
Information and Communication Technologies (ICT)

Programme

Project No: H2020-ICT-2016-1-732105

D4.1: CERBERO Multi-Layer

Adaptation Strategies (Final version)

Lead Beneficiary: UPM

Workpackage: WP4

Date: April 2019

Distribution - Confidentiality: [Public]

Abstract:

This document contains technical information on the different strategies to support

adaptivity at hardware-, software- and sensor-level in CERBERO-compliant systems. It

follows an incremental approach, showing a summary of the results reported in D4.3

(M15), and the new results and achievements since then.

Ref. Ares(2019)4139810 - 30/06/2019

H2020-ICT-2016-1-732105 - CERBERO

WP4 – D4.1: CERBERO Multi-Layer Adaptation Strategies (Final version)

Page 2 of 36

© 2017 CERBERO Consortium, All Rights Reserved.

H2020-ICT-2016-1-732105 - CERBERO

WP4 – D4.1: CERBERO Multi-Layer Adaptation Strategies (Final version)

Page 3 of 36

Disclaimer

This document may contain material that is copyright of certain CERBERO beneficiaries,

and may not be reproduced or copied without permission. All CERBERO consortium

partners have agreed to the full publication of this document. The commercial use of any

information contained in this document may require a license from the proprietor of that

information.

The CERBERO Consortium is the following:

Num. Beneficiary name Acronym Country

1 (Coord.) IBM Israel – Science and Technology LTD IBM IL

2 Università degli Studi di Sassari UniSS IT

3 Thales Alenia Space Espana, SA TASE ES

4 Università degli Studi di Cagliari UniCA IT

5
Institut National des Sciences Appliquees de

Rennes
INSA FR

6 Universidad Politecnica de Madrid UPM ES

7 Università della Svizzera italiana USI CH

8 Abinsula SRL AI IT

9 Ambiesense LTD AS UK

10
Nederlandse Organisatie Voor Toegepast

Natuurwetenschappelijk Ondeerzoek TNO
TNO NL

11 Science and Technology S&T NL

12 Centro Ricerche FIAT CRF IT

For the CERBERO Consortium, please see the http://cerbero-h2020.eu web-site.

Except as otherwise expressly provided, the information in this document is provided by

CERBERO to members "as is" without warranty of any kind, expressed, implied or

statutory, including but not limited to any implied warranties of merchantability, fitness for

a particular purpose and non infringement of third party’s rights.

CERBERO shall not be liable for any direct, indirect, incidental, special or consequential

damages of any kind or nature whatsoever (including, without limitation, any damages

arising from loss of use or lost business, revenue, profits, data or goodwill) arising in

connection with any infringement claims by third parties or the specification, whether in

an action in contract, tort, strict liability, negligence, or any other theory, even if advised

of the possibility of such damages.

The technology disclosed herein may be protected by one or more patents, copyrights,

trademarks and/or trade secrets owned by or licensed to CERBERO Partners. The partners

reserve all rights with respect to such technology and related materials. Any use of the

protected technology and related material beyond the terms of the License without the prior

written consent of CERBERO is prohibited.

http://cerbero-h2020.eu/

H2020-ICT-2016-1-732105 - CERBERO

WP4 – D4.1: CERBERO Multi-Layer Adaptation Strategies (Final version)

Page 4 of 36

Document Authors

The following list of authors reflects the major contribution to the writing of the document.

Name(s) Organization Acronym

Alfonso Rodríguez, Leonardo Suriano, Rafael Zamacola,

Andrés Otero and Eduardo de la Torre

UPM

Tiziana Fanni UNICA

Francesca Palumbo UNISS

Florian Arrestier, Maxime Pelcat and Karol Desnos INSA

Francesco Regazzoni USI

Coen Van Leeuven, Joost Adriaanse, Julio de Oliveira Filho TNO,

Leszek Kaliciak, Hans Myrhaug, Stuart Watt, Ayse Goker Ambiesense

Pablo Sánchez de Rojas TASE

Michael Masin IBM

The list of authors does not imply any claim of ownership on the Intellectual Properties described

in this document. The authors and the publishers make no expressed or implied warranty of any

kind and assume no responsibilities for errors or omissions. No liability is assumed for incidental

or consequential damages in connection with or arising out of the use of the information contained

in this document.

Document Revision History

Date Ver. Contributor (Beneficiary) Summary of main changes

14/02/2019 0.1 UPM Initial draft and ToC

04/03/2019 0.2 UNICA Integrated contribution on Multi-

grain adaptivity

04/04/2019 0.3 INSA Integrated contribution on SW

adaptation

12/04/2019 1.0 All First version issued with all

contributions included

16/04/2019 1.1 USI contrib. on security

Bibliography update,

First review round

Section on security added,

INSA

UNISS (F. Palumbo)

24/04/2019 1.2 Revisions on the overall

document and minor

corrections

UNISS (F. Palumbo), UNICA

(T.Fanni), UPM (E. de la Torre)

25/04/2019 1.2 Minor updates after revisions AS

26/04/2019 1.3 Final revision UPM

H2020-ICT-2016-1-732105 - CERBERO

WP4 – D4.1: CERBERO Multi-Layer Adaptation Strategies (Final version)

Page 5 of 36

30/04/2019 1.4 Preparation for submission IBM

07/05/2019 1.5 Incorporation of missing

contribution from INSA on

Section 5.2.2

INSA

H2020-ICT-2016-1-732105 - CERBERO

WP4 – D4.1: CERBERO Multi-Layer Adaptation Strategies (Final version)

Page 6 of 36

Table of contents

1. Executive Summary ... 7
1.1. Structure of Document ... 7
1.2. Relation with CERBERO Requirements .. 7
1.3. Related Documents .. 8

2. Overall Adaptation Strategies ... 9
2.1. The CERBERO Adaptation Components ... 9
2.2. The CERBERO Adaptation Components .. 10

3. Hardware Adaptation .. 11
3.1. State of the Art: Hardware Adaptation outside CERBERO 11
3.2. CEBERO Advances in Hardware Adaptation .. 12
3.2.1. ARTICo3 – MDC integrated adaptation ... 12
3.2.2. JIT composition of HW .. 15
3.3. Adaptation Strategies for security and reliability ... 19

4. Software Adaptation .. 21
4.1. State of the Art: Software Adaptation outside CERBERO 21
4.2. Challenges .. 21
4.3. State of the Art .. 22
4.4. CERBERO Advances in Software Adaptation ... 24

5. Sensor Adaptation .. 26
5.1. State of the Art: Sensor Adaptation outside CERBERO ... 26
5.2. CERBERO Advances in Sensor Adaptation.. 27

6. Adaptation Strategies in Use Cases ... 30
6.1. Adaptation Strategies in Planetary Exploration UC .. 30
6.2. Adaptation Strategies in Ocean Monitoring UC .. 31
6.3. Adaptation Strategies in Smart Travelling UC .. 31

7. References ... 34

H2020-ICT-2016-1-732105 - CERBERO

WP4 – D4.1: CERBERO Multi-Layer Adaptation Strategies (Final version)

Page 7 of 36

1. Executive Summary

This document complements D4.3 – CERBERO Multi-Layer Adaptation Strategies (Ver.

1), where the overall adaptation scenario for the CERBERO project, as well as its main

components are presented. Adaptation is addressed in three different fabrics: hardware-

based processing, software-based processing and sensor layer. Moreover, and coupled with

each of these fabrics, there is a set of adaptation engines that are in charge of enforcing all

adaptation decisions made by the CERBERO Self-Adaptation Manager. This is achieved

by actively changing the working point of the computing/sensor fabrics.

The approach followed in this document revises the State of the Art to complement the

original prospections, and thoroughly documents all extensions and new developments

made on each of the adaptation fabrics/engines.

Please, note that, for complete understanding, this document is to be read after D4.3 to get

the whole picture of the various adaptation strategies proposed and developed in the

project. Nevertheless, this D4.1 document is written to be as complete as possible.

1.1. Structure of Document

This document is meant to be an extended and updated version of D4.3, highlighting recent

updates in both the State of the Art and CERBERO developments. Section 2 presents the

updated components in the CERBERO adaptation loop, Section 3 focuses on hardware

adaptation techniques, Section 4 focuses on software adaptation techniques, and Section 5

focuses on sensor-based adaptation techniques. The document finishes with a revision of

the use of the proposed adaptation strategies on the use cases in Section 6.

1.2. Relation with CERBERO Requirements

Deliverable D2.2 of the CERBERO project defines a list of CERBERO Technical

Requirements (CTRs) the project should achieve. The CERBERO adaptation strategy, and

its related components and techniques, described in this document contribute to the

fulfilment of the mentioned requirements in the following various aspects. The table below

shows the means and the components achieved to fulfil these core requirements. The

updates with respect to the equivalent table in D4.3 are shown with underlined text.

CTR

id

CTR Description Link with the D5.6 document on CERBERO

framework components

0001 CERBERO framework

SHOULD increase the level of

abstraction at least by one for

HW/SW co-design and for

System Level Design.

The support provided by PREESM for the abstraction of SW

and HW tasks, the capability of SPIDER to decide, at

runtime, task migration between fabrics, the unified PAPI

access scheme to monitors for HW and SW are the key

contributions to this requirement.

0003 CERBERO framework

SHOULD provide incremental

prototyping capabilities for

HW/SW co-design.

