
Information and Communication Technologies (ICT)

Programme

Project No: H2020-ICT-2016-1-732105

D3.2: Models of Computation

Lead Beneficiary: INSA

Workpackage: WP3

Date: 30/06/2019

Distribution - Confidentiality: Public

Abstract:

This document presents the innovations on Models of Computations (MoCs) for the design

of Cyber-Physical Systems (CPSs) resulting from the work of the CERBERO partners.

Motivations behind the newly introduced MoC features are presented as well as how these

features will ease the adoption and efficiency of model-based methods in the CPS design

context.

© 2019 CERBERO Consortium, All Rights Reserved.

Ref. Ares(2019)4139803 - 30/06/2019

H2020-ICT-2016-1-732105 - CERBERO

WP3 – D3.2: Models of Computation

Page 2 of 34

Disclaimer

This document may contain material that is copyright of certain CERBERO beneficiaries,

and may not be reproduced or copied without permission. All CERBERO consortium

partners have agreed to the full publication of this document. The commercial use of any

information contained in this document may require a license from the proprietor of that

information.

The CERBERO Consortium is the following:

Num. Beneficiary name Acronym Country

1 (Coord.) IBM Israel – Science and Technology LTD IBM IL

2 Università degli Studi di Sassari UniSS IT

3 Thales Alenia Space Espana, SA TASE ES

4 Università degli Studi di Cagliari UniCA IT

5
Institut National des Sciences Appliquees de

Rennes
INSA FR

6 Universidad Politecnica de Madrid UPM ES

7 Università della Svizzera Italiana USI CH

8 Abinsula SRL AI IT

9 Ambiesense LTD AS UK

10
Nederlandse Organisatie Voor Toegepast

Natuurwetenschappelijk Ondeerzoek TNO
TNO NL

11 Science and Technology S&T NL

12 Centro Ricerche FIAT CRF IT

For the CERBERO Consortium, please see the http://cerbero-h2020.eu web-site.

Except as otherwise expressly provided, the information in this document is provided by

CERBERO to members "as is" without warranty of any kind, expressed, implied or

statutory, including but not limited to any implied warranties of merchantability, fitness for

a particular purpose and non-infringement of third party’s rights.

CERBERO shall not be liable for any direct, indirect, incidental, special or consequential

damages of any kind or nature whatsoever (including, without limitation, any damages

arising from loss of use or lost business, revenue, profits, data or goodwill) arising in

connection with any infringement claims by third parties or the specification, whether in

an action in contract, tort, strict liability, negligence, or any other theory, even if advised

of the possibility of such damages.

The technology disclosed herein may be protected by one or more patents, copyrights,

trademarks and/or trade secrets owned by or licensed to CERBERO Partners. The partners

reserve all rights with respect to such technology and related materials. Any use of the

protected technology and related material beyond the terms of the License without the prior

written consent of CERBERO is prohibited.

http://cerbero-h2020.eu/

H2020-ICT-2016-1-732105 - CERBERO

WP3 – D3.2: Models of Computation

Page 3 of 34

Document Authors

The following list of authors reflects the major contribution to the writing of the document.

Name(s) Organization Acronym

Karol Desnos INSA

Florian Arrestier INSA

Alexandre Honorat INSA

Jean-François Nezan INSA

Daniel Menard INSA

Maxime Pelcat INSA

Eduardo Juarez UPM

Raquel Lazcano UPM

Daniel Madroñal UPM

Francesca Palumbo UniSS

Tiziana Fanni UniCA

The list of authors does not imply any claim of ownership on the Intellectual Properties described

in this document. The authors and the publishers make no expressed or implied warranty of any

kind and assume no responsibilities for errors or omissions. No liability is assumed for incidental

or consequential damages in connection with or arising out of the use of the information contained

in this document.

Document Revision History

Date Ver. Contributor (Beneficiary) Summary of main changes

2019.04.04 0.1 Karol Desnos (INSA) Table of content draft

2019.06.04 0.2 Karol Desnos (INSA)

Eduardo Juarez (UPM)

Raquel Lazcano (UPM)

Daniel Madroñal (UPM)

Filling all sections

2019.06.06 0.3 Raquel Lazcano (UPM) Update in Section 5.4

2019.06.17 0.4 Tiziana Fanni (UniCA)

Francesca Palumbo (UniSS)

Karol Desnos (INSA)

Eduardo Juarez (UPM)

Document internal review

H2020-ICT-2016-1-732105 - CERBERO

WP3 – D3.2: Models of Computation

Page 4 of 34

Table of contents

1. Executive Summary ... 5
1.1. Structure of Document ... 5
1.2. Related Documents .. 5
1.3. Related CERBERO Requirements .. 6

2. Models of computation .. 7
2.1. Abstraction ... 7
2.2. Models .. 7
2.3. Models of Computation .. 7

3. Characterization of Models of Computation ... 9
3.1. Properties ... 9
3.2. Additional MoC Comparison Criteria ... 11

4. Surveyed Models of Computation ... 13
4.1. Synchronous Dataflow ... 13
4.2. Parameterized and Interfaced Synchronous Dataflow 15

