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1. Executive Summary 

This document relates the activities and contributions of the CERBERO consortium related 

to the use of Models of Computation (MoCs) for the design of Cyber-Physical Systems 

(CPS). A survey of state-of-the-art MoCs was previously proposed in D3.5, outlining the 

main characteristics of MoCs used for the design of CPSs by presenting: 

• the properties of their semantics (analyzability, decidability, reconfigurability, 

expressiveness, determinism, ...),  

• the kind of algorithm it supports (data-driven, control-driven, …), 

• the level of abstraction it captures (system-of-systems, system, component, …) 

• the type of implementation it translates into (hardware, software, distributed, …). 

Based on this survey, a mapping of the different MoCs supported in the different tools and 

layers of the CERBERO framework was presented. The lacks in the current semantics of 

the used MoCs were identified in D3.5, and a set of new MoC features needed to better 

support the design of CERBERO use-cases was defined. This document presents the result 

of the work on these new MoC features and how they will allow these MoCs to be more 

generally and effectively adopted in the CPS context. 

This document is an update of former deliverable D3.5. In order to speed up and ease the 

reading and review process, the text of sections and paragraphs that have NOT been 

significantly updated and revised are in dark gray. For conciseness, only a brief summary 

of section 4 from D3.5 is given. Sections that have been deeply updated and revised are 

most sub-sections within section 5.  

1.1. Structure of Document 

Section 2 of this document reminds the definition of the notions of abstraction and models, 

which serve as a basis to the concept of Models of Computation. Section 0 reminds a set 

of properties of MoCs that are used in Section 0 to characterize and compare the state-of-

the-art MoCs commonly used for the design of CPSs. Finally, Section 5 presents the 

CERBERO innovations in the domain of MoCs for the modeling of CPS. 

1.2. Related Documents 

• D2.7 - CERBERO Technical Requirements 

o D3.2 contributes to satisfy D2.7 requirements. Details are given in 

Section . 

• D3.3 - Cross-layer Modelling Methodology for CPS 

o The models of computation described in this document are used to 

represent one aspect of the CPS, the behavior. This is a key foundation in 

the cross-layer modeling methodology. 

• D3.5 - Models of Computation 

o First version of this deliverable with complete MoC survey, and planned 

innovations on MoCs. 

• D5.2 - CERBERO Framework Components 
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o D5.2 gives more technical details on the support of MoCs within the tools 

that are components of the CERBERO framework. 

• D5.5 - CERBERO Framework Components 

o Uses of MoCs as a mean of interconnection between pairs of tools, or 

within the CERBERO Interoperability Framework (CIF) are detailed in 

D5.5. 

1.3. Related CERBERO Requirements 

Deliverable D2.7 of the CERBERO project defines a list of CERBERO Technical 

Requirements (CTRs) the project should achieve. Each of them is referenced with a unique 

identifier ranging from 0001 to 0020. MoC exploration and innovation are carried out 

following the requirements in Table 1. This table was updated since D3.5 to link the 

different CTRs to the sections of the document describing contributions to address them. 

 

CTR 

id 
CTR Description Link with the D3.2 

document on Models 

of Computation 

Sections describing the contributions 

0001 CERBERO framework 

SHOULD increase the 

level of abstraction at 

least by one for HW/SW 

co-design and for 

System Level Design. 

Innovations on MoCs 

help raising the 

abstraction level for 

the designer 

Section 5.1 introduces new dataflow 

semantics to ease the design of iterative 

computations at a dataflow level. 

Secton 5.2 introduces new semantics for 

modeling real-time periodic constraints at 

dataflow level. 

0002 CERBERO framework 

SHOULD provide 

interoperability 

between cross-layer 

tools and semantics at 

the same level of 

abstraction. 

Formalization of 

MoCs and 

homogeneity among 

partners foster tool 

interoperability 

Sections 5.1, 5.2, 5.3, and 5.4 all introduce 

contributions that either extend or rely on the 

dataflow MoC formalism. Formal 

specification of the MoC foster integration 

between tools inside (PREESM, SPIDER, 

PAPIFY, AOW, DYNAA, ARTICO3, 

MDC) and outside (APPOLO) of the 

CERBERO Framework 

0007 CERBERO framework 

SHALL define 

methodology and 

SHOULD provide 

library of reusable 

functional and non-

functional KPIs. 

Non-functional KPIs 

can be influenced in 

the MoCs using 

proposed Moldable 

Parameters 

Sections 5.2 and 5.3 introduce new non-

functional concepts, periodic actors and 

moldable parameters, respectively; on top of 

the existing dataflow semantics. 

0020 CERBERO framework 

SHALL provide 

methodology and tools 

for development of 

adaptive applications. 

Proposed innovations 

on MoCs improve the 

expressiveness and 

specify the semantic 

of PiSDF for 

designing adaptive 

applications 

Sections 5.1, 5.2 and 5.3 introduce new 

element of semantics that, by improving the 

expressiveness of the PiSDF MoCs, ease the 

design of adaptive applications. 

The contribution introduces in section 5.5 is 

a model analysis technique that fosters the 

usage of dataflow MoCs for fast runtime 

resource allocation of resources for adaptive 

applications. 

Table 1: Links to CERBERO Technical Requirement 
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2. Models of computation 

This first section briefly defines the core concepts of abstraction, model, and model of 

computations.  

2.1. Abstraction 

In general, abstraction is a tradeoff between the level of details and the complexity adopted 

when describing or representing a thing (e.g., an idea, a system, a place, an object, a 

phenomenon, etc.). Two distinct representations used to describe the same thing, each 

adopting a different abstraction tradeoff (i.e., amount of details conveyed about it), can be 

compared relatively to each other using so-called levels of abstraction. 

• The lower level of abstraction gives a representation of the thing which is more 

detailed, thus giving a more precise and complete description.  

• The higher level of abstraction gives a representation of the thing where some 

details are voluntarily omitted to decrease the complexity of the description. This 

higher complexity generally translates into a smaller and/or less dense 

representation of the thing. 

2.2. Models 

A model is a mathematically grounded representation capturing predictable characteristics 

of a system. More precisely, a model consists of a set of elements that can be assembled 

respecting a set of rules to describe a system. For a valid representation built with a model, 

mathematical equations associated to the elements of the model make it possible to predict 

some characteristics of the modeled system. Models are commonly used in all scientific 

fields to represent evolution of physical, computing, chemical, financial, or social systems. 

For example, the symbol in Figure 1 – Bipolar Transistor Symbol and its associated 

equation in Figure 2 - Bipolar Transistor Equation are used to model and predict the voltage 

and current characteristics of a transistor within a model of an analog circuit. 

 

Figure 1 – Bipolar Transistor Symbol 

 

Figure 2 - Bipolar Transistor Equation 

In the context of cyber-physical systems (CPSs) engineering, several models adopting 

different levels of abstraction can be used to describe separated or nested aspects of a 

system. More details on the use of heterogeneous models to describe a CPS are presented 

in D3.3. 

2.3. Models of Computation 

A Model of Computation (MoC) is a set of operational elements that can be composed to 

describe the behavior of an application. The set of operational elements of a MoC and the 

set of relations that can be used to link these elements are called the semantics of a MoC.  
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As presented in [Savage 1998], MoCs can be seen as an interface between the computer 

science and the mathematical domains. A MoC specifies a set of rules that control how 

systems described with the MoC are executed. Each element of the semantics of a MoC 

can be associated to a set of properties, such as timing properties or resource requirements. 