Incremental prototyping capabilities are envisioned at the

tools/components level:

• MDC will be provided with an enhanced HLS support;

• DPR features will be improved thanks to JIT HW

implementation and composition tool (IMPRESS);

H2020-ICT-2016-1-732105 - CERBERO

WP4 – D4.1: CERBERO Multi-Layer Adaptation Strategies (Final version)

Page 8 of 36

• the runtime monitoring of ARTICo³, JIT HW and MDC

reconfigurable hardware accelerators will be enabled

thanks to PAPIFY integration;

• PREESM, SPIDER and PAPI will be used to drive

ARTICo³, JIT HW and MDC prototyping features.

0006 CERBERO framework

SHOULD ensure energy

efficient and dependable

HW/SW co-design using cross-

layer runtime adaptation of

reconfigurable HW.

Energy is a main KPI, and it is addressed in most of the

techniques described in this deliverable, including all HW

fabric types, SW agents, and sensor infrastructure and

physical layer.

Monitors and adaptation techniques for energy efficiency and

dependability are foreseen in the three kinds of adaptation

fabrics, also.

0009 CERBERO SHALL develop

integration methodology and

framework.

The adaptation infrastructure and the associated tools are part

of the CERBERO framework.

0014 CERBERO WP and task

leaders SHALL organize

scheduled face to face and

remote meetings.

WP4 periodic management meetings have been organised in

order to track progress, deviations and risks. Adaptation-

specific seminars have been produced externally (CPS Week

and Summer School) and internally (Haifa GA).

0016 CERBERO tools SHOULD be

tested vs state-of-the-art

Section 6 in this deliverable contains information about the

use of the various components and technologies in the three

use cases. Updated state of the art is included.

0018 CERBERO technology

providers SHALL prepare face

to face or online tutorials /

education for use case

engineers.

Tutorials on HW and SW adaptation have been prepared for

the Summer School 2017 and CPS Week 2018. Academic

engineers have received these courses in order to have

feedback. CERBERO adaptation strategy was the key topic

of a keynote in Summer School 2018.

0019 CERBERO technology

providers SHALL coordinate

technical support for their tools

with use case engineers.

A preliminary version of some of WP4-related tools

(PREESM, ARTICo3, MDC) has been delivered for the

Summer School 2017. Use case integration meetings have

been periodically achieved during the last months,

0020 CERBERO framework

SHALL provide methodology

and tools for development of

adaptive applications.

This deliverable provides information about the components

(mainly) and tools (partially) involved in the adaptivity

support.

1.3. Related Documents

• D4.3 – CERBERO Multi-Layer Runtime Adaptation Strategies (Ver. 1): the initial

version of this deliverable. It contains detailed technical information on the

different strategies to support adaptivity in CERBERO-compliant systems. D4.1

extends D4.3 to cover new developments/features and revised state of the art.

• D4.2 – CERBERO Self-Adaptation Manager (Final version): The CERBERO Self-

Adaptation Manager uses the strategies presented in D4.1 to orchestrate adaptation.

Hence, D4.1 is an input for D4.2.

• D5.2 – CERBERO Framework Components (Final version): all the specific

adaptation techniques and components described in D4.1 are bounded by specific

framework components (detailed in D5.2).

H2020-ICT-2016-1-732105 - CERBERO

WP4 – D4.1: CERBERO Multi-Layer Adaptation Strategies (Final version)

Page 9 of 36

2. Overall Adaptation Strategies

2.1. The CERBERO Adaptation Components

Figure 1 shows an updated view of the multi-layer adaptation scheme identified in

CERBERO as the background for building all dependencies and interactions between

elements. If compared with the previous figure, contributions are centred on the adaptation

to CPSoS layer, where, now, two adaptation loops (CPS and CPSoS) can be identified, and

to show the possible interactions with the Physical part.

Figure 1 – CERBERO (Self-)Adaptation Infrastructure

As it can be seen, the identification of the elements that comprise the adaptation loops at

both CPSoS and CPS level have been defined comprehensively and using the same

terminology, since we are having the intention of being able to integrate and generalise as

much as possible any type if adaptation, for any type of system, for all elements that

compose the loop and for any layer. In other words, there will always be, no matter of the

considered abstraction level, some elements that can be mapped into one the categories:

H2020-ICT-2016-1-732105 - CERBERO

WP4 – D4.1: CERBERO Multi-Layer Adaptation Strategies (Final version)

Page 10 of 36

• Adaptation Fabrics, which hold all the computing and sensing resources.

• Adaptation Monitors: they comprise hardware and software components to track

the state of the Adaptation Fabrics and of the Physical subsystem.

• Adaptation Engines are the components that drive the changes in the adaptation

Fabrics, according to decisions taken from the adaptation manager.

• Adaptation Manager: are the entities with runtime decision-making capabilities.

They uses the information provided by the Adaptation Monitors, made

comprehensive and perhaps simplified and estimated via a model, to decide

whether to trigger adaptation or not.

When putting together the adaptation loops at CPSoS and CPS level, it must be pointed out

that:

• Every CPS subsystem, considered as a single entity, acts as an adaptation fabric

for the CPSoS adaptation loop level. Therefore, individual CPSs should respond

to adaptation triggers produced by the adaptation engine at the higher level.

• The adaptation managers of single CPSs should be capable of processing the

information obtained from their own monitors in order to provide

simplified/merged/normalised/forecasted KPI information to the higher layer.

• KPI information should be obtained by aggregation or fusion of the info obtained

from individual lower layer subsystems as well as from the physical subsystem.

2.2. The CERBERO Adaptation Components

The following table identifies some of the basic components addressed in CERBERO

within this double-loop adaptation scheme.

Layer

Comp.

CPS layer CPSoS layer

Adaptation
fabric

HW fabrics SW
fabric

Sensor SW Sensor
ARTICo3 MDC JIT

Adaptation
engine

DPR
block

CGR
DPR block

+ FGR
Spider

Weights
in Fusion

Model

Adaptation
manager

Spider Spider+EA Spider DynAA

Adaptation
monitors

Papify Papify Papify Papify MECA
MECA
(user)

H2020-ICT-2016-1-732105 - CERBERO

WP4 – D4.1: CERBERO Multi-Layer Adaptation Strategies (Final version)

Page 11 of 36

3. Hardware Adaptation

his section addresses updates in the state of the art technologies due to a continuous

technology monitoring effort of the involved partners, as well as updates in the

developments achieved within the HW-based fabrics, namely, the combined granularity

achieved by combining ARTICo3 and MDC architecture types, advances in the Just-In-

Time HW composition techniques for adaptive and deterministic HW creation, and a

discussion on security and reliability related issues.

3.1. State of the Art: Hardware Adaptation outside CERBERO

Hardware adaptation is highly studied in literature, at different levels of granularity, and

D4.3 provided an overview of the studies presented at the State of the Art. This section

provides an update with the solutions presented in 2018 related to hardware adaptation and

CERBERO topics.

Le Lann at al. [Le-Lann’18] proposed Argen, an integrated toolflow for Overlay-centric

System-on-chip. The presented overlay is based on a homogenous regular array of cells

composed of several logic elements containing look-up tables and registers. The Argen

toolchain takes care of all the steps of the design flow: architectural and application design,

application mapping and synthesis, as well as final binary code generation, for both the

overlay and the application.

Liu et al. [Liu’18] proposed a hybrid-grained reconfigurable architecture (HReA) to

process 13-Dwarfs computation [Asanovic’06] (a dwarf is an algorithmic method that

captures a pattern of computation and communication). HReA combines a 32-bit Coarse-

Grained Reconfigurable (CGR) datapath with a 1-bit Fine-Grain Reconfigurable (FGR)

datapath to accommodate co-existence of multiple computing granularities in 13-Dwarfs.

The two datapaths with different granularities can interact with each other in an arithmetic

logic unit.

Fuchs et al. [Fuchs’18] presented a tiled multiprocessor system-on-a-chip (MPSoC) design

able to provide fault detection, isolation, and recovery (FDIR) for very small spacecraft.

They exploit a multi-stage fault tolerant approach that implements forward error correction

and utilizes coarse-grain lockstep of weakly coupled cores to generate a distributed

majority decision across tiles. FPGA reconfiguration is exploited to recover from upsets in

tile logic, and cover permanent faults using alternative configuration variants. If too few

healthy tiles are available due to accumulation of permanent faults, re-allocation of

resources to high-criticality applications, by sacrificing performance of lower-criticality

threads, is performed.

The research conducted on hardware adaptation outside CERBERO either consider only

one kind of adaptivity or mesh-based arrays. Both Le Lann at al. [Le-Lann’18] and Liu et

al. [Liu’18] exploits a hardware-to-application approach in which the application is

mapped on an existing regular array of homogenous processing elements, and

reconfiguration is based only on virtual reconfiguration (multiplexing resources in time by

means of multiplexers). Furthermore, none of them address repair-oriented adaptivity.

While Fuchs et al. presented a reconfigurable architecture to provide fault tolerance, but

H2020-ICT-2016-1-732105 - CERBERO

WP4 – D4.1: CERBERO Multi-Layer Adaptation Strategies (Final version)

Page 12 of 36

they do not address any other type of adaptivity, neither they provide hardware

accelerations.