5. CERBERO Innovation on Models of Computation for CPS 17
5.1. Dataflow Extension for Persistent State Representation 17
5.2. Modeling Periodic Real-Time Constraints in the SDF Model 21
5.3. Moldable Parameters in Dataflow for Extended Design-Space Exploration 24
5.4. Extension of PiSDF MoCs through polyhedral transformations 24
5.5. Numerical Representation of Directed Acyclic Graphs for Dataflow-Based
Embedded Runtime Resources Allocation ... 27

6. Conclusions ... 31

7. References ... 32

H2020-ICT-2016-1-732105 - CERBERO

WP3 – D3.2: Models of Computation

Page 5 of 34

1. Executive Summary

This document relates the activities and contributions of the CERBERO consortium related

to the use of Models of Computation (MoCs) for the design of Cyber-Physical Systems

(CPS). A survey of state-of-the-art MoCs was previously proposed in D3.5, outlining the

main characteristics of MoCs used for the design of CPSs by presenting:

• the properties of their semantics (analyzability, decidability, reconfigurability,

expressiveness, determinism, ...),

• the kind of algorithm it supports (data-driven, control-driven, …),

• the level of abstraction it captures (system-of-systems, system, component, …)

• the type of implementation it translates into (hardware, software, distributed, …).

Based on this survey, a mapping of the different MoCs supported in the different tools and

layers of the CERBERO framework was presented. The lacks in the current semantics of

the used MoCs were identified in D3.5, and a set of new MoC features needed to better

support the design of CERBERO use-cases was defined. This document presents the result

of the work on these new MoC features and how they will allow these MoCs to be more

generally and effectively adopted in the CPS context.

This document is an update of former deliverable D3.5. In order to speed up and ease the

reading and review process, the text of sections and paragraphs that have NOT been

significantly updated and revised are in dark gray. For conciseness, only a brief summary

of section 4 from D3.5 is given. Sections that have been deeply updated and revised are

most sub-sections within section 5.

1.1. Structure of Document

Section 2 of this document reminds the definition of the notions of abstraction and models,

which serve as a basis to the concept of Models of Computation. Section 0 reminds a set

of properties of MoCs that are used in Section 0 to characterize and compare the state-of-

the-art MoCs commonly used for the design of CPSs. Finally, Section 5 presents the

CERBERO innovations in the domain of MoCs for the modeling of CPS.

1.2. Related Documents

• D2.7 - CERBERO Technical Requirements

o D3.2 contributes to satisfy D2.7 requirements. Details are given in

Section .

• D3.3 - Cross-layer Modelling Methodology for CPS

o The models of computation described in this document are used to

represent one aspect of the CPS, the behavior. This is a key foundation in

the cross-layer modeling methodology.

• D3.5 - Models of Computation

o First version of this deliverable with complete MoC survey, and planned

innovations on MoCs.

• D5.2 - CERBERO Framework Components

H2020-ICT-2016-1-732105 - CERBERO

WP3 – D3.2: Models of Computation

Page 6 of 34

o D5.2 gives more technical details on the support of MoCs within the tools

that are components of the CERBERO framework.

• D5.5 - CERBERO Framework Components

o Uses of MoCs as a mean of interconnection between pairs of tools, or

within the CERBERO Interoperability Framework (CIF) are detailed in

D5.5.

1.3. Related CERBERO Requirements

Deliverable D2.7 of the CERBERO project defines a list of CERBERO Technical

Requirements (CTRs) the project should achieve. Each of them is referenced with a unique

identifier ranging from 0001 to 0020. MoC exploration and innovation are carried out

following the requirements in Table 1. This table was updated since D3.5 to link the

different CTRs to the sections of the document describing contributions to address them.

CTR

id
CTR Description Link with the D3.2

document on Models

of Computation

Sections describing the contributions

0001 CERBERO framework

SHOULD increase the

level of abstraction at

least by one for HW/SW

co-design and for

System Level Design.

Innovations on MoCs

help raising the

abstraction level for

the designer

Section 5.1 introduces new dataflow

semantics to ease the design of iterative

computations at a dataflow level.

Secton 5.2 introduces new semantics for

modeling real-time periodic constraints at

dataflow level.

0002 CERBERO framework

SHOULD provide

interoperability

between cross-layer

tools and semantics at

the same level of

abstraction.

Formalization of

MoCs and

homogeneity among

partners foster tool

interoperability

Sections 5.1, 5.2, 5.3, and 5.4 all introduce

contributions that either extend or rely on the

dataflow MoC formalism. Formal

specification of the MoC foster integration

between tools inside (PREESM, SPIDER,

PAPIFY, AOW, DYNAA, ARTICO3,

MDC) and outside (APPOLO) of the

CERBERO Framework

0007 CERBERO framework

SHALL define

methodology and

SHOULD provide

library of reusable

functional and non-

functional KPIs.

Non-functional KPIs

can be influenced in

the MoCs using

proposed Moldable

Parameters

Sections 5.2 and 5.3 introduce new non-

functional concepts, periodic actors and

moldable parameters, respectively; on top of

the existing dataflow semantics.

0020 CERBERO framework

SHALL provide

methodology and tools

for development of

adaptive applications.

Proposed innovations

on MoCs improve the

expressiveness and

specify the semantic

of PiSDF for

designing adaptive

applications

Sections 5.1, 5.2 and 5.3 introduce new

element of semantics that, by improving the

expressiveness of the PiSDF MoCs, ease the

design of adaptive applications.

The contribution introduces in section 5.5 is

a model analysis technique that fosters the

usage of dataflow MoCs for fast runtime

resource allocation of resources for adaptive

applications.