These rules and properties provide the theoretical framework that can be used to formally 

analyze the characteristics of applications described with a MoC. For example, using a 

mathematical analysis, it may be possible to prove that an application described with a 

given MoC will never get stuck in an unwanted state or that it will always run in a bounded 

execution time. Section 0 of this document describes a set of properties that are commonly 

supported by existing MoCs, which are themselves described in Section 0. A more 

extensive introduction to CPS modelling with MoCs can be found in [Lee 2017]. 
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3. Characterization of Models of Computation 

Since the introduction of modern computing systems in mid-1900s, a plethora of MoCs 

have been proposed by the scientific community. Very often, a new MoC is introduced to 

allow the specification of applications or systems that exhibit a set of characteristics whose 

specification was impossible or difficult to achieve with previously existing MoCs. 

When designing a system, it is important to identify its required and desired properties. 

Once these have been identified, the designer can select the MoC whose semantics will 

make it easier to express, verify and guarantee those properties by construction. 

The objective of this section is to give a definition of the properties used to characterize 

and compare the MoCs presented in Section 0. 

3.1. Properties 

This section lists a set of commonly used properties utilized to compare the system 

characteristics supported by different MoCs. 

Analyzability 

The analyzability of a MoC evaluates the availability of analysis and synthesis algorithms 

that can be used to characterize applications modeled with this MoC. For example, in the 

synchronous dataflow MoC, analysis algorithms can be applied at compile-time to compute 

the worst-case latency or the maximum memory requirements of a design. 

Conciseness 

The conciseness (or succinctness) of a MoC captures its ability to express complex system 

behaviors with a limited description size. This relative property is useful for comparing 

MoCs with equivalent expressiveness. Indeed, conciseness is often a desired feature for 

system developers as the design of an identical application with two MoCs (of identical 

expressiveness) will lead to a smaller design with the more concise MoC. 

Compositionality 

A modular MoC is compositional if the analyzable properties of a module described with 

this MoC are independent from the internal specification of the submodules that compose 

it [Ostroff 1995]. For example, in a compositional MoC, if each submodule used in the 

design is (independently) deadlock free, then the whole design combining these 

submodules will be deadlock-free by construction. 

Decidability 

A MoC is decidable if the schedulability of applications described with this model can be 

proved statically (i.e. at compile time) [Bhattacharyya 2006]. Hence, using a decidable 

MoC makes it possible to guarantee at compile-time that a system will never reach a 

deadlock state and that its execution will require a finite amount of memory. A non-

decidable MoC does not mean that applications will not be schedulable, only that their 

schedulability can only be verified “on the fly” at runtime. Decidability is often obtained 

as a trade-off for a limited expressiveness of the MoC. 
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Determinism 

A MoC is deterministic if the output of an algorithm only depends on its inputs, but not on 

external factors such as time or randomness. If determinism is a desired feature for most 

control and streaming applications, non-determinism may also be needed to describe 

applications reacting to unpredictable inputs. 

Expressiveness 

The expressiveness, of a MoC evaluates the complexity of application behaviors that can 

be described with this MoC. For example, the expressivity of the Dataflow Process 

Network (DPN) MoC has been proven to be equivalent to a Turing machine. The 

specialization of a MoC restricts the expressivity of this MoC to increase its analyzability, 

or to give it new properties such as determinism or decidability. Expressivity is often 

mistaken for conciseness. For example, the Cyclo-Static Dataflow (CSDF) MoC is often 

said to be more expressive than the Synchronous Dataflow MoC but meaning instead that 

it has a better conciseness. 

Modularity 

In a modular (or hierarchical) MoC, a system description can be broken into several 

independent modules. The modules that are combined to create a system can be (re-)used 

either in different systems specification or instantiated several times in the same. The 

modules themselves can be described using the same MoC as the top-level system 

description or can encapsulate other compatible MoCs. 

Parallelism 

In a parallel MoC, several independent elements of a system description may “activate” 

concurrently and independently from each other, each causing a change in the current state 

of the system. In a sequential (i.e. non-parallel MoC), all changes of the system state can 

be broken down to a sequence of actions triggered one after another, according to the 

system semantics.  

Reconfigurability 

A MoC is reconfigurable if the behavior of entire parts of a system description can be 

modified dynamically, to fulfill future execution goals for a foreseeable amount of time. 

Reconfiguration is used to dynamically adapt the behavior of a system to its environment, 

notably by enabling or disabling parts of the system, by modifying its functional behavior 

(e.g. its computations, QoS, …), or by modifying its non-functional properties (e.g. 

exposed parallelism, energy consumption, …).  

Predictability 

The predictability property is related to the reconfigurability property of a MoC. This 

property evaluates the amount of time between a reconfiguration of a part of the system, 

and the beginning of activity in the reconfigured part. The more predictable a MoC is, the 

more the time that can be used by a runtime manager to react and perform an optimization 

of the reconfigured part before using it.  
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3.2. Additional MoC Comparison Criteria 

This section introduces a few other criteria that can be used to compare MoCs. These 

comparison criteria denote different classes of applications that a MoC can be used to 

represent. Unlike the properties presented in the Section 3.1, which capture properties 

supported (or not) by MoCs, this section introduces more subjective comparison criteria. 

Indeed, if some MoCs seem more suitable to implement a given class of applications, using 

them to implement another class may still be possible, but less practical or less common. 

Algorithms Computation Classification 

Algorithms described with a MoC can be classified into several classes depending on the 

type of involved computation: 

• Stream-based: A continuous stream of data is steadily processed and produced by 

the described algorithm. The amount and nature of the computation do not vary 

depending on the data. 

• Data-driven: The amount and nature of the computation do not vary depending on 

the data. Contrary to stream-based algorithms, data does not necessarily arrive 

continuously. 

• Control Driven: The amount and nature of the computation depend on the 

processed data. 

• Event Driven: Computations are triggered by events on the frontier of the system 

(i.e. by sensors, users, communication network, …).  

Captured Algorithms Granularities 

MoCs with different levels of abstractions are inherently suitable for representing 

behaviors of diverse granularities: 

• Function: The modeled algorithm captures computations that are building blocks 

used to assemble an algorithm with a higher granularity. 

• Component: The modeled algorithm serves a well-specified purpose with clear 

input and output interfaces and constraints. 

• System: The modeled algorithm represents a collection of components with 

diverse objectives but running locally on a unique computing system. 

• System-of-systems: The modeled algorithm consists of several independent 

“systems”, each existing and evolving independently from the others but 

exchanging information among them through communication channels. 

Implementation Types 

A MoC is a theoretical representation used to describe the behavior of an application. 

Implementing a MoC consists in translating this theoretical behavior into an “executable” 

description. Different types of implementations can be more or less suitable to implement 

each MoC: 

• Hardware: Algorithms described with this type of MoC can be efficiently 

translated into logical gates, signals, and registers on an ASIC or an FPGA. 