3.2. CERBERO Advances in Hardware Adaptation

Hw-Adaptation in CERBERO is supported by the ARTICo3, MDC and Just-In-Time (JIT)

composable HW overlays. ARTICo3 and MDC support DPR (Dynamic and Partial

Reconfiguration) at block-level and CGR (Coarse-Grain Reconfiguration) respectively.

The combination of ARTICo3 and MDC offer a new level of flexibility implementing a

multi-grain heterogenous reconfigurable fabric.

MDC accelerators have been embodied into ARTICo3 wrappers and set as new ARTICo3

compatible HW accelerators that may be configured to obtain HW scalability (ARTICo3

feature), dynamic fault tolerance (ARTICo3), and fast functional and non-functional

adaptive ity (MDC feature) with HW reuse (MDC feature). The availability of previous

results before CERBERO in ARTICo3and MDC, together with the work achieved in T4.3,

allowed a successful integration of the tools and the development of a consistent

methodology to support the combined granularities from both approaches.

Just-In-Time composition, on the other side, was identified since the very beginning as a

less mature approach, with associated risks and challenges, that invited at the moment of

writing the CERBERO proposal to go for a longer-term integrated architecture and

toolflow. In few words, JIT composable HW offers yet another degree of reconfiguration

(we call it fine-grain), and requires the definition of, on one side, new tools to support it

(IMPRESS, [Zamacola’18]) and, on the other side, two design approaches to make designs

on top of them:

• A deterministic circuit design method, based on intermediate representations and

mapping into HW blocks.

• An iterative approach based on training/evolutionary methods on which the circuit

is obtained by composition of blocks whose global functionality is verified

against an objective function to be optimized in order to obtained a circuit that

matches as much as possible the expected behavior for the system at hand.

ARTICo3 – MDC is reported in section 3.2.1, whereas the advances in JIT composition

(mainly on the iterative approach) are shown on section 3.2.2.

3.2.1. ARTICo3 – MDC integrated adaptation

With respect to the State of the Art, the hardware adaptivity provided in CERBERO is

based on the multi-grain reconfiguration, given by the combination of ARTICo3 framework

and MDC tool. Practically speaking, in terms of architecture, depicted at the bottom Figure

2, MDC compliant accelerators (as those reported in D4.3) are wrapped within ARTICo3

slots (described in D4.3 as well). This type of integration delivers the best of both CGR

and DPR approaches into an adaptive multi-grain heterogenous reconfigurable fabric,

which can meet the changing of functional, non-functional and repair-oriented

requirements of CPS designs. Moreover, with respect to the above-mentioned works in

literature, the CERBERO approach is not simply meant to provide a novel architecture,

H2020-ICT-2016-1-732105 - CERBERO

WP4 – D4.1: CERBERO Multi-Layer Adaptation Strategies (Final version)

Page 13 of 36

rather it aims at offering support the design of the different parts of the system, their

deployment and runtime management [Fanni’18] [Rodríguez’18].

The hardware generation flow starts from high-level dataflow descriptions of the

configurations/behaviors to be implemented in the configurable logic, and the integrated

toolchain derives the corresponding CGR HDL computational kernel, properly wrapping

it with the glue logic necessary to serve as an ARTICo3 DPR reconfigurable partition. Both

reconfiguration mechanisms are transparently managed by the user code running in a host

processor. With respect to the standalone MDC and ARTICo3 flows, an adaptation step

(Kernel Adapter) is needed to make the MDC-generated kernels compliant with kernels

expected by ARTICo3 Wrapper Automation step.

Figure 2 illustrates the whole MDC-ARTICo3 design flow, through a Step-by-Step

example that considers three input dataflow networks. (1) Firstly, MDC merges the user-

defined dataflow specifications and generates the CGR computing core as described in

D5.6. (2) Then, the generated mm-TIL is modified by the Kernel Adapter which delivers

an HDL ARTICo3-compliant CGR kernel. (3) Finally, the ARTICo3 framework processes

the input HDL CGR kernel to implement the whole reconfigurable processing system (see

D5.6 for details on ARTICo3 framework). (4) The bottom part of Figure 2 depicts an

example of multi-grain reconfiguration. In this example the CGR approach offered by

MDC is exploited for low-power fast-switching of functionality, while the DPR supported

by ARTICo3 is exploited for changing the number of slots working in parallel to increase

the throughput or provide fault tolerance.

H2020-ICT-2016-1-732105 - CERBERO

WP4 – D4.1: CERBERO Multi-Layer Adaptation Strategies (Final version)

Page 14 of 36

Figure 2 - Multi-grain design flow and adaptation.

H2020-ICT-2016-1-732105 - CERBERO

WP4 – D4.1: CERBERO Multi-Layer Adaptation Strategies (Final version)

Page 15 of 36

3.2.2. JIT composition of HW

Adaptation fabric

JIT hardware composition refers to the ability to implement, at runtime, hardware

accelerators on FPGAs without a pre-synthesized design. Hardware accelerators are

mapped onto an overlay, a 2D highly regular mesh-type architecture composed by multiple

processing elements (PEs) placed on top of an FPGA. Overlays can be fixed, (i.e., they

have a predefined PE composition that cannot be changed) or can be reconfigurable (i.e.,

PEs can be reconfigured to change their functionality).

As explained in deliverable 4.3, two different methods to compose accelerators were

envisaged. A deterministic approach where a software algorithm is converted to a dataflow

graph that is mapped to the overlay, and an iterative/evolutionary approach where the

accelerator is composed using an evolutionary heuristic to find an overlay configuration

that solves a given problem (e.g., how to control a cart-pole system).

Traditional reconfigurable overlays have a predefined virtualization where specific regions

of the FPGA are reserved to allocate different PEs. Therefore, in these overlays even if the

PEs are reconfigurable, the overlay structure (i.e., mesh location, communication between

PEs, PE shapes) is fixed. For this method, we propose the use of a run-time composable

overlay. We propose to create just one reconfigurable region (which could be later on

embodied into an ARTICo3 slot) in the FPGA that defines the communication with the

static system (i.e., the rest of the design that is not reconfigured over time). This

reconfigurable region is then loaded with PEs with different shapes. These PEs interface

with other modules through their borders, thus it is possible place PEs that connect to their

neighbour PEs. This solution allows to build multiple different overlays specialized for

different application domains without being constrained to a fixed overlay architecture.

This overlay composition makes it highly recommended to use relocatable partial

bitstreams (PBS) so that one PE can be allocated in compatible FPGA regions (i.e., regions

that share the same resource footprint). Moreover, these overlays can use modules spanning

less than a clock region, therefore it is necessary to allow a finer granularity by allowing to

stack several modules in one clock region.

Currently, it is not possible to build run-time composable overlays with commercial tools.

Therefore, the first step to build these architectures has been to create IMPRESS

[Zamacola'18] (IMplementation of Partial REconfigurable SystemS) a TCL-based

reconfigurable tool which incorporates the following features: decouples the

implementation of the reconfigurable and the static system, allows RM to RM

communication, enables hierarchical reconfiguration, RM reallocation, and makes it

possible to stack multiple RPs in the same vertical columns, within the same clock region.

All these features enable just-in-time overlay composition.

There is, however, one big limitation of these run-time composable mesh-type overlays.

This is how to access inner PEs (that do not have a direct connection with the static system)

in the mesh to change hardwired parameters, datapath or even functionality in a fast way

without having to reconfigure the entire PE. To tackle this problem IMPRESS have been

incremented with LUT-based reconfiguration. Several LUT-based parameterized

components have been created, so that the user can instantiate them in their HDL (hardware

description language) PEs. The available LUT-based components are: a constant,

multiplexer and a functional unit that can implement several functions. Once the user

H2020-ICT-2016-1-732105 - CERBERO

WP4 – D4.1: CERBERO Multi-Layer Adaptation Strategies (Final version)

Page 16 of 36

instantiates them in their PEs, IMPRESS is in charge of packing all the LUTs in the

minimum number of columns. These components can be reconfigured at run-time in a fast

way as only the LUT truth tables need to be reconfigured while the rest of the PE is left

unaltered.

The first overlay built using just-in-time HW composition tools is a block-based neural

network (BBNN). BBNNs are highly regular 2D architectures in where each PE can

contain 1 one to 3 neurons of the network. Differently to classical neural networks the

structure of the network is not fixed as each cell can adopt multiple configurations (i.e., it

can be connected with different blocks and use a variable number of cells). Therefore,

training of these neural networks works not only to obtain a set of weights and bias for

each cell but also a specific network configuration. BBNNs can be considered as a specific

case of JIT hardware composition based on the iterative/evolutionary approach. In this case

instead of changing between different processing elements, we reconfigure each cell

parameters (i.e., weights, bias and cell type).

The proposed BBNN shown in Figure 3 is based on the proposals in [2], however the cell

structure has been modified to reduce resource usage. To that end, only one DSP is used

for MAC (multiply and accumulation) operation. There is one FSM (finite state machine)

that controls the operation of the cell which has a latency of seven cycles. The neural

network is constructed using JIT in time HW composition by composing the BBNN cells

in an initially empty reconfigurable region. The configurable parameters of the cell (i.e.,

weights, bias and cell type) are implemented with reconfigurable LUT-based components.