Table 1: Links to CERBERO Technical Requirement

H2020-ICT-2016-1-732105 - CERBERO

WP3 – D3.2: Models of Computation

Page 7 of 34

2. Models of computation

This first section briefly defines the core concepts of abstraction, model, and model of

computations.

2.1. Abstraction

In general, abstraction is a tradeoff between the level of details and the complexity adopted

when describing or representing a thing (e.g., an idea, a system, a place, an object, a

phenomenon, etc.). Two distinct representations used to describe the same thing, each

adopting a different abstraction tradeoff (i.e., amount of details conveyed about it), can be

compared relatively to each other using so-called levels of abstraction.

• The lower level of abstraction gives a representation of the thing which is more

detailed, thus giving a more precise and complete description.

• The higher level of abstraction gives a representation of the thing where some

details are voluntarily omitted to decrease the complexity of the description. This

higher complexity generally translates into a smaller and/or less dense

representation of the thing.

2.2. Models

A model is a mathematically grounded representation capturing predictable characteristics

of a system. More precisely, a model consists of a set of elements that can be assembled

respecting a set of rules to describe a system. For a valid representation built with a model,

mathematical equations associated to the elements of the model make it possible to predict

some characteristics of the modeled system. Models are commonly used in all scientific

fields to represent evolution of physical, computing, chemical, financial, or social systems.

For example, the symbol in Figure 1 – Bipolar Transistor Symbol and its associated

equation in Figure 2 - Bipolar Transistor Equation are used to model and predict the voltage

and current characteristics of a transistor within a model of an analog circuit.

Figure 1 – Bipolar Transistor Symbol

Figure 2 - Bipolar Transistor Equation

In the context of cyber-physical systems (CPSs) engineering, several models adopting

different levels of abstraction can be used to describe separated or nested aspects of a

system. More details on the use of heterogeneous models to describe a CPS are presented

in D3.3.

2.3. Models of Computation

A Model of Computation (MoC) is a set of operational elements that can be composed to

describe the behavior of an application. The set of operational elements of a MoC and the

set of relations that can be used to link these elements are called the semantics of a MoC.

H2020-ICT-2016-1-732105 - CERBERO

WP3 – D3.2: Models of Computation

Page 8 of 34

As presented in [Savage 1998], MoCs can be seen as an interface between the computer

science and the mathematical domains. A MoC specifies a set of rules that control how

systems described with the MoC are executed. Each element of the semantics of a MoC

can be associated to a set of properties, such as timing properties or resource requirements.

These rules and properties provide the theoretical framework that can be used to formally

analyze the characteristics of applications described with a MoC. For example, using a

mathematical analysis, it may be possible to prove that an application described with a

given MoC will never get stuck in an unwanted state or that it will always run in a bounded

execution time. Section 0 of this document describes a set of properties that are commonly

supported by existing MoCs, which are themselves described in Section 0. A more

extensive introduction to CPS modelling with MoCs can be found in [Lee 2017].

H2020-ICT-2016-1-732105 - CERBERO

WP3 – D3.2: Models of Computation

Page 9 of 34

3. Characterization of Models of Computation

Since the introduction of modern computing systems in mid-1900s, a plethora of MoCs

have been proposed by the scientific community. Very often, a new MoC is introduced to

allow the specification of applications or systems that exhibit a set of characteristics whose

specification was impossible or difficult to achieve with previously existing MoCs.

When designing a system, it is important to identify its required and desired properties.

Once these have been identified, the designer can select the MoC whose semantics will

make it easier to express, verify and guarantee those properties by construction.

The objective of this section is to give a definition of the properties used to characterize

and compare the MoCs presented in Section 0.

3.1. Properties

This section lists a set of commonly used properties utilized to compare the system

characteristics supported by different MoCs.

Analyzability

The analyzability of a MoC evaluates the availability of analysis and synthesis algorithms

that can be used to characterize applications modeled with this MoC. For example, in the

synchronous dataflow MoC, analysis algorithms can be applied at compile-time to compute

the worst-case latency or the maximum memory requirements of a design.

Conciseness

The conciseness (or succinctness) of a MoC captures its ability to express complex system

behaviors with a limited description size. This relative property is useful for comparing

MoCs with equivalent expressiveness. Indeed, conciseness is often a desired feature for

system developers as the design of an identical application with two MoCs (of identical

expressiveness) will lead to a smaller design with the more concise MoC.

Compositionality

A modular MoC is compositional if the analyzable properties of a module described with

this MoC are independent from the internal specification of the submodules that compose

it [Ostroff 1995]. For example, in a compositional MoC, if each submodule used in the

design is (independently) deadlock free, then the whole design combining these

submodules will be deadlock-free by construction.

Decidability

A MoC is decidable if the schedulability of applications described with this model can be

proved statically (i.e. at compile time) [Bhattacharyya 2006]. Hence, using a decidable

MoC makes it possible to guarantee at compile-time that a system will never reach a

deadlock state and that its execution will require a finite amount of memory. A non-

decidable MoC does not mean that applications will not be schedulable, only that their

schedulability can only be verified “on the fly” at runtime. Decidability is often obtained

as a trade-off for a limited expressiveness of the MoC.