• Software: Algorithms described with this type of MoC can be efficiently translated 

into a sequence of instructions executed on a processor that manipulates data stored 

in a memory space. 
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• Distributed: Algorithms described with this type of MoC can be efficiently 

implemented by splitting them into several parts executed on separate Hardware or 

Software components, each storing a part of the system state and executing a part 

of the computations in parallel. 

• Heterogeneous: Algorithms described with this type of MoC can be efficiently 

translated into a mix of hardware and software implementations. 
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4. Surveyed Models of Computation 

Using key characteristics of MoCs defined in Section 3, Table 4: SDF: Synchronous 

Dataflow; PiSDF: Parameterized and Interfaced Synchronous Dataflow; BSP: Bulk 

Synchronous Parallel; PN: Petri Networks; DPN: Dataflow Process Network; RTL: 

Register Transfer Level; TS: Transition System; KPN: Kahn Process Networks; DES: 

Discrete Event System; sCE: Situated Cognitive Engineering. Non-bold MoCs are those 

inherited from their parent (first bold one above). Blank cells indicate a MoC has no 

specific traits for the property. can be used to quickly compare the characteristics of state-

of-the-art MoCs.  

 

MoCs

Analyzability

Conciseness

Com
positionality

Decidability

Determ
inism

Expressiveness

M
odular

Parallelism

Predictability

Reconfigurability

RTL + ++ + ++ ++ +

SDF ++ + + + - -- + --

Cyclo-Static ++ ++

Interface-Based SDF ++ + +

Deterministic SDFwith 

Shared FIFO
++ +

PiSDF ++ ++ + + + ++ + + +

BSP - + + - + ++ -

KPN + - + +

DPN - - + ++ -

PN + + - ++ + + +

DES - ++ - +++ ++ ++ - +

SCE + + + + +

TS + +  

Table 4: SDF: Synchronous Dataflow; PiSDF: Parameterized and Interfaced Synchronous 

Dataflow; BSP: Bulk Synchronous Parallel; PN: Petri Networks; DPN: Dataflow Process 

Network; RTL: Register Transfer Level; TS: Transition System; KPN: Kahn Process 

Networks; DES: Discrete Event System; sCE: Situated Cognitive Engineering. Non-bold 

MoCs are those inherited from their parent (first bold one above). Blank cells indicate a 

MoC has no specific traits for the property. 

 

A thorough presentation of all MoCs listed in Table 4: SDF: Synchronous Dataflow; 

PiSDF: Parameterized and Interfaced Synchronous Dataflow; BSP: Bulk Synchronous 

Parallel; PN: Petri Networks; DPN: Dataflow Process Network; RTL: Register Transfer 

Level; TS: Transition System; KPN: Kahn Process Networks; DES: Discrete Event 



H2020-ICT-2016-1-732105 - CERBERO 

WP3 – D3.2: Models of Computation 

Page 14 of 34 

System; sCE: Situated Cognitive Engineering. Non-bold MoCs are those inherited from 

their parent (first bold one above). Blank cells indicate a MoC has no specific traits for the 

property. was given in D3.5. For the sake of conciseness, only the definition of MoCs 

studied in section 5 are copied hereafter. 

4.1. Synchronous Dataflow 

MoC brief description 

The Synchronous Dataflow [Lee 1987] MoC models an application as a directed graph of 

computational entities, called actors, that exchange data through a network of First-In First-

Out queues (FIFOs). Each time an actor is executed, or fired, it consumes and produces a 

fixed quantum of data, called data token, on the FIFOs to which it is connected. An example 

of SDF graph is given in Figure 3 - Example of Synchronous Dataflow Graph. 

 
Figure 3 - Example of Synchronous Dataflow Graph 

MoC properties  

Synchronous Dataflow is a parallel and decidable MoC that exhibits one of the greatest 

degrees of analyzability among dataflow MoCs. Coupled with the determinism of the MoC, 

its analyzability makes it possible to prove algorithms deadlock freeness and boundedness 

at compile time and is often used to guarantee real-time properties (e.g. throughput, latency, 

worst-case execution time) of applications modeled with it. This great analyzability comes 

at the expense of a limited expressiveness of the MoC, because of the absence of any 

reconfiguration semantics in the MoC. The original MoC described in [Lee 1987] is not 

modular.  

Relationship with other MoCs  

The SDF MoC belongs to the family of dataflow models of computation. As one of the 

dataflow MoCs with the most restrictive semantics, SDF behavior can be expressed in most 

dataflow models. 

As demonstrated in [Klikpo 2016], the MoC implemented in Labview® is equivalent to 

the SDF MoC. 

There exist several dataflow MoCs with an equivalent expressiveness with the SDF MoC: 

• The Cyclo-Static Dataflow [Bilsen 1996] and Affine Dataflow [Bouakaz 2012] 

MoCs which have a greater conciseness than the SDF MoC while retaining all its 

analyzability, by specifying sequences of production and consumption rates instead 

of scalar values. 
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• The Interface-Based SDF [Piat 2009] and Deterministic SDF with Shared FIFO 

[Tripakis 2013] MoCs which are two modular and compositional extensions of the 

SDF MoC. 

MoC Usage 

Synchronous Dataflow is mainly used to describe stream-based and data-driven 

algorithms, mostly at function and component levels. The SDF MoC is suitable for all kinds 

of implementations. 

MoC Support 

The SDF MoC is natively supported in the following tools: Ptolemy II [Davis 1999], SDF3 

[Stuijk 2006], PREESM [Pelcat 2014], MDC [Palumbo 2017], LIDE [Shen 2011].  

4.2. Parameterized and Interfaced Synchronous Dataflow 

MoC brief description 

The Parameterized and Interfaced Synchronous Dataflow (PiSDF) is the result of applying 

the Parameterized and Interfaced dataflow Meta-Modeling methodology [Desnos 2013] to 

the SDF MoC. PiSDF adds parameterization and interfaced hierarchy to the SDF MoC. 

The PiSDF MoC models an application as a directed graph. Besides actors and FIFOs (see 

section 4.1), parameters, hierarchical interfaces and parameter dependencies can also be 

vertices of the graph.  

Parameters are employed to configure and modify dataflow specifications. Parameters can 

influence (1) the functionality of an actor, (2) the production/consumption rates of actor 

ports, (3) the value of another parameter and (4) a delay of a FIFO. Hierarchical interfaces 

convey data tokens or parameter values between levels of hierarchy. Hierarchical 

interfaced actors, or simply, hierarchical actors, are univocally linked to PiSDF subgraphs. 

Parameter dependencies propagate parameter values to other elements of the graph. 

Actors, hierarchical or non-hierarchical, can have two types of ports: data ports and 

configuration ports. Data ports exchange data and configuration ports parameters. 

Parameters are connected to configuration ports through parameter dependencies. Both 

types of ports can be declared as input or output ports. An actor with an output 

configuration port is named a configuration actor. Firing of configuration actors 

dynamically produces values that set configurable parameters. The firing is only permitted 

at specific instants of time during a graph execution. 

There are two types of parameters in a PiSDF MoC: configurable parameters and locally 

static parameters. Configurable parameters can be modified in each graph iteration, i.e. at 

run-time. Locally static parameters can only be modified at design-time. Parameter values 

passed through input configuration interfaces of hierarchical actors always become locally 

static parameters of hierarchical (sub)graphs. 