The proposed BBNN is trained using an evolutionary algorithm that tries different

solutions until finding a valid one. The main benefit of using an evolutionary algorithm

instead of gradient-based algorithm is that online training is possible as we use the same

processing array for the training and inference phases. The BBNN has been used to solve

control problems. The cart-pole and mountain car python simulation provided by the

openAI framework have been used to show the effectiveness of the proposed solution.

Figure 3 - block-based neural network structure

H2020-ICT-2016-1-732105 - CERBERO

WP4 – D4.1: CERBERO Multi-Layer Adaptation Strategies (Final version)

Page 17 of 36

Regarding the deterministic just-in-time HW composition approach we can distinguish

three steps: dataflow graph extraction, overlay design and lastly the place & route of the

dataflow graph onto the overlay. The first step, the dataflow graph extraction, has been

realized in two steps. First, from a SW description the LLVM intermediate representation

(IR) is obtained and then the dataflow graph is extracted. There are still improvements to

achieve in this step like support loop unrolling and if to multiplexer conversions in LLVM

IR code. The overlay design and place & route steps will be tackled in the following

months.

Fine-Grain Adaptation engine

This subsection addresses the new type of reconfiguration granularity that complements

the block-based one (used in ARTICo3)

IMPRESS not only provides support for generating the static system and reconfigurable

processing elements (PEs). It also provides run-time support (adaptation engine) to

compose overlays at run-time. This adaptation engine is made of one software layer that

provides an API to compose overlay at run-time and two reconfiguration engines (REs). A

reconfiguration engine is a component in charge of reconfiguring the FPGA configuration

memory to modify the circuit implementation. The proposed adaptation engine is

composed of two different REs. The first one is a generic SW-based RE that is in charge

of changing entire reconfigurable PEs using the PCAP reconfiguration port while the

second one is a specialized RE implemented in HW that can rapidly reconfigure LUT-

based components using the ICAP reconfiguration port.

Figure 4 - Adaptation engine for JIT HW composition

H2020-ICT-2016-1-732105 - CERBERO

WP4 – D4.1: CERBERO Multi-Layer Adaptation Strategies (Final version)

Page 18 of 36

Figure 4 shows an overview of the adaptation engine. The SW layer is composed of three

main components:

• A PE library: this library is made by the user at design time and contains all the

different elements that are available for composing different overlays at run-time.

Each element of the library contains the information on PE size, partial bitstream

and reconfigurable LUT-based components used inside the PE. This library can be

visualized as the pieces (PEs) that can be used to make different puzzles (overlays).

• 2D virtual architecture: this matrix variable is an internal representation of the

overlay implemented in the FPGA. Each element has information on the PE

location and a pointer to a specific PE from the PE library. Once an element of the

matrix is updated with a new PE, the new PE partial bitstream is sent to the generic

SW-based reconfiguration engine. Therefore, the internal matrix representation

always resembles the implemented overlay. It is the responsibility of the user to

ensure that the processing elements have compatible interfaces with the neighbour

PEs.

• LUT-based component representation: these variables represent the configuration

of LUT-based components. As explained before, LUT-based components are

packed in columns at design time by IMPRESS. Therefore, each of these variables

represent one column filled with LUT-based components. Once the user changes a

specific component of a specific processing element of the overlay, automatically

the adaptation engine searches for the component location and modifies the affected

internal representation of the column. The user can initiate the fast LUT

reconfiguration by sending to the specialized HW-based RE each of the columns

that have been modified using an AXI lite interface.

Overlay composition procedure

The first step is to design the static system, which must contain all the elements that will

remain unaltered during the system operation. It must also include, at least, one region

reserved to implement the overlay at run-time. This region is initially empty and only

includes dummy logic instantiated by IMPRESS that interfaces with the static system.

Then, it is necessary to design all the processing elements (PEs) that can be used for overlay

composition. The PE interface is defined selecting the borders that can be used (e.g., the

north side). It is responsibility of the user to create PEs that have compatible interfaces.

Many overlays are just composed with one PE that is replicated over a lattice, in this case

it is really easy to ensure a PE design with an interface that can be replicated ensuring a

correct communication.

The previous two steps generate a full bitstream of the static system and a partial bitstream

for each PE. The user needs to fill the PE library explained in the adaptation engine section

with the information of each PE, including the information of every LUT-based component

that the PE integrates. Then the partial bitstreams are stored in an SD card and the static

bitstream is loaded into the FPGA.

Then the user can modify the matrix variable “2D virtual architecture” shown in Figure 4.

Each element of this matrix contain a location of the FPGA and pointer to a PE element

from the PE library. Once the user modifies an element, the SW-based reconfiguration

engine is used to update the configuration memory adding the selected processing element

H2020-ICT-2016-1-732105 - CERBERO

WP4 – D4.1: CERBERO Multi-Layer Adaptation Strategies (Final version)

Page 19 of 36

to the specified position. This process is repeated until all the overlay processing elements

have been reconfigured.

Once the overlay has been placed it is possible to tune LUT-based constants, multiplexers

and functional units that are part of the processing elements. The user just has to select a

specific processing element and the component to change and it new value. Automatically

the tool updates the internal frame representation of the LUT-based components updating

it with the new contents. Once the user has changed all the LUT-based components it can

send the new representation to the specialized reconfiguration engine that changes these

components using the ICAP port.

3.3. Adaptation Strategies for security and reliability

In this section we discuss how to address the security needs within CERBERO, and

adaptation and reliability are used in this context. Our security needs consist in

guaranteeing, in a reliable way, the confidentiality of the information and in providing

authentication of the message. Both requirements can be fulfilled by using authenticated

encryption algorithms. Several authenticated encryption algorithms, addressing different

goals and needs, have been proposed in the past, especially within the CAESAR contest

[Caesar’17]. The choice of the most suitable algorithm should be dictated by the needed

level of security, the required performance, and by the target power and energy

consumption. However, this choice is not always possible, since it is often imposed by a

standard to which a specific communication link must be complaint with. This is our case,

were the authenticated encryption should be provided using the AES algorithm in CRT

mode [Dworkin’01], supporting a key size of at least 128 bits, and the authenticated

encryption has to be provided by AES used in GCM [Dworkin’07] mode, with a MAC of

size 128 bit. Despite the restriction on the algorithm type, designers are still free to decide

the specific implementation strategies that are most suitable for optimizing other

parameters, such as performance, reliability, and area occupation.

Addressing these needs, we designed modular hardware accelerators and software routines

implementing the required encryption and authenticated encryption algorithm, capable of

providing reliability thanks to the appropriate error detection and correction methodology.

The parameters of the algorithm and the level of reliability can be adapted at run time.

Adaptation, in the context of security, is often considered synonymous of crypto-agility,

which, informally, is often defined as the capability of quickly switching between different

cryptography primitives and algorithms. In our context, we use adaptation to rapidly offer

the possibility of changing parameters of the algorithm under execution. In our case,

changing the parameter of the algorithm mainly means to be able to configure, at run time,

the desired length of the key. In AES changing the level of the key requires also to change

the number of rounds, and to modify the key unrolling function. These changes are handled

automatically by the architecture.

Our accelerators have to operate reliably, thus they need to provide support for detection

and correction of errors. In security error detection and correction are important for two

reasons. The first, is to guarantee the resistance of the algorithm to accidental faults. The

second is that, thanks to error detection and correction schema, it is possible to mitigate the

so called fault attacks [4] (these attacks aim at gain sensitive information from a device by

inducing it into an erroneous state and by analyzing the difference between the correct and

H2020-ICT-2016-1-732105 - CERBERO

WP4 – D4.1: CERBERO Multi-Layer Adaptation Strategies (Final version)

Page 20 of 36

the wrong execution). Several fault detection and correction have been proposed for AES,

which is our target algorithm, and for block ciphers in general. Proposes schema range

from a simple parity bit, added at a granularity of a byte [Bertoni’05], to more complex

codes capable of providing also correction [Regazzoni’12].

We augmented our accelerators with different algorithm for detection and correction of

errors. This support for reliability is modular and can be activated at run time. Depending

on the desired level of reliability, our design can provide simple error detection capability

using a single bit of parity or much more complex correction capability using an advanced

hamming code. The selection of the specific reliability mechanism is driven by a trigger

that can come from an internal monitor (in case complete insulation of the cryptographic

module is required) or can come from an external monitor.

Despite designed for the AES algorithm, the proposed modular approach is sufficiently

generic for being applied to any block ciphers. To demonstrate this fact, we used the same

methodology to realize a modular and adaptable accelerator for lightweight algorithms. We

focused on lightweight algorithm as second case of study because they are used in resource

constrained designs (as several CPSs are) and because they will be soon standardized. In

the next months, the designed architecture will be demonstrated within the CERBERO use

case.

H2020-ICT-2016-1-732105 - CERBERO

WP4 – D4.1: CERBERO Multi-Layer Adaptation Strategies (Final version)

Page 21 of 36

4. Software Adaptation

4.1. State of the Art: Software Adaptation outside CERBERO

In this section, we first present the main challenges addressed on software adaptation

within the CERBERO project. Then, we present existing techniques and frameworks in the

context of reconfigurable dataflow MoCs, and the approach chosen within the CERBERO

project to tackle the problem.