H2020-ICT-2016-1-732105 - CERBERO

WP3 – D3.2: Models of Computation

Page 10 of 34

Determinism

A MoC is deterministic if the output of an algorithm only depends on its inputs, but not on

external factors such as time or randomness. If determinism is a desired feature for most

control and streaming applications, non-determinism may also be needed to describe

applications reacting to unpredictable inputs.

Expressiveness

The expressiveness, of a MoC evaluates the complexity of application behaviors that can

be described with this MoC. For example, the expressivity of the Dataflow Process

Network (DPN) MoC has been proven to be equivalent to a Turing machine. The

specialization of a MoC restricts the expressivity of this MoC to increase its analyzability,

or to give it new properties such as determinism or decidability. Expressivity is often

mistaken for conciseness. For example, the Cyclo-Static Dataflow (CSDF) MoC is often

said to be more expressive than the Synchronous Dataflow MoC but meaning instead that

it has a better conciseness.

Modularity

In a modular (or hierarchical) MoC, a system description can be broken into several

independent modules. The modules that are combined to create a system can be (re-)used

either in different systems specification or instantiated several times in the same. The

modules themselves can be described using the same MoC as the top-level system

description or can encapsulate other compatible MoCs.

Parallelism

In a parallel MoC, several independent elements of a system description may “activate”

concurrently and independently from each other, each causing a change in the current state

of the system. In a sequential (i.e. non-parallel MoC), all changes of the system state can

be broken down to a sequence of actions triggered one after another, according to the

system semantics.

Reconfigurability

A MoC is reconfigurable if the behavior of entire parts of a system description can be

modified dynamically, to fulfill future execution goals for a foreseeable amount of time.

Reconfiguration is used to dynamically adapt the behavior of a system to its environment,

notably by enabling or disabling parts of the system, by modifying its functional behavior

(e.g. its computations, QoS, …), or by modifying its non-functional properties (e.g.

exposed parallelism, energy consumption, …).

Predictability

The predictability property is related to the reconfigurability property of a MoC. This

property evaluates the amount of time between a reconfiguration of a part of the system,

and the beginning of activity in the reconfigured part. The more predictable a MoC is, the

more the time that can be used by a runtime manager to react and perform an optimization

of the reconfigured part before using it.

H2020-ICT-2016-1-732105 - CERBERO

WP3 – D3.2: Models of Computation

Page 11 of 34

3.2. Additional MoC Comparison Criteria

This section introduces a few other criteria that can be used to compare MoCs. These

comparison criteria denote different classes of applications that a MoC can be used to

represent. Unlike the properties presented in the Section 3.1, which capture properties

supported (or not) by MoCs, this section introduces more subjective comparison criteria.

Indeed, if some MoCs seem more suitable to implement a given class of applications, using

them to implement another class may still be possible, but less practical or less common.

Algorithms Computation Classification

Algorithms described with a MoC can be classified into several classes depending on the

type of involved computation:

• Stream-based: A continuous stream of data is steadily processed and produced by

the described algorithm. The amount and nature of the computation do not vary

depending on the data.

• Data-driven: The amount and nature of the computation do not vary depending on

the data. Contrary to stream-based algorithms, data does not necessarily arrive

continuously.

• Control Driven: The amount and nature of the computation depend on the

processed data.

• Event Driven: Computations are triggered by events on the frontier of the system

(i.e. by sensors, users, communication network, …).

Captured Algorithms Granularities

MoCs with different levels of abstractions are inherently suitable for representing

behaviors of diverse granularities:

• Function: The modeled algorithm captures computations that are building blocks

used to assemble an algorithm with a higher granularity.

• Component: The modeled algorithm serves a well-specified purpose with clear

input and output interfaces and constraints.

• System: The modeled algorithm represents a collection of components with

diverse objectives but running locally on a unique computing system.

• System-of-systems: The modeled algorithm consists of several independent

“systems”, each existing and evolving independently from the others but

exchanging information among them through communication channels.

Implementation Types

A MoC is a theoretical representation used to describe the behavior of an application.

Implementing a MoC consists in translating this theoretical behavior into an “executable”

description. Different types of implementations can be more or less suitable to implement

each MoC:

• Hardware: Algorithms described with this type of MoC can be efficiently

translated into logical gates, signals, and registers on an ASIC or an FPGA.

• Software: Algorithms described with this type of MoC can be efficiently translated

into a sequence of instructions executed on a processor that manipulates data stored

in a memory space.

H2020-ICT-2016-1-732105 - CERBERO

WP3 – D3.2: Models of Computation

Page 12 of 34

• Distributed: Algorithms described with this type of MoC can be efficiently

implemented by splitting them into several parts executed on separate Hardware or

Software components, each storing a part of the system state and executing a part

of the computations in parallel.

• Heterogeneous: Algorithms described with this type of MoC can be efficiently

translated into a mix of hardware and software implementations.

H2020-ICT-2016-1-732105 - CERBERO

WP3 – D3.2: Models of Computation

Page 13 of 34

4. Surveyed Models of Computation

Using key characteristics of MoCs defined in Section 3, Table 4: SDF: Synchronous

Dataflow; PiSDF: Parameterized and Interfaced Synchronous Dataflow; BSP: Bulk

Synchronous Parallel; PN: Petri Networks; DPN: Dataflow Process Network; RTL:

Register Transfer Level; TS: Transition System; KPN: Kahn Process Networks; DES:

Discrete Event System; sCE: Situated Cognitive Engineering. Non-bold MoCs are those

inherited from their parent (first bold one above). Blank cells indicate a MoC has no

specific traits for the property. can be used to quickly compare the characteristics of state-

of-the-art MoCs.