Output configuration ports are always connected to configurable parameters. A change in 

a configurable parameter is the result of a change in either an output configuration port of 

an actor or another configurable parameter the former depends upon.  
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MoC properties  

PiSDF inherits the properties of SDF (see section 4.1) and adds the modularity and 

reconfigurability properties, with the advantage of keeping the analyzability of SDF. As 

the reconfiguration semantics is included into PiSDF, its expressiveness is greater than that 

of SDF. Besides modularity, reconfigurability is extremely handy in the context of cyber-

physical systems, which is why in the CERBERO project we intend to use and extend 

PiSDF (see Section 5). 

Relationship with other MoCs  

The PiSDF MoC is related to the Interface-Based SDF [Piat 2009], from which it inherits 

the compositional hierarchy mechanism. The PiSDF MoC has the same expressiveness, but 

a better conciseness, as the Parameterized SDF MoC [Bhattacharya 2001]. 

MoC Usage 

PiSDF is mainly used to describe stream-based, data-driven and control-driven algorithms 

(with a reduced number of configurable parameters in practice), mostly at functional and 

component levels. The PiSDF MoC is suitable for implementations in heterogeneous 

systems [Heulot 2014]. 

MoC Support 

The SDF MoC is natively supported in the tool PREESM [Pelcat 2014], and the SPiDER 

runtime [Heulot 2014] is used to support the reconfiguration of graphs during execution. 

The tools MDC [Palumbo 2017] and ARTICo³ will support this MoC and integrate with 

PREESM and SPiDER. The objective is to offer new scheduling and mapping choices to 

the runtime manager when dealing with reconfigurable hardware, i.e. hardware and 

software implementations for an actor. The decisions will be driven by on-the-fly readings 

of performance indicators using the Performance API (PAPI). 



H2020-ICT-2016-1-732105 - CERBERO 

WP3 – D3.2: Models of Computation 

Page 17 of 34 

5. CERBERO Innovation on Models of Computation for CPS 

This section presents the contributions of the CERBERO project to the Model of Computation 

domain. The main motivation behind these contributions is to support the specification of key 

aspects of CPSs. In particular the proposed contributions aim at: 

• Extending the expressiveness of the dataflow MoCs to better capture iterative 

computations over semi-persistent data; 

• Extending the semantics and analyzability of dataflow MoCs for real-time design 

concerns; 

• Extending the semantics of dataflow MoCs to increase optimization opportunities 

during design space exploration phases; 

• Combining dataflow MoCs and polyhedral models and transformation for the 

optimization of embedded software; 

• Proposing a new numerical analysis technique to ease the efficiency of runtime 

resource allocation. 

5.1. Dataflow Extension for Persistent State Representation 

Summary of the work published in [Arrestier 2018] 

Motivations & Problematic 

In synchronous dataflow MoCs, as for example in the Synchronous Dataflow (SDF) and 

Parameterized and Interfaced SDF (PiSDF) models presented in Section 4, the semantics 

is dedicated to the processing of infinite streams of data. To this purpose, the semantics of 

these dataflow MoCs has been tailored to capture in a concise form the data-parallelism 

and determinism of algorithms executed infinitely repeatedly, with numerous and 

entangled data dependencies.  

Despite the many advantages of the semantics of dataflow models, these cannot currently 

be used to represent concisely and unambiguously the persistence or the sporadic 

initialization of data within algorithms. In CPSs, where computing systems must 

continuously adapt their behavior to the physical environment enclosing them, these 

persistent data are needed to capture the adaptive state of algorithms. These persistent 

coefficients of such an adaptive system may be sporadically updated to fit an evolution of 

their working environment. An example of such persistent data is the coefficients encoding 

the learning ability of the neurons in online machine learning algorithms. 

In the SDF MoC the number of data tokens exchanged by an actor at each firing is constant. 

FIFOs can have an initial state corresponding to an initial number of data tokens present in 

the FIFO at the beginning of any graph iteration, available prior to any actor firing. As 

specified in [Lee 1987], these initial data tokens of a FIFO, called delays, can be used to 

“transmit” persistent data between successive iteration of a graph.  

Although the concept of delays exists in most dataflow MoCs, the initial values given to 

the corresponding data tokens are hardly mentioned, let alone specified, in the literature. 

In the few publications where they are specified, initial values are set to 0 [Lee 1987, Sriram 

2009]. The lack of specification on the initial values of delays leads to inconsistent 
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behaviors across different programming tools. Initialization of delays is made explicit with 

the proposed semantics of delay. 

The persistence of the data tokens of delays across levels of hierarchy and across graph 

iterations also differs between MoCs. In a non-hierarchical model, like the SDF MoC, the 

last data tokens produced during an iteration n, on a delayed FIFO, are used as the initial 

conditions of iteration n+1. However, in hierarchical MoCs, delays can appear in 

subgraphs used for specifying the internal behavior of a hierarchical actor. Contrary to flat 

MoCs where delayed data tokens generally persist across graph iterations, the persistence 

scope of delayed data tokens in hierarchical subgraphs, possibly across multiple firing of 

their parent actors, is unspecified behavior. The CERBERO contribution introduces a clear 

semantics to control the persistence scope of delays in hierarchical and reconfigurable 

dataflow MoCs. 

Contribution: State-Aware Dataflow 

The State-Aware Dataflow (SAD) meta-model was proposed in CERBERO to 

disambiguate the specification and use of persistent state within hierarchical and 

reconfigurable dataflow MoCs implementing a well-defined notion of graph iteration. The 

SAD meta-model comprises a set of semantic elements, that can be used for extending the 

semantics of an existing dataflow MoC to add both explicit initialization of delays and 

hierarchical state awareness through the use of a customizable persistence scope of delays. 

Initialization semantics: Delays are usually represented by a filled circle positioned on a 

FIFO as displayed in Figure 3. Figure 4 introduces the graphical representation of the 

proposed semantics for delays with the additional data connections for initialization 

purposes. Actors P and C are the production and the consumption actors, respectively, of 

the FIFO f containing a delay. Actor S is the setter actor of the delays on FIFO f; delays to 

which they are each connected with a FIFO, that is, one FIFO from actor S to the delay. 

Symmetrically, actor G is the getter actor of the delays on FIFO f, and a FIFO connects 

these delays to actor G. The FIFO between the delay and the getter actor G is drawn with 

a dashed line to explicit which actor is the getter actor and which actor is the consumption 

actor. 

 
Figure 4 -  Delay Initialization Semantics 

From the behavioral semantics point of view, the new data connections between the setter 

and getter actors and the delay induce the following precedence rules in the firing sequence 

of actors during each graph iteration: 

• All firings of the setter actor of a delay must occur prior to the first firing of the 

consumption actor of this delay. 

• All firings of the getter actor of a delay must occur after the last firing of the 

production actor of this delay. 
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From the functional point of view: the setter actor of the proposed semantics is responsible 

for giving its initial value to the delayed token, before their consumption by the consumer 

actor C within each iteration of the graph. In the absence of a setter actor S for a given 

delay, the default initialization of the proposed semantics is to set all data tokens of the 

delay to zero. Symmetrically, the getter actor G can retrieve the final value of the delay, 

for further processing, after all executions of the producer actor P within each iteration of 

the graph. This construction makes it possible to easily specify iterative computations, 

similar to for-loops, in the dataflow MoC. 