4.2. Challenges

As explained in Deliverable D3.5 on Models of Computation, the CERBERO project

develops tools and methods that rely on precise Models of Computation and Models of

Architecture in order to foster reuse and tool reusability. As for software reconfigurability,

we consider a reconfigurable dataflow MoC such as the PiSDF MoC [Desnos’13] or the

SPDF MoC [Fradet’12] for their capacity to represent a complex datapath with limited and

partly predictable control. A review of State of the Art on system reconfiguration in a

broader context can be found in D4.3 on the CERBERO Self-Adaptation Manager. This

section concentrates on parameterized dataflow-based software reconfiguration.

In the considered context, reconfigurable means that the application graph may evolve at

runtime with changes in both data rates and in the graph topology itself. The software

platform management system needs to evolve accordingly and exploit the resources of the

underlying parallel execution platform. Using a reconfigurable dataflow MoC, a full static

analysis of an application is generally not possible at compile time and needs to be handled

at runtime. For instance, the degree of parallelism or amount of exchanged data are likely

to change at runtime. However, when parameters remain static and application topology is

stable for a long time, runtime management should exploit this conservation of properties

to reduce management complexity and cost.

SPDF and PiSDF MoCs lend themselves well to quasi-static scheduling [Bhattacharyya

‘00], deriving at compile time a set of pre-computed schedules, removing a part of the

runtime overhead. Conversely, when dealing with dynamic behavior such as graph

reconfiguration, a first challenge is to perform graph analysis and scheduling of the

application with an overhead as low as possible with regard to the application execution

time. Ideally, the time allowed for those analyses should always be negligible when

compared to effective computation time.

A second challenge is on the memory footprint of the runtime manager. Analysis

techniques need to store application state information that is used only for analysis and

decision purpose.

In embedded architectures such as the Kalray MPPA manycore processor [De Dinechin

‘13], memory consumption is a major concern. The MPPA processor is exemplary of the

current challenges faced by software reconfiguration. Its architecture features 16 clusters

of 16 VLIW processing cores. Each of the clusters has a local memory of 2MB and,

although it has access to a larger external shared-memory, reading and writing to this

external memory is excessively expensive and should be avoided as much as possible. In

this context, storing additional information for analysis purpose in the runtime manager

H2020-ICT-2016-1-732105 - CERBERO

WP4 – D4.1: CERBERO Multi-Layer Adaptation Strategies (Final version)

Page 22 of 36

can result to more frequent accesses to the shared-memory and thus in a strong downgrade

of overall software performance. In the CPS context of the Cerbero project, all the

considered energy efficient software processing architectures share these concerns, i.e.

parallelism exploitation and difficult resources scheduling.

We now present a State of the Art of dataflow-based runtimes and approaches for

reconfigurable dataflow-based self-adaptation. We show that most State of the Art methods

and all available software for software adaptation from dataflow MoCs use a directed

acyclic graph intermediate representation that can raise problems in terms of data storage

and management time. A major objective of the CERBERO project software adaptation

strategy will be to free the runtime system from this intermediate representation.

4.3. State of the Art

HI-HTGS (HMBE-Integrated-HTGS) [Wu’18] is a design tool that aims at automating

analysis and optimizations of Windowed Synchronous DataFlow (WSDF) graphs [Keinert

‘06]. HI-HTGS provides a lock-free and race-condition-free scheduler that dynamically

adapts to changes in actor execution times and copes with nondeterministic characteristics

of a thread-based execution. HI-HTGS works in two distinct phases: a compile time phase

and a run-time phase. During the compile time phase, HI-HTGS builds a Single-Rate

Directed Acyclic Graph (srDAG) representation of the WSDF user graph and performs

various analysis that will serve during the run-time phase.

Figure 5 - Transformation of a hierarchical PiSDF graph into an srDAG

An srDAG, also called Acyclic Precedence Expansion Graph (APEG) [Lee 1987] is a

specialization of an SDF graph that does not contain cycles and all the data rates on edges

are unitary (i.e. carrying one data token). Figure 5 shows the transformation of a PiSDF

H2020-ICT-2016-1-732105 - CERBERO

WP4 – D4.1: CERBERO Multi-Layer Adaptation Strategies (Final version)

Page 23 of 36

graph, upper part of the figure, to the equivalent srDAG, lower part of the figure. Under

each PiSDF actor of are indicated the repetition value relatively to their containing graph.

Actors D and E have repetition vector values of 1 and 2, respectively, within 1 iteration of

actor B but a total repetition value of 2 and 4, respectively. For more details on dataflow

representation, one may refer to Deliverable D3.5 on Models of Computation.

The srDAG is useful because it exposes the available application concurrency. The

transformation to an intermediate srDAG is however very costly, as it creates one vertex

in the intermediate application graph for each execution (firing) of the corresponding task

(actor). At run-time, HI-HTGS uses the built srDAG and additional metadata of the

compile time phase to perform dynamic scheduling on a multi-core processor. However,

due to its compile time construction of the srDAG intermediate representation, HI-HTGS

can only handle static applications with constant data rates.

SPIDER [Heulot’14] is a runtime manager designed for the execution of reconfigurable

PiSDF applications on heterogeneous Multi-Processor System on Chip (MPSoC)

platforms. SPIDER manages a PiSDF graph high-level description of the application as

input. Due to the reconfigurable nature of the PiSDF MoC, SPIDER derives an SRDAG at

runtime and performs graph optimizations, mapping and scheduling of the application at

runtime, as opposed to HI-HTGS [Wu’18]. The transformation to SRDAG may take non

negligible time on reconfigurable applications with high-level of task and data parallelism

and with low complexity computation kernel.

The OpenVX language and standard [Rainey 2014] is a graph-based Application

Programming Interface (API) proposed by the Khronos group for developing and

deploying computer vision applications on embedded platforms. OpenVX uses a dataflow

MoC which enables programmers to design their application in an architecture agnostic

fashion while exposing high-level optimization and parallelism opportunities. The MoC

used by the OpenVX standard is an SRDAG specialization of the Synchronous Dataflow

(SDF) MoC [Lee’1987]. srDAGs, when used to manually model the application, are less

expressive and more restrictive than SDF graphs but allow for global high-level

optimization. This choice is motivated in OpenVX by the fact that each node is supposed

be a coarse-grain computer vision, or deep-learning computation kernel, representing

thousands or millions of instructions. Task/Actor granularity is an essential concern when

building dataflow-based software adaptation, as it influences both programming languages

and intermediate representations.

In SDF graphs, data-parallelism comes implicitly from the property of the graph to have

non-unitary data rates, allowing for each computation kernel to be further parallelized

because they do not require the full data to fire. As a consequence of its srDAG

representation with unitary tokens, the OpenVX standard mostly relies on task parallelism.

Other runtimes exist, such as StarPU [Augonnet’11] or XKaapi [Gautier’13], that

manipulate task graphs. Similarly to OpenVX, StarPU and XKaapi use a DAG dataflow

model to schedule the different tasks. The main difference between these runtime systems

lies in the used scheduling policies. While StarPU uses a Heterogeneous Earliest-Finish-

Time (HEFT) scheduling [Topcuoglu’02] algorithm, XKaapi uses a work-stealing based

scheduling .

StarPU and XKaapi mainly focus on High Performance Computing (HPC) applications ran

on heterogeneous architectures composed of networked multi-core CPUs and GPUs

H2020-ICT-2016-1-732105 - CERBERO

WP4 – D4.1: CERBERO Multi-Layer Adaptation Strategies (Final version)

Page 24 of 36

whereas the OpenVX main focus is on embedded computer vision applications. It is

important to note that contrary to OpenVX, StarPU schedules the application graph at the

same time the graph is constructed, thus limiting its vision of the full application for

resources allocation decisions and making greedy algorithms compulsory.

To limit the explosion of nodes in the SRDAG transformation, clustering of the original

SDF graph is proposed in [Pino 1995], where four clustering criteria are identified. These

clustering criteria provide sufficient conditions for checking the introduction of deadlocks

in resulting clustered graph. Pino et al. then propose a hierarchical scheduling algorithm

and shows that clustered SDF graph result in faster scheduling with very low impact on the

obtained makespan compared to scheduling the full SRDAG. Using a MoC that is

hierarchical and compositional by nature, as in the Interfaced Based Synchronous Dataflow

(IBSDF) MoC [Piat’09] or the PiSDF MoC removes the need of the clustering step and the

hierarchical scheduling algorithm may be used directly.

Another approach to avoid the full-expansion of the srDAG is called the vectorization of

the SDF graph [Ritz 2993]. In the work of Ritz et al., optimal vectorization of the SDF

graph is achieved by multiplying the rates of the original graph by integers resulting in less

invocation of the actors of the SDF graph. A Partial Expansion Graph (PEG) formulation

[Zaki’17] provides a framework in which vectorization of actors is integrated efficiently

for multiprocessor scheduling context. Zaki et al. use Particle Swarm Optimization (PSO)

to find and adjust the amount of expansion, or vectorization, of the actors of the graph. In

the CERBERO adopted approach, fast heuristics are developed based on the topological

structure of the graph in order to achieve vectorization of actors at the scheduling level.