MoCs

Analyzability

Conciseness

Com
positionality

Decidability

Determ
inism

Expressiveness

M
odular

Parallelism

Predictability

Reconfigurability

RTL + ++ + ++ ++ +

SDF ++ + + + - -- + --

Cyclo-Static ++ ++

Interface-Based SDF ++ + +

Deterministic SDFwith

Shared FIFO
++ +

PiSDF ++ ++ + + + ++ + + +

BSP - + + - + ++ -

KPN + - + +

DPN - - + ++ -

PN + + - ++ + + +

DES - ++ - +++ ++ ++ - +

SCE + + + + +

TS + +

Table 4: SDF: Synchronous Dataflow; PiSDF: Parameterized and Interfaced Synchronous

Dataflow; BSP: Bulk Synchronous Parallel; PN: Petri Networks; DPN: Dataflow Process

Network; RTL: Register Transfer Level; TS: Transition System; KPN: Kahn Process

Networks; DES: Discrete Event System; sCE: Situated Cognitive Engineering. Non-bold

MoCs are those inherited from their parent (first bold one above). Blank cells indicate a

MoC has no specific traits for the property.

A thorough presentation of all MoCs listed in Table 4: SDF: Synchronous Dataflow;

PiSDF: Parameterized and Interfaced Synchronous Dataflow; BSP: Bulk Synchronous

Parallel; PN: Petri Networks; DPN: Dataflow Process Network; RTL: Register Transfer

Level; TS: Transition System; KPN: Kahn Process Networks; DES: Discrete Event

H2020-ICT-2016-1-732105 - CERBERO

WP3 – D3.2: Models of Computation

Page 14 of 34

System; sCE: Situated Cognitive Engineering. Non-bold MoCs are those inherited from

their parent (first bold one above). Blank cells indicate a MoC has no specific traits for the

property. was given in D3.5. For the sake of conciseness, only the definition of MoCs

studied in section 5 are copied hereafter.

4.1. Synchronous Dataflow

MoC brief description

The Synchronous Dataflow [Lee 1987] MoC models an application as a directed graph of

computational entities, called actors, that exchange data through a network of First-In First-

Out queues (FIFOs). Each time an actor is executed, or fired, it consumes and produces a

fixed quantum of data, called data token, on the FIFOs to which it is connected. An example

of SDF graph is given in Figure 3 - Example of Synchronous Dataflow Graph.

Figure 3 - Example of Synchronous Dataflow Graph

MoC properties

Synchronous Dataflow is a parallel and decidable MoC that exhibits one of the greatest

degrees of analyzability among dataflow MoCs. Coupled with the determinism of the MoC,

its analyzability makes it possible to prove algorithms deadlock freeness and boundedness

at compile time and is often used to guarantee real-time properties (e.g. throughput, latency,

worst-case execution time) of applications modeled with it. This great analyzability comes

at the expense of a limited expressiveness of the MoC, because of the absence of any

reconfiguration semantics in the MoC. The original MoC described in [Lee 1987] is not

modular.

Relationship with other MoCs

The SDF MoC belongs to the family of dataflow models of computation. As one of the

dataflow MoCs with the most restrictive semantics, SDF behavior can be expressed in most

dataflow models.

As demonstrated in [Klikpo 2016], the MoC implemented in Labview® is equivalent to

the SDF MoC.

There exist several dataflow MoCs with an equivalent expressiveness with the SDF MoC:

• The Cyclo-Static Dataflow [Bilsen 1996] and Affine Dataflow [Bouakaz 2012]

MoCs which have a greater conciseness than the SDF MoC while retaining all its

analyzability, by specifying sequences of production and consumption rates instead

of scalar values.

H2020-ICT-2016-1-732105 - CERBERO

WP3 – D3.2: Models of Computation

Page 15 of 34

• The Interface-Based SDF [Piat 2009] and Deterministic SDF with Shared FIFO

[Tripakis 2013] MoCs which are two modular and compositional extensions of the

SDF MoC.

MoC Usage

Synchronous Dataflow is mainly used to describe stream-based and data-driven

algorithms, mostly at function and component levels. The SDF MoC is suitable for all kinds

of implementations.

MoC Support

The SDF MoC is natively supported in the following tools: Ptolemy II [Davis 1999], SDF3

[Stuijk 2006], PREESM [Pelcat 2014], MDC [Palumbo 2017], LIDE [Shen 2011].

4.2. Parameterized and Interfaced Synchronous Dataflow

MoC brief description

The Parameterized and Interfaced Synchronous Dataflow (PiSDF) is the result of applying

the Parameterized and Interfaced dataflow Meta-Modeling methodology [Desnos 2013] to

the SDF MoC. PiSDF adds parameterization and interfaced hierarchy to the SDF MoC.

The PiSDF MoC models an application as a directed graph. Besides actors and FIFOs (see

section 4.1), parameters, hierarchical interfaces and parameter dependencies can also be

vertices of the graph.

Parameters are employed to configure and modify dataflow specifications. Parameters can

influence (1) the functionality of an actor, (2) the production/consumption rates of actor

ports, (3) the value of another parameter and (4) a delay of a FIFO. Hierarchical interfaces

convey data tokens or parameter values between levels of hierarchy. Hierarchical

interfaced actors, or simply, hierarchical actors, are univocally linked to PiSDF subgraphs.