Explicitly initializing the delays means that new initialization tokens are produced on each 

graph iteration. Thus, if no getter actor is connected to the output connection of a delay, 

the produced data tokens have to be discarded to ensure bounded memory execution.  

While improving its expressiveness, the proposed delay semantics of SAD preserves the 

analyzability, the dependability, and the determinism of the extended dataflow models. 

In particular, methods provided in [Arrestier 2018] can be used for checking the 

consistency, schedulability and liveness properties of an application specified using this 

delay initialization semantics.  

Importantly, making the initialization of delays explicit for each graph iteration 

unambiguously removes memory persistence across graph iterations. Indeed, each graph 

iteration starts with initial data tokens independent from previous computations. Therefore, 

delays are no longer allowed to transfer data tokens from iteration n to iteration n+1. A 

new unambiguous semantics for modeling this persistence of data tokens across graph 

iterations is presented below. 

Delay persistence semantics: The persistence of delays defines whether tokens of a 

delayed FIFO should be discarded or preserved for the next graph iteration, or for the next 

firing of the parent hierarchical actor. Persistent delays contained in a subgraph of a 

hierarchical actor are also called the “state” of this actor. 

To control the persistence scope of delays in a hierarchical graph, SAD introduces 3 

different types of delays illustrated in Figure 5: Local Delays, Locally Persistent Delays, 

and Globally Persistent Delays. 

 

Figure 5-  SAD Persistence Semantics 
 

Figure 6 - Example of PiSDF graph with Locally 

Persistent Delay 
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Local Delays (LDs) use the initialization semantics presented in the previous paragraph. 

Thus, an LD can be initialized dynamically by dataflow actors. The data tokens contained 

in the FIFO of an LD are preserved within the scope of a unique graph iteration but do not 

persist beyond. 

Locally Persistent Delays (LPDs) are delays whose data tokens persist outside of the scope 

of the graph to which the LPD belongs. An LPD specifies the persistence of a delay for 

one level of the hierarchy and establishes a precedence relationship for successive firings 

of the parent actor H of the subgraph GH to which the LPD belongs.  

Globally Persistent Delays (GPDs) are LPDs that persist across all levels of the hierarchy 

up to the top-level graph. GPDs are initialized only once in the lifetime of an application, 

prior to the first firing of the top-level graph. Since dataflow actors are fired once per graph 

iteration, they cannot be used to initialize a GPD once in the application lifetime. Therefore, 

a GPD is initialized with a function or a constant value directly associated with the delay. 

GPDs are equivalent to the delays described in [Lee 1995]. By default, any LPD in the top-

level of the hierarchy is a GPD. 

In the graph of Figure 6, the delay inside the hierarchical actor H is defined as an LPD. The 

persistence of this LPD is made explicit with a feedback loop around the parent hierarchical 

actor H. Note that using an LPD induces a data precedence relationship between firings of 

the parent actors, which forces the scheduler of the graph to serialize the firings of actor H. 

In the example of Figure 6, with the LPD, consecutive firings of actor H shall be scheduled 

and executed one after the other. In this example, replacing the LPD within the subgraph 

of actor H with an LD would break this serialization constraint, and would make it possible 

to execute multiple firings of H in parallel. 

The customizable persistence scope for delays offered by the SAD meta-model leads to 

controlled data parallelism in hierarchical graphs which can be taken into account during 

the analysis and scheduling of the graphs [Arrestier 2018]. 

Use in CERBERO 

This extension of the dataflow model is suitable for the modeling of any CPS system and 

has been implemented within both PREESM & SPiDER. The use of this contribution has 

been demonstrated in [Arrestier 2018] with an implementation of a non-trivial 

reinforcement learning algorithm that is applicable to any control system, such as the 

robotic arm of the Space Exploration Use-Case. 

The reinforcement learning algorithm used to showcase the proposed contribution is called 

the Continuous Actor Critic Learning Automaton (CACLA) algorithm [Van Hasselt 2007]. 

This application example is selected to demonstrate the conciseness and memory efficiency 

of the SAD meta-model application to the PiSDF MoC. 

The top-level graph of the CACLA algorithm is depicted in Figure 7 and the subgraph of 

the Update actors, which contain both an LD and an LPD, is depicted in Figure 8. 
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Figure 7 - Top-level PiSDF graph of the CACLA Algorithm 

 
Figure 8 - PiSDF Subgraph of the Update Actor of the CACLA Algorithm 

In order to assess the benefits from using the newly introduced semantics for delays 

initialization and persistence, the proposed implementation was compared with an 

equivalent implementation of the same application with the PiSDF model, without using 

the newly introduced semantics. Results presented in [Arrestier 2018] show that the 

proposed approach makes it possible to reduce the amount of memory needed to run the 

whole application by 35%. This memory footprint reduction is obtained because in the 

absence of the SAD semantics, many additional MUX and DEMUX actors and FIFOs, and 

the memory they require, are needed to model a similar behavior.  

5.2. Modeling Periodic Real-Time Constraints in the SDF Model 

Summary of a work submitted to RTNS2019 [Honorat 2019] 

Motivation & Problematic 

Image signal processing systems and visual servoing are typical examples of partially 

periodic CPSs where certain components are periodic, which means they shall be executed 

with a fixed repetitive periodic deadline, while other components do not have any real-time 

constraint. For example, a camera films at a periodic rate and the images arrive at the 

aperiodic processing components as a stream. Other components may also be periodic, as 

the input of servo-motors which must be regularly updated. Thus, the processing part often 

depends on periodic inputs and must provide periodically one or more outputs but does not 

have to be periodic itself. The flexibility to deviate significantly from periodic operation 

arises, for example, if data is buffered between components. One possible use-case is the 

SLAM (Simultaneous Localization And Mapping) application: it constantly retrieves 

information by camera or lidar and then processes it to reconstruct a map of the 

environment and move according to it [Wen 2018]. 
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Contribution 

This CERBERO contribution focuses on CPSs with periodic and aperiodic components, 

which are modeled as SDF graphs [Lee 1987]. SDF graphs of CPS often have imposed 

periodic constraints on all actors of the graph. Our approach is more flexible as any 

component of the system can be periodic or aperiodic, which leaves more flexibility to the 

mapping and scheduling process of the application. This flexibility is particularly helpful 

in the case where several processing parts rely on different sensors. 

Given an SDF graph, a number of identical cores where to execute the application, and the 

Worst-Case Execution Time (WCET) of each actor, the addressed problems are: 

• To quickly assess the schedulability of the constrained application, without 

computing a schedule; 

• To compute an offline non-preemptive schedule satisfying the periodicity and 

precedence constraints. 

It is important to note that scheduling time complexity is exponential in the number of tasks 

to get the optimal solution because it is in general NP-complete [Kwok 1999]. This 

complexity limits the design of CPSs since optimal schedulers do not scale. In contrast, our 

approach gives results that are not optimal, but that can be used to quickly build and assess 

prototypes. In other words, our approach is useful for early-stage design space exploration 

of scheduling solutions. Optimal schedulers and timing property checkers may still have to 

be used. However, if they are used, it would only be after the prototyping step, on a small 

set of prototypes. 