Schedule-Extended SDF graphs [Damavandpeyma’13] constitute another class of SDF

graphs that aims at providing a more compact representation for throughput analysis and

buffer sizing than srDAGs. Damavandpeyma et al. show that encompassing scheduling

information directly into the original SDF graph significantly reduces time for iterative

throughput and buffer sizes analysis. Additionally, authors show that srDAG

representations may lead to overestimated buffer sizes compared to applying same

technique on schedule-extended SDF graphs. Authors also mention that construction time

of the srDAG is very low compared to the analysis time. Although this is true in the context

of static analysis at compile time, the same assumption can not be made when construction

of srDAG is performed at runtime.

All existing works presented in this section show that using an srDAG transformation for

scheduling and analysis of dataflow graphs is the most classical approach. srDAG offers a

complete exposure of task and data parallelism available in the application. However, most

of the presented work use static dataflow MoCs and srDAG computation time is neglected,

as it can be computed at compile time. In the context of a reconfigurable MoC such as the

PiSDF MoC, embedded runtimes need to compute srDAG on-the-fly and this

transformation may have a significant impact on application performance, especially in the

context of embedded platforms.

4.4. CERBERO Advances in Software Adaptation

Building the srDAG from an SDF or hierarchically modeled application to feed runtime

management does not always provide the best performance. The resulting srDAG graph

often contains more parallelism than what can actually be exploited by the targeted

H2020-ICT-2016-1-732105 - CERBERO

WP4 – D4.1: CERBERO Multi-Layer Adaptation Strategies (Final version)

Page 25 of 36

architecture. Moreover, the exponential growth of the SRDAG with respect to the original

SDF graph increases the complexity of scheduling algorithms for MPSoC platforms.

In this context, the CERBERO software adaptation method and tooling aim at building a

srDAG-free adaptation method and confront it to the srDAG-based State of the Art runtime

management strategy in terms of resources and time behavior. A tunable numerical model

of the SR-DAG is introduced which allows for faster scheduling, less overhead and more

flexibility. This model is compared to current approach on various real case computer

vision and machine learning applications. This work is currently under submission.

H2020-ICT-2016-1-732105 - CERBERO

WP4 – D4.1: CERBERO Multi-Layer Adaptation Strategies (Final version)

Page 26 of 36

5. Sensor Adaptation

Here we consider sensor adaptation based on fusion of information from multiple sensors.

Specifically, using sensor fusion to enable adaptivity. Information from multiple sources

is combined into a unified space in order to paint a more accurate picture of observed

phenomena and make better decisions.

5.1. State of the Art: Sensor Adaptation outside CERBERO

The state of the art in sensor fusion and adaptation is usually based on methods presented

in D4.3, such as:

• Central limit theorem

• Kalman filter

• Bayesian networks

• Dempster-Shafer

• Convolutional neural network

Here we present a few recent advances in state-of-the-art in sensor fusion and adaptation

in the context of unmanned vehicles and robotics.

Manzanilla et al. [Manzanilla’2019] used extended Kalman filter (EKF) to fuse visual

information with data from an inertial measurement unit, in order to recover the scale of

the map and improve the pose estimation. A proportional integral derivative controller with

compensation of the restoring forces was proposed to accomplish trajectory tracking,

where a pressure sensor and a magnetometer provided feedback for depth control and yaw,

respectively, while the remaining states were provided by the EKF.

Research presented in [Devassykutty’2018] addresses an unconventional approach for

localizing underwater robots through sensor fusion and inverted Long Baseline (LBL)

method. The output of the localization algorithm is combined with Inertial Navigation

System (INS) readings by an unscented Kalman Filter.

Valenti et al. [Valenti’18] presents a combination of techniques enabling vision-based

autonomous Unmanned Aerial Vehicle (UAV) systems. Various computer vision

processing algorithms are used to exploit visual information to simultaneously perceive

obstacles and refine localization in a GPS-denied environment. An omni-directional stereo-

vision based setup is used to build a 3D representation of the surroundings.

The use of multiple visual sensors, which produce images of a scene taken at different

viewpoints requires representing them first in the common plane. This process, referred to

as image rectification, is needed before fusing the information from different sources.

Current approaches to image rectification are mainly based on keypoints matching for un-

calibrated cameras, and chessboard rectification for the calibrated case. These methods do

not always guarantee good results and the rectification process often needs to be repeated.

This in turn makes the process time consuming and to some degree manual.

Ciurea et al. [Ciurea’16] proposed a method to automatically detect and correct for errors

in geometric calibration in camera arrays. They exploit the redundancy of a camera array

system to recover from the variation of calibrated parameters.

https://en.wikipedia.org/wiki/Central_limit_theorem
https://en.wikipedia.org/wiki/Kalman_filter
https://en.wikipedia.org/wiki/Bayesian_network
https://en.wikipedia.org/wiki/Dempster%E2%80%93Shafer_theory
https://en.wikipedia.org/wiki/Convolutional_neural_network

H2020-ICT-2016-1-732105 - CERBERO

WP4 – D4.1: CERBERO Multi-Layer Adaptation Strategies (Final version)

Page 27 of 36

A new rectification algorithm was proposed for uncalibrated stereo images by Ko et al.

[Ko’17]. It adopts a generalized homography model to reduce the rectification error and

incorporates several practical geometric distortions in the cost function as regularization

terms, which prevent severe perspective distortions in rectified images.

5.2. CERBERO Advances in Sensor Adaptation

5.2.1 Adaptive Rectification for Visual Sensors

Regarding CERBERO and advances in sensor adaptation, the current work focuses on

adaptive image rectification method based on the keypoints matching approach.

The goal is to adaptively find more and better keypoints matches to continuously improve

the rectification results over time. This would allow for the self-correction process in the

case when the viewpoints of the camera sensors change. This could be due to the physical

stress or damage the sensors may sustain as a result of a rough landing on Mars surface, or

an electric car or underwater vehicle collision with another object.

The proposed approach is as follows. We assume that the scene is changing so the new

keypoints can be found over a certain time period.

(1) Keypoints detection. Detect a number of characteristic points in the images

(keypoints) using a detector, e.g. Harris corner detector.

(2) Keypoints description. Areas around keypoints can be described with one of

descriptors e.g. Scale Invariant Feature Transform descriptor.

(3) Keypoints matching. Search for the corresponding patches can be performed by

similarity/dissimilarity measurement between descriptors e.g. Euclidean,

Manhattan, cosine of the angle.

(4) Removal of outliers. Apply Random Sample Consensus method to remove outliers.

(5) Transformation to common plane. The displacement vector for each feature can be

used to find the transformation to the common plane.

(6) Average disparity and geometric distortions as a measure of rectification quality.

Calculate the average pixel-wise disparity and magnitude of image distortions

(dissimilarity between rectified and original image) as a measure of the quality of

image rectification.

(7) Select matched keypoints which minimize disparity and the magnitude of

geometric distortions. Choose a minimum number of matches needed for

perspective transformation based on the similarity measurement.

(8) Detect new keypoints and adaptively improve the rectification results by repeating

the procedure until the desired rectification quality.

The KPI measured by performance monitor is the average disparity between the images

produced by the camera sensors, and the magnitude of the geometric distortions which is

the dissimilarity between rectified and original image. If the KPI is above a predefined

threshold believed to be the desired disparity and magnitude of distortions the adaptation

manager triggers adaptation.

H2020-ICT-2016-1-732105 - CERBERO

WP4 – D4.1: CERBERO Multi-Layer Adaptation Strategies (Final version)

Page 28 of 36

Figure 6 – New Adaptive Image Rectification

5.2.2 Energy-optimized Sensor-based Adaptation

Figure 7 – Sensor-Based Adaptation of Heterogeneous SW

Experiments have been conducted with PREESM and SPIDER tools, together with the

PAPIFY tool, to demonstrate energy-optimized sensor-based adaptive software on a

heterogeneous platform. The experimental setup, based on the CERBERO software

adaptation strategy, is illustrated in Figure 7. The SPIDER adaptation manager, handling

the parallel actors composing a PiSDF modeled application, is fed with constantly modified

parameter values. These parameters affect the amount of processing load of the system, as

well as the instantaneous parallelism. The SPIDER adaptation manager triggers the

SPIDER adaptation engine that updates memory allocation for communications and

processing elements allocation for computation. The managed application, displayed in

white with dashed borders, itself pilots two types of sensors:

H2020-ICT-2016-1-732105 - CERBERO

WP4 – D4.1: CERBERO Multi-Layer Adaptation Strategies (Final version)

Page 29 of 36

Exteroceptive sensors, retrieving the environment state,

Proprioceptive sensors, retrieving the system state.

In current experiments, a camera is used as an exteroceptive sensor and power and time

sensors are used as proprioceptive sensors. These informations are fed back to the SPIDER

adaptation manager for influencing heterogeneous SW management.

The next table shows experimental results on the energy consumption measured per frame

for an image filter running on an 8-core ARM big.LITTLE architecture managed by

SPIDER. Two SPIDER cases are considered: with or without platform heterogeneity

knowledge. SPIDER can also reconfigure between two application configurations. Having

knowledge on the platform heterogeneity during re-mapping is demonstrated on the

example to save between 16% and 40% of energy, while SPIDER manages to reduce

energy when filtering effort is reduced. Code, tutorials and documentation for this

experimentation are available on preesm.org. A video detailing the results is available at:

http://youtu.be/a9WIucWfjkU. This setup has been demonstrated in our University Booth

at DATE 2019.