Parameter dependencies propagate parameter values to other elements of the graph.

Actors, hierarchical or non-hierarchical, can have two types of ports: data ports and

configuration ports. Data ports exchange data and configuration ports parameters.

Parameters are connected to configuration ports through parameter dependencies. Both

types of ports can be declared as input or output ports. An actor with an output

configuration port is named a configuration actor. Firing of configuration actors

dynamically produces values that set configurable parameters. The firing is only permitted

at specific instants of time during a graph execution.

There are two types of parameters in a PiSDF MoC: configurable parameters and locally

static parameters. Configurable parameters can be modified in each graph iteration, i.e. at

run-time. Locally static parameters can only be modified at design-time. Parameter values

passed through input configuration interfaces of hierarchical actors always become locally

static parameters of hierarchical (sub)graphs.

Output configuration ports are always connected to configurable parameters. A change in

a configurable parameter is the result of a change in either an output configuration port of

an actor or another configurable parameter the former depends upon.

H2020-ICT-2016-1-732105 - CERBERO

WP3 – D3.2: Models of Computation

Page 16 of 34

MoC properties

PiSDF inherits the properties of SDF (see section 4.1) and adds the modularity and

reconfigurability properties, with the advantage of keeping the analyzability of SDF. As

the reconfiguration semantics is included into PiSDF, its expressiveness is greater than that

of SDF. Besides modularity, reconfigurability is extremely handy in the context of cyber-

physical systems, which is why in the CERBERO project we intend to use and extend

PiSDF (see Section 5).

Relationship with other MoCs

The PiSDF MoC is related to the Interface-Based SDF [Piat 2009], from which it inherits

the compositional hierarchy mechanism. The PiSDF MoC has the same expressiveness, but

a better conciseness, as the Parameterized SDF MoC [Bhattacharya 2001].

MoC Usage

PiSDF is mainly used to describe stream-based, data-driven and control-driven algorithms

(with a reduced number of configurable parameters in practice), mostly at functional and

component levels. The PiSDF MoC is suitable for implementations in heterogeneous

systems [Heulot 2014].

MoC Support

The SDF MoC is natively supported in the tool PREESM [Pelcat 2014], and the SPiDER

runtime [Heulot 2014] is used to support the reconfiguration of graphs during execution.

The tools MDC [Palumbo 2017] and ARTICo³ will support this MoC and integrate with

PREESM and SPiDER. The objective is to offer new scheduling and mapping choices to

the runtime manager when dealing with reconfigurable hardware, i.e. hardware and

software implementations for an actor. The decisions will be driven by on-the-fly readings

of performance indicators using the Performance API (PAPI).

H2020-ICT-2016-1-732105 - CERBERO

WP3 – D3.2: Models of Computation

Page 17 of 34

5. CERBERO Innovation on Models of Computation for CPS

This section presents the contributions of the CERBERO project to the Model of Computation

domain. The main motivation behind these contributions is to support the specification of key

aspects of CPSs. In particular the proposed contributions aim at:

• Extending the expressiveness of the dataflow MoCs to better capture iterative

computations over semi-persistent data;

• Extending the semantics and analyzability of dataflow MoCs for real-time design

concerns;

• Extending the semantics of dataflow MoCs to increase optimization opportunities

during design space exploration phases;

• Combining dataflow MoCs and polyhedral models and transformation for the

optimization of embedded software;

• Proposing a new numerical analysis technique to ease the efficiency of runtime

resource allocation.

5.1. Dataflow Extension for Persistent State Representation

Summary of the work published in [Arrestier 2018]

Motivations & Problematic

In synchronous dataflow MoCs, as for example in the Synchronous Dataflow (SDF) and

Parameterized and Interfaced SDF (PiSDF) models presented in Section 4, the semantics

is dedicated to the processing of infinite streams of data. To this purpose, the semantics of

these dataflow MoCs has been tailored to capture in a concise form the data-parallelism

and determinism of algorithms executed infinitely repeatedly, with numerous and

entangled data dependencies.

Despite the many advantages of the semantics of dataflow models, these cannot currently

be used to represent concisely and unambiguously the persistence or the sporadic

initialization of data within algorithms. In CPSs, where computing systems must

continuously adapt their behavior to the physical environment enclosing them, these

persistent data are needed to capture the adaptive state of algorithms. These persistent

coefficients of such an adaptive system may be sporadically updated to fit an evolution of

their working environment. An example of such persistent data is the coefficients encoding

the learning ability of the neurons in online machine learning algorithms.

In the SDF MoC the number of data tokens exchanged by an actor at each firing is constant.

FIFOs can have an initial state corresponding to an initial number of data tokens present in

the FIFO at the beginning of any graph iteration, available prior to any actor firing. As

specified in [Lee 1987], these initial data tokens of a FIFO, called delays, can be used to

“transmit” persistent data between successive iteration of a graph.

Although the concept of delays exists in most dataflow MoCs, the initial values given to

the corresponding data tokens are hardly mentioned, let alone specified, in the literature.

In the few publications where they are specified, initial values are set to 0 [Lee 1987, Sriram

2009]. The lack of specification on the initial values of delays leads to inconsistent

H2020-ICT-2016-1-732105 - CERBERO

WP3 – D3.2: Models of Computation

Page 18 of 34

behaviors across different programming tools. Initialization of delays is made explicit with

the proposed semantics of delay.