Schedulability Necessary Condition: The following set of notations must be introduced 

to assess the schedulability of an SDF graph containing both actors with and without 

periodic constraints: 

• 𝑃  – The set of actors of the SDF graph associated with a periodic real-time 

constraint 

• 𝑇𝜋 – The period constraint (in seconds) of an SDF actor 𝜋. 

• 𝐶𝜋 – The Worst-Case Execution Time (WCET) of an SDF actor 𝜋. 

• 𝑚 – The number of homogeneous processors of the targeted architecture. 

• 𝐷𝜋
↑  – The set of all actors of the SDF graph that are data dependent on the SDF actor 

𝜋. 

• 𝑛𝑏𝑙𝑓𝜋
↑(𝛼) – Given an SDF actor 𝛼 ∈  𝐷𝜋

↑ ,  this recursive function computes the 

number of firings of 𝛼 that may not be executed before the last firing of SDF actor 

𝜋.  

Given these notations, a necessary condition for the considered SDF graph to be 

schedulable on 𝑚 processors is given by the following equation: 

∀𝜋 ∈ 𝑃,
∑ 𝑛𝑏𝑙𝑓𝜋

↑(𝛼) × 𝐶𝛼𝛼𝜖𝐷𝜋
↑  

𝑇𝜋 − 𝐶𝜋
≤ 𝑚 

The principle of this equation is to verify that within an iteration of the SDF graph, and 

considering the periodic constraint of periodic actors, there is enough time between two 

executions of the periodic actor to execute all actors that depend on it on the number of 

available cores. To be more precise, this equation focuses on the time between the last 
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execution of a periodic actor within an iteration and the end of this iteration of the SDF 

graph. Proofs and detailed explanation of these notations, as well as an algorithm to 

implement the verification of this necessary condition, are available in [Honorat 2019]. 

 

Scheduling Algorithm for Partially Periodic SDF Graph: As a necessary schedulability 

condition, the equation presented in the previous paragraph can be used to discards rapidly 

unfeasible designs. Indeed, failing to satisfy the aforementioned conditions means that the 

deployment of the partially periodic SDF graph on the given number of cores is not 

possible. When the condition is satisfied though, the existence of a valid scheduled is not 

guaranteed and must still be verified. The purpose of the proposed scheduling algorithm is 

to make an attempt to find such a valid schedule. 

Because the mapping and scheduling of an SDF graph over multiple cores is an NP-

Complete optimization problem, finding the optimal solution (i.e. the schedule with the 

shortest latency in our context) is not possible in polynomial time. For this reason, the 

proposed scheduling algorithm is a heuristic algorithm that provides no guarantee on the 

optimality of the obtained schedules but only guarantees their validity with regards to the 

periodic constraints of the SDF graph. 

The proposed scheduling algorithm, detailed in [Honorat 2019], was evaluated on a set of 

randomly generated graphs in order to evaluate its scalability with regards to the size of 

applications. Results of this evaluation are reported in Table 1. 

𝑚 100 actors 500 actors 1000 actors 5000 actors 

2 cores 11 ms 238 ms 898 ms 23286 ms 

4 cores 12 ms 251 ms  989 ms 25916 ms 

8 cores 11 ms 254 ms  991 ms 26898 ms 

Table 1 - Execution Time of the Scheduling Algorithm for Partially Periodic SDF Graphs. 

As can be observed in these results, up to 1000 actors the execution time is lower than 

1 second, while it reaches around 26 seconds for 5000 tasks. The execution times are 

slightly increasing with the number of cores. These experimental results confirm the 

theoretical complexity of the proposed scheduling algorithm in O(|E| + |V|*log(|V|)), 

which is upper bounded by the number of edges |E| in the scheduled graph and the sorting 

operation on the number of vertices |V|. It is important to note that in these experiments, 

the considered graphs are not the SDF graph themselves, but the equivalent directed acyclic 

graph derived from them, where each SDF actor is repeated as many times as its number 

of executions per iteration of the SDF graph. 

Use in CERBERO 

Time is an essential physical aspect of a CPS and is often translated into real-time 

constraints for the cyber part. Within CERBERO, both the space exploration and the ocean 

monitoring use cases require some degree of real-time processing in their cyber part. In the 

space exploration use-case, for example, the control of the robotic arm requires both 

monitoring the current position of the different segments of the arm, and the control of its 

engine with a fixed period. In the case of the ocean monitoring image processing pipeline, 

the sampling rate of the cameras imposes a fixed periodic constraint to the computations 

performed by the cyber part of the system. 
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5.3. Moldable Parameters in Dataflow for Extended Design-Space 

Exploration 

Further work on this topic is scheduled for fall 2019. 

Motivations 

The DSE phase based on SDF MoCs mostly consists of mapping parallel actor executions 

on the heterogeneous computational hardware resources of the targeted architecture, and 

the data transfers on the hardware means of storage and communication. In those cases 

where the number of parallel actors to map largely exceeds the available resources of the 

architecture, DSE optimization algorithms face an important increase in the complexity of 

the mapping problem. In such cases, developers will often manually update the model of 

their applications to adopt a coarser granularity of description. This coarser granularity 

translates into less numerous but ‘larger’ actors to execute. As illustrated in [Hascoet 2017], 

by carefully adjusting the granularity of the application description, enough elements will 

be exposed to permit a fair distribution of work on the available hardware resources, with 

a reasonable complexity exposed to the DSE algorithms. 

Envisioned Contribution 

The adaptation of the granularity of the application exposed to the DSE algorithm is 

generally left to the designer of the application. The objective of this contribution is to 

extend the semantics of SDF models to support the specification of so-called moldable 

parameters. A moldable parameter is a parameter associated to a range of acceptable 

values, thus leaving the responsibility to the DSE algorithm to select the most appropriate 

one in its optimization process. In general, moldable parameters are supposed to change 

only the ‘organization’ (e.g. like the exposed degree of parallelism) of computations, but 

not the output they produce. Hence, by specifying moldable parameters in SDFgraphs, it 

will be possible for the designer to let the DSE algorithms automatically control the 

parallelism and granularity of the application to obtain the best DSE solution in minimum 

time. 

Use in CERBERO  

The moldable parameters will be integrated within PREESM during the CERBERO 

Project. It is envisioned that DSE optimizations based on this extended semantics will be 

provided through a connection to AOW. 

 

5.4. Extension of PiSDF MoCs through polyhedral transformations 

Motivations 

Dataflow applications are modeled as a set of actors interconnected through a set of FIFOs, 

used for sending and receiving information in a streaming fashion. One of the main 

advantages of modeling an application in such a way is that the structural parallelism can 

be exploited since it is directly expressed in the graph. Dataflow frameworks take 

advantage of this and provide mechanisms to automatically parallelize applications to use 

all the available resources. However, this parallelization is kept within the limits of the 

application structure: since actors are considered as black boxes, their behavior remains 
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untouched. As a result, some optimization opportunities seem to be missed, as for example 

exploiting the intra-actor parallelization is out of the scope of the dataflow MoC. 