Algorithm Computational energy with

platform heterogeneity

information

Computational energy without

platform heterogeneity

information

Full image filter 2.35 J/frame > 4 J/frame

Reduced image filter 1.92 J/frame 2.3 J/frame

Table – Energy Consumption of an Image Filtering Managed by SPIDER on an 8-core

Heterogeneous Processor.

http://youtu.be/a9WIucWfjkU

H2020-ICT-2016-1-732105 - CERBERO

WP4 – D4.1: CERBERO Multi-Layer Adaptation Strategies (Final version)

Page 30 of 36

6. Adaptation Strategies in Use Cases

This section addresses the main adaptation characteristics that will be included in the

different use cases of the project.

6.1. Adaptation Strategies in Planetary Exploration UC

The Planetary Exploration use case focuses on hardware adaptation strategies to ensure the

success of the robotic exploration mission. In this uncertain environment, different flavours

of functional and architectural reconfiguration can be triggered.

- Error detection and correction: the computing fabric will be able to recover from

system malfunctions produced by radiation failures. When incorrect behavior is

detected in one of the accelerators, this slot is reconfigured by ARTICo3 in order to

return to its correct operation. Functional fault injection will be used to test this

feature, as explained on D2.1.

- Adaptive degree of ruggedization: depending on an estimation of the current

radiation rate, ARTICo3 is capable of implementing different redundancy

techniques (DMR, TMR) or even transferring critical execution tasks to software if

the stringent conditions of the mission require it.

- Optimization of computing consumption: diverse approaches of the motion

planning algorithm are being taken into account. The ARTICo3/MDC toolchain

will generate a CGR architecture with the available implementations of the

accelerator to enable fast-switching between the different power-demanding

algorithms, depending on the current operating consumption or the battery levels

of the spacecraft.

- Minimizing power consumption in the actuators: Besides the power

consumption optimization of the computing platform, the energy consumed by the

actuator joints must be minimized as well. This will be done by generating a set of

trajectories from different random seeds for each interpolation step, and selecting

the most power efficient one from the output of an energy model of the arm.

- Adaptation to physical environment: the robotic arm will be equipped with a

time-of-flight proximity sensor based on infrared laser in order to enable unknown

obstacle detection. When the arm gets too close to a physical object, the sensor

reading will be below the defined threshold, and the selected trajectory will

modified in order to avoid the obstacle and safely reach the final position.

In addition to enabling the description of both the algorithm and architecture, the

PREESM tool provides automatic code instrumentation capabilities thanks to its

integration with PAPIFY. The hardware and software KPIs measured from the

performance monitors are fed to the Adaptation Manager, which evaluates the system

itself and its environment and takes decisions, closing the adaptation loop. The

scheduling of the system is performed by SPIDER at runtime in order to dynamically

H2020-ICT-2016-1-732105 - CERBERO

WP4 – D4.1: CERBERO Multi-Layer Adaptation Strategies (Final version)

Page 31 of 36

manage the available hardware and software resources dedicated to the execution of

the threads.

Figure 8 - Simplified Planetary Exploration adaptation diagram

6.2. Adaptation Strategies in Ocean Monitoring UC

Ocean Monitoring employs various adaptation strategies in order to improve its

performance. The adaptation approaches follow the CERBERO adaptation loop with

monitors measuring KPIs and adaptation manager taking decisions about when to adapt.

OM represents user commanded, environment triggered, and context aware adaptation.

The following adaptation approaches are present in OM use case:

- Context aware adaptation when pairs of lenses are chosen for different purposes.

Different camera functionalities use different fusion strategies.

- Environment triggered adaptation when image brightness is automatically adapted

to changing lighting conditions.

- User commanded adaptation when the user changes the level of image enhancement

to improve his/her situational awareness or the capabilities of computer vision

methods.

- Adaptive Hybrid Image Retrieval Model where the strength between each query

and its corresponding context is measured and used to dynamically adjust the

weights associated with visual and textual context features.

- Adaptation of the image rectification approach to progressively improve the

rectification results. This is an ongoing work.

6.3. Adaptation Strategies in Smart Travelling UC

In the Smart Travelling use case the following adaptation strategies will be applied:

• Self-adaptation through the decision support function: The decision support

function in the Smart Travelling use case acts as the Self-Adaptation Manager,

responsible for any required adaptation relevant for the driver. Like a software

H2020-ICT-2016-1-732105 - CERBERO

WP4 – D4.1: CERBERO Multi-Layer Adaptation Strategies (Final version)

Page 32 of 36

agent the manager will follow the 3T model and follow the sense, plan and act

paradigm using triggers from the car and its environment.

• Time synchronisation: In order for DynAA to work as a system in the loop,

adaptation are included to connect and synchronise real time sensors data to the

simulations run inside DynAA.

• Fusion of time-series sensor data: In order to analyse the results of the simulation

runs, pre-processed data from all the sensors and simulation modules are fused to

ingle synchronized time-series data set using the data fusion tool.

• Parallel processing: to keep response times of optimization processes within

reasonable levels, a set of parallel simulation environments were set up to spread

the computational load.

In order to provide immediate location feedback to the driver, an additional Human

Machine Interface (HMI) was added to the demonstrator which will directly receive

triggers from the SCANeR simulator to minimize delays. The triggers will be used to plot

the car on a map, show information like battery status and visually track the executed route.

The received triggers will be forwarded from the HMI to MECA for status monitoring of

the car. MECA will act as the adaptation manager and use the HMI to instruct the driver to

follow or adapt the route based on status of the environment, the car or the driver him-

/herself. The new HMI will also be used to communicate suggested adaptations from

MECA to the driver and receive input from the driver on choices and specific preferences.

To detect the status of the driver (tiredness level) special sensors are added to the simulator

capable of monitoring eye and eye lid movement, which indicates the tiredness of the

driver. MECA will use signals from this sensors to determine appropriate actions, like warn

the driver or suggest rest or charging at next station.

Cyber-physical systems typically require time synchronization methods in order for the

ICT (simulated) component of the system to keep in line with the physical component. A

plugin was developed for the DynAA simulation tool that enables this synchronization in

a fashion similar to some co-simulation strategies [Nicolescu’07][Gomes’17] (and in fact

was tested with exactly this application). This plugin provides both an input as well as

output SPI. Developers using this SPI have to provide certain interfaces for their

sensors/actuators which then subsequently can be embedded in a DynAA model. When

implementing these time-synchronous methods we categorize them into:

 Input to simulation Output from simulation

Cyber is faster than physical Hold simulation until

relevant input is available

Buffer output until real

world caught up with

simulation

Physical is faster than cyber Buffer input until

simulation caught up with

real world

Problems are here

H2020-ICT-2016-1-732105 - CERBERO

WP4 – D4.1: CERBERO Multi-Layer Adaptation Strategies (Final version)

Page 33 of 36

The first three categories are not problematic (assuming the simulation can be paused),

since a simple solution exists in either pausing the simulation or buffering the input/output.

These solutions are provided to the user in the form of some helper functions that

implement the buffering and/or halting when necessary. However the real world cannot be

paused, so in the final category where the simulation has some output, but is lagging behind

the physical world a problem arises. Here we provide two possible ways out, and leave the

choice open for the modeler: either the actuator throws an exception, leading to a failed

simulation meaning that the modeler should simplify his model or run the experiment on

more potent hardware. The other solution is to accept the lag, which under some conditions

may be acceptable, for instance when the output is only signaling to the physical world by

means of a flashing LED, or a display on a monitor. There is potentially a third column, in

which there is output to the physical world, which eventually leads to input. In this situation

accepting the delayed output is probably erratic, so one has to make sure the simulation

outpaces the real world.

H2020-ICT-2016-1-732105 - CERBERO

WP4 – D4.1: CERBERO Multi-Layer Adaptation Strategies (Final version)

Page 34 of 36

7. References

[Augonnet’11] Augonnet, C., Thibault, S., Namyst, R., & Wacrenier, P. A. (2011). StarPU: a

unified platform for task scheduling on heterogeneous multicore architectures.

Concurrency and Computation: Practice and Experience, 23(2), 187-198.

[Bhattacharyya’00] Bhattacharya, B., & Bhattacharyya, S. S. (2000). Quasi-static scheduling of

reconfigurable dataflow graphs for DSP systems. In Proceedings 11th

International Workshop on Rapid System Prototyping. RSP 2000. Shortening

the Path from Specification to Prototype (Cat. No. PR00668) (pp. 84-89). IEEE.

[Bertoni’05] Guido Bertoni, Luca Breveglieri, Israel Koren, Paolo Maistri, Vincenzo Piuri:

A Parity Code Based Fault Detection for an Implementation of the Advanced

Encryption Standard. DFT 2002: 51-59

[Caesar’17] CAESAR competition, https://competitions.cr.yp.to/index.html

[CERBERO’17] http://www.cerbero-h2020.eu

[Ciurea’16] Ciurea, F., Lelescu, D., Chatterjee, P. and Venkataraman, K., 2016. Adaptive

Geometric Calibration Correction for Camera Array. Electronic

Imaging, 2016(13), pp.1-6.

[Damavandpeyma‘13] Damavandpeyma, M., Stuijk, S., Basten, T., Geilen, M., & Corporaal, H.

(2013). Schedule-extended synchronous dataflow graphs. IEEE Transactions

on Computer-Aided Design of Integrated Circuits and Systems, 32(10), 1495-

1508.