The persistence of the data tokens of delays across levels of hierarchy and across graph

iterations also differs between MoCs. In a non-hierarchical model, like the SDF MoC, the

last data tokens produced during an iteration n, on a delayed FIFO, are used as the initial

conditions of iteration n+1. However, in hierarchical MoCs, delays can appear in

subgraphs used for specifying the internal behavior of a hierarchical actor. Contrary to flat

MoCs where delayed data tokens generally persist across graph iterations, the persistence

scope of delayed data tokens in hierarchical subgraphs, possibly across multiple firing of

their parent actors, is unspecified behavior. The CERBERO contribution introduces a clear

semantics to control the persistence scope of delays in hierarchical and reconfigurable

dataflow MoCs.

Contribution: State-Aware Dataflow

The State-Aware Dataflow (SAD) meta-model was proposed in CERBERO to

disambiguate the specification and use of persistent state within hierarchical and

reconfigurable dataflow MoCs implementing a well-defined notion of graph iteration. The

SAD meta-model comprises a set of semantic elements, that can be used for extending the

semantics of an existing dataflow MoC to add both explicit initialization of delays and

hierarchical state awareness through the use of a customizable persistence scope of delays.

Initialization semantics: Delays are usually represented by a filled circle positioned on a

FIFO as displayed in Figure 3. Figure 4 introduces the graphical representation of the

proposed semantics for delays with the additional data connections for initialization

purposes. Actors P and C are the production and the consumption actors, respectively, of

the FIFO f containing a delay. Actor S is the setter actor of the delays on FIFO f; delays to

which they are each connected with a FIFO, that is, one FIFO from actor S to the delay.

Symmetrically, actor G is the getter actor of the delays on FIFO f, and a FIFO connects

these delays to actor G. The FIFO between the delay and the getter actor G is drawn with

a dashed line to explicit which actor is the getter actor and which actor is the consumption

actor.

Figure 4 - Delay Initialization Semantics

From the behavioral semantics point of view, the new data connections between the setter

and getter actors and the delay induce the following precedence rules in the firing sequence

of actors during each graph iteration:

• All firings of the setter actor of a delay must occur prior to the first firing of the

consumption actor of this delay.

• All firings of the getter actor of a delay must occur after the last firing of the

production actor of this delay.

H2020-ICT-2016-1-732105 - CERBERO

WP3 – D3.2: Models of Computation

Page 19 of 34

From the functional point of view: the setter actor of the proposed semantics is responsible

for giving its initial value to the delayed token, before their consumption by the consumer

actor C within each iteration of the graph. In the absence of a setter actor S for a given

delay, the default initialization of the proposed semantics is to set all data tokens of the

delay to zero. Symmetrically, the getter actor G can retrieve the final value of the delay,

for further processing, after all executions of the producer actor P within each iteration of

the graph. This construction makes it possible to easily specify iterative computations,

similar to for-loops, in the dataflow MoC.

Explicitly initializing the delays means that new initialization tokens are produced on each

graph iteration. Thus, if no getter actor is connected to the output connection of a delay,

the produced data tokens have to be discarded to ensure bounded memory execution.

While improving its expressiveness, the proposed delay semantics of SAD preserves the

analyzability, the dependability, and the determinism of the extended dataflow models.

In particular, methods provided in [Arrestier 2018] can be used for checking the

consistency, schedulability and liveness properties of an application specified using this

delay initialization semantics.

Importantly, making the initialization of delays explicit for each graph iteration

unambiguously removes memory persistence across graph iterations. Indeed, each graph

iteration starts with initial data tokens independent from previous computations. Therefore,

delays are no longer allowed to transfer data tokens from iteration n to iteration n+1. A

new unambiguous semantics for modeling this persistence of data tokens across graph

iterations is presented below.

Delay persistence semantics: The persistence of delays defines whether tokens of a

delayed FIFO should be discarded or preserved for the next graph iteration, or for the next

firing of the parent hierarchical actor. Persistent delays contained in a subgraph of a

hierarchical actor are also called the “state” of this actor.

To control the persistence scope of delays in a hierarchical graph, SAD introduces 3

different types of delays illustrated in Figure 5: Local Delays, Locally Persistent Delays,

and Globally Persistent Delays.

Figure 5- SAD Persistence Semantics

Figure 6 - Example of PiSDF graph with Locally

Persistent Delay

H2020-ICT-2016-1-732105 - CERBERO

WP3 – D3.2: Models of Computation

Page 20 of 34

Local Delays (LDs) use the initialization semantics presented in the previous paragraph.

Thus, an LD can be initialized dynamically by dataflow actors. The data tokens contained

in the FIFO of an LD are preserved within the scope of a unique graph iteration but do not

persist beyond.

Locally Persistent Delays (LPDs) are delays whose data tokens persist outside of the scope

of the graph to which the LPD belongs. An LPD specifies the persistence of a delay for

one level of the hierarchy and establishes a precedence relationship for successive firings

of the parent actor H of the subgraph GH to which the LPD belongs.