At this point is where the polyhedral model can become useful. This model is well-known 

for applying transformations to optimize computationally-intensive applications, focusing 

on aspects such as data locality or memory usage. Some of the transformations that can be 

applied to a loop nest are: 

⚫ Tiling: This technique splits the loop’s iteration space into smaller blocks to improve 

data locality. Specifically, it tries to improve the usage of the cache memory, 

maintaining there the data that is going to be reused. 

⚫ Loop interchange: Technique to improve memory accesses and, thus, data locality. 

⚫ Loop fusion: This technique increases the granularity of the computations to reduce 

the loop overhead and improve both spatial and temporal data locality. 

⚫ Loop unrolling: Technique for improving scheduling and memory usage. 

⚫ Loop skewing: As the name implies, this technique skews the execution of an inner 

loop with respect to an outer one, with the objective of removing dependencies that 

prevent the code from running in parallel. 

As polyhedral transformations are a well-known optimization technique, multiple tools 

relying on this model can be found in the literature [Bondhugula 2008], [Grosser 2011], 

[Pop 2006]. However, the restrictions imposed by this model are usually so tight that most 

codes are not amenable to the model since it does not allow, for instance, dynamic 

behaviors. That is the reason why most tools only work at compile-time, as Polly [Grosser 

2011], Graphite [Pop 2006]  or Pluto [Bondhugula 2008] However, in recent years, several 

tools try to extend the polyhedral scope to overcome these limitations as the APOLLO 

(Automatic speculative POLyhedral Loop Optimizer)[Caamaño 2017].  

APOLLO applies polyhedral optimizations on-the-fly to loop nests that cannot be 

optimized at compile time. In addition, in contrast to the rest of the existing tools, it can 

handle not only for loops, but any kind of loop nest. To do so, APOLLO relies on a 

speculative system that builds a prediction model to support dynamic transformations 

which are applied to the original code thanks to LLVM-JIT (Low Level Virtual Machine - 

Just In Time compilation). 

Contribution 

For the previous reason, combining a dataflow framework as PREESM with a tool like 

APOLLO can lead to finally be able to exploit the optimization possibilities within the 

actors, hidden until now from the dataflow perspective. These optimization possibilities 

can result in creating more threads to exploit all the available resources, or just apply 

optimizations to improve the memory usage, resulting in a speedup but without affecting 

the number of threads PREESM handles, that is, without modifying the actor-core mapping 

performed by PREESM. 

To efficiently combine PREESM with APOLLO, several actions have been needed. The 

main limitation of APOLLO is that, in order to be an efficient runtime system, it applies 

the first transformation that it finds, since evaluating several ones is a computationally 

expensive task. However, this does not mean that the transformation is the most efficient, 
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or that it is efficient at all. In this sense, the context of dataflow applications opens new 

possibilities: since dataflow applications are designed to be executed in a loop, the first 

iterations of this loop could be considered as a training phase to test different 

transformations, so as to choose the most efficient one at the end of this phase and maintain 

it until the end, considering the performance as the main criterion. To do so, APOLLO 

needs to store information about the transformations already tried and relate it to the actor 

parameters. This mechanism, developed in the context of CERBERO, is known as multi-

versioning, and it has already been implemented and tested within APOLLO. 

Furthermore, neither APOLLO nor the libraries upon which it is built have been designed 

to be used in a multithreaded context. This is the case of dataflow applications since actors 

that are being executed simultaneously can make a call to APOLLO at the same time. As 

a result, all the modifications needed to make APOLLO thread-safe have been made. This 

includes both APOLLO runtime system and some libraries, as Pluto and Piplib. 

To exemplify the new functionalities, a toy example is going to be presented. In this 

example, a PREESM application to multiply two matrices has been implemented. This 

application contains four actors: two for generating the matrices to be multiplied, another 

one for performing the multiplication, and the last one to store the result. This example has 

been used to generate two different configurations:  

• sequential configuration (1-core): in which the computation is performed by one 

thread,  

• multithreaded configuration (2-cores): which uses two threads to compute the 

matrix multiplication in parallel.  

 

 

Figure 9 - PREESM toy example to demonstrate CERBERO polyhedral multiversioning mechanism 

 Table 2 gathers the results, in seconds, for both configurations and three different 

scenarios: when compiled with gcc, when compiled with APOLLO and when compiled 

with APOLLO and using the multi-versioning mechanism. Table I also presents the 

speedups obtained with the configurations using APOLLO, both with respect to the 

execution time obtained with GCC. It should be highlighted that, to use APOLLO, the user 

needs to add a specific pragma (#pragma dcop) enclosing the loop that is going to be 

optimized, and then compile the code generated by PREESM with APOLLO. Additionally, 
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please note that these times have been measured in an Intel Core i7-4790 with 4 cores 

running at 3.6 GHz and 32GB RAM. 

As can be observed, the execution times when using APOLLO are drastically reduced, and 

the multi-versioning mechanism makes them even smaller, which validates the initial 

hypothesis of the potential advantages of applying polyhedral transformations to dataflow 

applications.  

Matrix 

size 

1-core 2-cores 

GCC APOLLO 
Partial 

speedup 

APOLLO 

+ multi 

versioning 

Global 

speedup 
GCC APOLLO 

Partial 

speedup 

APOLLO + 

multiVersioning 

Global 

speedu

p 

1000 x 

1000 
3.1 2.3 1.3x 0.7 3.3x 1.5 1.5 1x 0.4 3.8x 

2000 x 

2000 
80.0 7.1 11.3x 5.4 14.9x 41.5 4.8 8.6x 2.7 15.4x 

3000 x 

3000 
403.4 20.0 20.2x 18.2 22.2x 207.3 12.3 16.9x 9.2 22.5x 

Table 2 - Execution time, in seconds, of the matrix multiplication example for three different matrix 

sizes using one and two cores, and with and without APOLLO. 

Use in CERBERO 

The proposed combination between APOLLO & PREESM, and their integration into the 

CERBERO toolchain will make it possible to perform powerful polyhedral optimization 

seamlessly for all software parts of the CPS systems modeled with the dataflow models of 

computation. In particular, massively parallel computation with a fine granularity of 

parallelizable actors, such as the computation used in matrix operations, are particularly 

well suited to benefit from polyhedral optimizations. 

5.5. Numerical Representation of Directed Acyclic Graphs for 

Dataflow-Based Embedded Runtime Resources Allocation 

Summary of a work submitted to ESWEEK2019 [Arrestier 2019] 

Motivation & Problematic 

In an embedded context, taking fast and efficient resource allocation decisions requires an 

efficient intermediate representation of the application. Using compact and expressive 

dataflow MoC, such as the Cyclostatic Dataflow (CSDF) [Bilsen 1996], the PiSDF [Desnos 

2013] or the Interface-Based SDF (IBSDF) [Piat 2009] MoC, allows for a high-level 

description of an application. However, the more compact and expressive the 

representation, the more costly it can be to extract information. For instance, extracting 

fine-grain dependencies information from a Directed Acyclic Graph (DAG) is 

straightforward whereas it is first necessary to compute model transformations on a CSDF-

based application to do so. The more expensive stages of expressive model analysis have 

led to the more frequent use of DAG-based models in programming frameworks. 

Frameworks such as StarPU [Augonnet 2009], OpenVX [Khronos 2013] or TensorFlow 

[Abadi 2016] rely on DAG dataflow MoC. DAG efficiently model directed workflows with 
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task-level parallelism. However, complex structures such as loops are cumbersome to 

model with DAG due to the fact that the entire loops have to be unrolled.  