[Devassykutty’18] Edwin Devassykutty and Gunnar Brink. 2018. Evaluation of High Precision

Localization Approach for a Fleet of Unmanned Deep Ocean Vehicles.

In Proceedings of the 2nd International Symposium on Computer Science and

Intelligent Control (ISCSIC '18). ACM, New York, NY, USA, Article 35, 6

pages.

[De Dinechin’13] De Dinechin, B. D., de Massas, P. G., Lager, G., Léger, C., Orgogozo, B.,

Reybert, J., & Strudel, T. (2013). A distributed run-time environment for the

kalray mppa®-256 integrated manycore processor. Procedia Computer

Science, 18, 1654-1663.

[Desnos’13] Desnos, K., Pelcat, M., Nezan, J. F., Bhattacharyya, S. S., & Aridhi, S. (2013,

July). Pimm: Parameterized and interfaced dataflow meta-model for mpsocs

runtime reconfiguration. In 2013 International Conference on Embedded

Computer Systems: Architectures, Modeling, and Simulation (SAMOS) (pp.

41-48). IEEE.

[Dworkin’01] Recommendation for Block Cipher Modes of Operation: Galois/Counter Mode

(GCM) and GMAC, https://csrc.nist.gov/publications/detail/sp/800-38d/final

Dworkin’07] Recommendation for Block Cipher Modes of Operation: Galois/Counter

Mode (GCM) and GMAC, https://csrc.nist.gov/publications/detail/sp/800-

38d/final

[Fanni’18] Tiziana Fanni, Alfonso Rodríguez, Carlo Sau, Leonardo Suriano, Francesca

Palumbo, Luigi Raffo and Eduardo de la Torre, “Multi-Grain Reconfiguration

for Advanced Adaptivity in Cyber-Physical Systems”. 2018 International

Conference on ReConFigurable Computing and FPGAs (ReConFig’18).

December 2018. doi: 10.1109/RECONFIG.2018.8641705

http://www.cerbero-h2020.eu/
https://csrc.nist.gov/publications/detail/sp/800-38d/final

H2020-ICT-2016-1-732105 - CERBERO

WP4 – D4.1: CERBERO Multi-Layer Adaptation Strategies (Final version)

Page 35 of 36

[Fradet 2012] Fradet, P., Girault, A., & Poplavko, P. (2012, March). SPDF: A schedulable

parametric data-flow MoC. In Proceedings of the Conference on Design,

Automation and Test in Europe (pp. 769-774). EDA Consortium.

[Fuchs’18] C. M. Fuchs, N. M. Murillo, A. Plaat, E. van der Kouwe and P. Wang, "Towards

Affordable Fault-Tolerant Nanosatellite Computing with Commodity

Hardware," 2018 IEEE 27th Asian Test Symposium (ATS), Hefei, 2018, pp. 127-

132. doi: 10.1109/ATS.2018.00034

[Gautier’13] Gautier, T., Lima, J. V., Maillard, N., & Raffin, B. (2013, May). Xkaapi: A

runtime system for data-flow task programming on heterogeneous

architectures. In 2013 IEEE 27th International Symposium on Parallel and

Distributed Processing (pp. 1299-1308). IEEE.

[Gomes’17]

Gomes, C., Thule, C., Broman, D., Larsen, P. G., & Vangheluwe, H. (2017).

Co-simulation: State of the art. arXiv preprint arXiv:1702.00686.

[Heulot’14] Heulot, J., Pelcat, M., Desnos, K., Nezan, J. F., & Aridhi, S. (2014, September).

Spider: A synchronous parameterized and interfaced dataflow-based rtos for

multicore dsps. In 2014 6th European Embedded Design in Education and

Research Conference (EDERC) (pp. 167-171). IEEE.

[Keinert 2006] Keinert, J., Haubelt, C., & Teich, J. (2006, May). Modeling and analysis of

windowed synchronous algorithms. In 2006 IEEE International Conference on

Acoustics Speech and Signal Processing Proceedings (Vol. 3, pp. III-III). IEEE.

[Ko’17] Ko, H., Shim, H.S., Choi, O. and Kuo, C.C.J., 2017. Robust uncalibrated stereo

rectification with constrained geometric distortions (USR-CGD). Image and

Vision Computing, 60, pp.98-114.

[Lee 1987] Lee, E. A., & Messerschmitt, D. G. (1987). Synchronous data flow. Proceedings

of the IEEE, 75(9), 1235-1245.

[Le-Lann’18] J.C. Le Lann, T. Bollengier, M. Najem and L. Lagadec, "An Integrated

Toolchain for Overlay-centric System-on-chip," 2018 13th International

Symposium on Reconfigurable Communication-centric Systems-on-Chip

(ReCoSoC), Lille, 2018, pp. 1-8. doi: 10.1109/ReCoSoC.2018.8449388

[Liu’18] L. Liu, Z. Li, C. Yang, C. Deng, S. Yin, and S.Wei. “HReA: An energy-efficient

embedded dynamically reconfigurable fabric for 13-dwarfs processing”. IEEE

Transactions on Circuits and Systems II: Express Briefs, 65(3):381–385, March

2018.

[Manzanilla’19] A. Manzanilla, S. Reyes, M. Garcia, D. Mercado and R. Lozano, "Autonomous

Navigation for Unmanned Underwater Vehicles: Real-Time Experiments Using

Computer Vision," in IEEE Robotics and Automation Letters, vol. 4, no. 2, pp.

1351-1356, April 2019

[Merchant’10]

S. G. Merchant and G. D. Peterson, “Evolvable block-based neural network

design for applications in dynamic environments,” VLSI Des., vol. 2010, 2010.

[Nicolescu’07] Nicolescu, G., Boucheneb, H., Gheorghe, L., & Bouchhima, F. (2007).

Methodology for efficient design of continuous/discrete-events co-simulation

tools. High Level Simulation Languages and Applications-HLSLA. SCS, San

Diego, CA, 172-179.

[Piat’09] Piat, J., Bhattacharyya, S. S., & Raulet, M. (2009, October). Interface-based

hierarchy for synchronous data-flow graphs. In 2009 IEEE Workshop on Signal

Processing Systems (pp. 145-150). IEEE.

[Pino’95] Pino, J. L., Bhattacharyya, S. S., & Lee, E. A. (1995). A hierarchical

multiprocessor scheduling framework for synchronous dataflow graphs.

H2020-ICT-2016-1-732105 - CERBERO

WP4 – D4.1: CERBERO Multi-Layer Adaptation Strategies (Final version)

Page 36 of 36

Electronics Research Laboratory, College of Engineering, University of

California.

[Rainey 2014] Rainey, E., Villarreal, J., Dedeoglu, G., Pulli, K., Lepley, T., & Brill, F. (2014).

Addressing system-level optimization with OpenVX graphs. In Proceedings of

the IEEE Conference on Computer Vision and Pattern Recognition Workshops

(pp. 644-649).

[Regazzoni’12] Francesco Regazzoni, Luca Breveglieri, Paolo Ienne, and Israel Koren.

Interaction between fault attack countermeasures and the resistance against

power analysis attacks. In Marc Joye and Michael Tunstall, editors, Fault

Analysis in Cryptography, chapter 15, pages 257–72. Springer, 2012

[Ritz’93] Ritz, S., Pankert, M., Zivojinovic, V., & Meyr, H. (1993, October). Optimum

vectorization of scalable synchronous dataflow graphs. In Proceedings of

International Conference on Application Specific Array Processors (ASAP'93)

(pp. 285-296). IEEE.

[Rodríguez’18] Alfonso Rodríguez and Tiziana FANNI, DEMO: “Multi-Grain Adaptivity in

Cyber-Physical Systems”. Special Session on Energy Efficient Cyber Physical

Systems held at the 30th International Conference on Microelectronics

(ICM’18). December 2018. Proceedings in press.

[Topcuoglu’02] Topcuoglu, H., Hariri, S., & Wu, M. Y. (2002). Performance-effective and low-

complexity task scheduling for heterogeneous computing. IEEE transactions on

parallel and distributed systems, 13(3), 260-274.

[Valenti’18]

F. Valenti, D. Giaquinto, L. Musto, A. Zinelli, M. Bertozzi and A. Broggi,

"Enabling Computer Vision-Based Autonomous Navigation for Unmanned

Aerial Vehicles in Cluttered GPS-Denied Environments," 2018 21st

International Conference on Intelligent Transportation Systems (ITSC), Maui,

HI, 2018, pp. 3886-3891.

[Wu’18] Wu, J., Blattner, T., Keyrouz, W., & Bhattacharyya, S. S. (2018, March). A

design tool for high performance image processing on multicore platforms. In

2018 Design, Automation & Test in Europe Conference & Exhibition (DATE)

(pp. 1304-1309). IEEE.

[Zaki’17] Zaki, G. F., Plishker, W., Bhattacharyya, S. S., & Fruth, F. (2017).

Implementation, scheduling, and adaptation of partial expansion graphs on

multicore platforms. Journal of Signal Processing Systems, 87(1), 107-125.

[Zamacola’18] R. Zamacola, A. G. Martínez, J. Mora, A. Otero, and E. D. La Torre,

“IMPRESS : Automated Tool for the Implementation of Highly Flexible Partial

Reconfigurable Systems with Xilinx Vivado,” 2018.

