R. Zamacola, A. G. Martínez, J. Mora, A. Otero, and E. D. La Torre, 

“IMPRESS : Automated Tool for the Implementation of Highly Flexible Partial 

Reconfigurable Systems with Xilinx Vivado,” 2018. 

 

 