There is a paradox in developing more expressive and more compact dataflow MoC and 

the fact that analysis methods often remain oriented toward the need of expanding 

expressive graphs into DAGs. For example, the SDF graph of Figure 10 with only 4 actors 

can be transformed into the equivalent DAG presented in Figure 11 with 30 actors. The 

large size of the resulting DAG is due to the repetition vectors of the original actors, but 

also to the addition of “special” actors, noted F and J, responsible for distributing tokens 

to several consumers, or gathering tokens from several producers. 

The SPiDER tool uses a PiSDF input representation of an application and performs a 

transformation to an expanded intermediate DAG representation to perform the scheduling 

and mapping of the application onto multi-core platforms. Construction of the intermediate 

representation is a costly step that needs to be repeated multiple times in the context of 

dynamically reconfigurable applications.  

Contribution 

The CERBERO contribution is a numerical model of the expanded DAG representation of 

the PiSDF MoC, compatible with both the SDF and IBSDF MoCs, which makes it possible 

not to build the intermediate DAG when scheduling the application, thus improving 

significantly the performance of the embedded runtime. The objective of the proposed 

representation is to allow DAG oriented analysis methods while maintaining the 

compactness and expressiveness of the targeted dataflow MoC. 

 

 

Figure 10 - SDF Graph Example.  

The number of firings per graph 

iteration is given below each actor. 

 

Figure 11 - Directed Acyclic Graph (DAG) derived from the 

SDF Graph of Figure 10. 

 

Intuitively, the idea behind the proposed numerical representation is to compute on-the-fly 

the dependencies between the different firings of actors of the original SDF graph when 

scheduling the application, instead of computing these dependencies when building the 

DAG. The drawback of this approach is that if a data-dependency needs to be evaluated 

several times by the scheduling algorithm, for example when checking whether all 
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predecessors of a given actor firing have completed their execution, then this data 

dependency will be re-computed every time, while the DAG can be used directly. The 

advantage of the proposed numerical representation is that it requires very little memory 

compared to the amount needed to allocate and store all data structures of a DAG. The 

proposed set of notations and theorem for this numerical representation are thoroughly 

detailed in [Arrestier 2019]. 

An experimental evaluation of the proposed numerical representation implement within 

SPiDER was conducted on four machine learning (SqueezeNet, Reinforcement Learning) 

and computer vision (Stabilization, Sobel-Morpho) algorithms. The amount of memory 

required to store the DAG and the numerical model for each application is presented in 

Table 3. The proposed numerical representation for the four applications is more than 94% 

more compact than the DAG representation, making it an interesting solution for embedded 

architectures where memory resources are generally scarce. 

 

Application DAG Num. Representation Gain 

1- SqueezeNet 8405 kB 515 kB 94% 

2 - Reinforcement Learning 5183 kB 70 kB 99% 

3 - Stabilization 782 kB 12 kB 98% 

4 - Sobel-Morpho 405 kB 7 kB 98% 

Table 3 - Memory Footprint of the DAG and Numerical Representation used for Scheduling in 

SPiDER. 

Then the latency overhead of the numerical representation was compared with the building 

time of the DAG for the execution of the four applications on three different architectures: 

an Intel i7 core, a Jetson TX2, and an Odroid-XU3 board. Results of this comparison are 

presented in Table 4. The IR column corresponds the time taken to initialize the structures 

of the Numerical Representation minus the time taken for building the DAG. The Sched. 

column corresponds to the time taken by the scheduling algorithm when the numerical 

representation, and the on-the-fly computation it involves, is used, minus the time taken by 

the scheduling algorithm when the DAG is used. A negative number in the IR and Sched 

column indicates that the scheduling algorithm is faster when using the numerical 

representation than when using the DAG, and a positive means the opposite. The Gain 

column corresponds to the overall gain in the latency of the scheduling process when using 

the Numerical representation, relatively to the total time taken when building and using a 

DAG. 
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  i7  TX2  XU3 

App. IR Sched Gain IR Sched. Gain IR Sched. Gain 

1 -6.89 ms +2.34 ms -47% -38.77 ms -8.01 ms -76% -77.87 ms +0.09 ms -76% 

2 -0.69 ms +0.22 ms -48%  -5.48 ms +0.41 ms -78% -10.70 ms +0.93 ms -76% 

3 -0.12 ms +0.04 ms -54% -0.61 ms +0.05 ms -75% -1.51 ms +0.06 ms -77% 

4 -0.06 ms +0.00 ms -79% -0.21 ms -0.02 ms -48% -0.63 ms -0.05 ms -85% 

Table 4 - Latency gain and overhead of the Numerical Representation in the Scheduling Process, 

compared to the legacy DAG-based representation, on three architectures and four application.  

 

Use in CERBERO 

Dynamic reconfiguration capabilities are at the core of the CERBERO Toolchain. To be 

usable in highly reactive self-adaptive scenarios where application computational 

performance is an important KPI of the CPS, such as in the space exploration or ocean 

monitoring use cases, the overhead of reconfiguration managers should remain as 

contained as possible. The proposed numerical representation helps achieve this purpose 

by drastically lowering the latency overhead of the dataflow mapping/scheduling process. 

The proposed numerical representation was integrated within the SPiDER runtime to make 

it seamlessly usable for all users of the CERBERO Toolchain. 
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6. Conclusions 

Models of computations are the foundation of the CERBERO Toolchain as their semantics 

provides the necessary formalism for the design, the analysis, the optimization, the 

refinement, and the runtime management of complex CPS. The models of computations 

supported in the different tools of the CERBERO toolchain were surveyed in D3.5, and are 

reminded in Table 6 (slightly updated with new supporting tools for the PiSDF MoC). 

Dataflow models of computation used in CERBERO, which are tailored for modeling and 

managing parallel and reconfigurable behaviors for mid to low-level software and 

hardware system, are a key element of the CERBERO self-adaptation reconfiguration loop. 

For this reason, MoC-related technical requirements of CERBERO, reminded in Table 1 

have been identified and a lot of research effort has been, and will be, spent accordingly to 

improve the capabilities of these dataflow models by:  

• improving their expressiveness for capturing states of applications,  

• integrating real-time concerns in the design and analysis of application graphs,  

• offering new optimization opportunities for design space exploration with 

moldable parameters (planned),  

• studying the compatibility and use of polyhedral optimization techniques with the 

dataflow approach,  

• improving the performance of dataflow graphs management for runtime mapping 

and scheduling. 

The integration and support for these achievements within tools (PREESM, SPiDER, 

PAPIFY, ARTICo3, MDC) of the CERBERO toolchain make them readily available to all, 

including for the support of the different use-cases implemented with them. 

 

Table 6 – CERBERO Tools to MoC Mapping. S: support, P: planned support within CERBERO duration 

 SDF 
PiSD

F 
PN KPN 

DPN RTL DES SCE TS 

MECA        S  

VT         S 

DynAA   S S   S   

AOW          

PREESM S S        

SPiDER  S        

PAPIFY  S   S     

JIT HW      S    

ARTICo³  S    S    

MDC S S   S S    
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