Globally Persistent Delays (GPDs) are LPDs that persist across all levels of the hierarchy

up to the top-level graph. GPDs are initialized only once in the lifetime of an application,

prior to the first firing of the top-level graph. Since dataflow actors are fired once per graph

iteration, they cannot be used to initialize a GPD once in the application lifetime. Therefore,

a GPD is initialized with a function or a constant value directly associated with the delay.

GPDs are equivalent to the delays described in [Lee 1995]. By default, any LPD in the top-

level of the hierarchy is a GPD.

In the graph of Figure 6, the delay inside the hierarchical actor H is defined as an LPD. The

persistence of this LPD is made explicit with a feedback loop around the parent hierarchical

actor H. Note that using an LPD induces a data precedence relationship between firings of

the parent actors, which forces the scheduler of the graph to serialize the firings of actor H.

In the example of Figure 6, with the LPD, consecutive firings of actor H shall be scheduled

and executed one after the other. In this example, replacing the LPD within the subgraph

of actor H with an LD would break this serialization constraint, and would make it possible

to execute multiple firings of H in parallel.

The customizable persistence scope for delays offered by the SAD meta-model leads to

controlled data parallelism in hierarchical graphs which can be taken into account during

the analysis and scheduling of the graphs [Arrestier 2018].

Use in CERBERO

This extension of the dataflow model is suitable for the modeling of any CPS system and

has been implemented within both PREESM & SPiDER. The use of this contribution has

been demonstrated in [Arrestier 2018] with an implementation of a non-trivial

reinforcement learning algorithm that is applicable to any control system, such as the

robotic arm of the Space Exploration Use-Case.

The reinforcement learning algorithm used to showcase the proposed contribution is called

the Continuous Actor Critic Learning Automaton (CACLA) algorithm [Van Hasselt 2007].

This application example is selected to demonstrate the conciseness and memory efficiency

of the SAD meta-model application to the PiSDF MoC.

The top-level graph of the CACLA algorithm is depicted in Figure 7 and the subgraph of

the Update actors, which contain both an LD and an LPD, is depicted in Figure 8.

H2020-ICT-2016-1-732105 - CERBERO

WP3 – D3.2: Models of Computation

Page 21 of 34

Figure 7 - Top-level PiSDF graph of the CACLA Algorithm

Figure 8 - PiSDF Subgraph of the Update Actor of the CACLA Algorithm

In order to assess the benefits from using the newly introduced semantics for delays

initialization and persistence, the proposed implementation was compared with an

equivalent implementation of the same application with the PiSDF model, without using

the newly introduced semantics. Results presented in [Arrestier 2018] show that the

proposed approach makes it possible to reduce the amount of memory needed to run the

whole application by 35%. This memory footprint reduction is obtained because in the

absence of the SAD semantics, many additional MUX and DEMUX actors and FIFOs, and

the memory they require, are needed to model a similar behavior.

5.2. Modeling Periodic Real-Time Constraints in the SDF Model

Summary of a work submitted to RTNS2019 [Honorat 2019]

Motivation & Problematic

Image signal processing systems and visual servoing are typical examples of partially

periodic CPSs where certain components are periodic, which means they shall be executed

with a fixed repetitive periodic deadline, while other components do not have any real-time

constraint. For example, a camera films at a periodic rate and the images arrive at the

aperiodic processing components as a stream. Other components may also be periodic, as

the input of servo-motors which must be regularly updated. Thus, the processing part often

depends on periodic inputs and must provide periodically one or more outputs but does not

have to be periodic itself. The flexibility to deviate significantly from periodic operation

arises, for example, if data is buffered between components. One possible use-case is the

SLAM (Simultaneous Localization And Mapping) application: it constantly retrieves

information by camera or lidar and then processes it to reconstruct a map of the

environment and move according to it [Wen 2018].

H2020-ICT-2016-1-732105 - CERBERO

WP3 – D3.2: Models of Computation

Page 22 of 34

Contribution

This CERBERO contribution focuses on CPSs with periodic and aperiodic components,

which are modeled as SDF graphs [Lee 1987]. SDF graphs of CPS often have imposed

periodic constraints on all actors of the graph. Our approach is more flexible as any

component of the system can be periodic or aperiodic, which leaves more flexibility to the

mapping and scheduling process of the application. This flexibility is particularly helpful

in the case where several processing parts rely on different sensors.

Given an SDF graph, a number of identical cores where to execute the application, and the

Worst-Case Execution Time (WCET) of each actor, the addressed problems are:

• To quickly assess the schedulability of the constrained application, without

computing a schedule;

• To compute an offline non-preemptive schedule satisfying the periodicity and

precedence constraints.

It is important to note that scheduling time complexity is exponential in the number of tasks

to get the optimal solution because it is in general NP-complete [Kwok 1999]. This

complexity limits the design of CPSs since optimal schedulers do not scale. In contrast, our

approach gives results that are not optimal, but that can be used to quickly build and assess

prototypes. In other words, our approach is useful for early-stage design space exploration

of scheduling solutions. Optimal schedulers and timing property checkers may still have to

be used. However, if they are used, it would only be after the prototyping step, on a small

set of prototypes.

Schedulability Necessary Condition: The following set of notations must be introduced

to assess the schedulability of an SDF graph containing both actors with and without

periodic constraints:

• 𝑃 – The set of actors of the SDF graph associated with a periodic real-time

constraint

• 𝑇𝜋 – The period constraint (in seconds) of an SDF actor 𝜋.

• 𝐶𝜋 – The Worst-Case Execution Time (WCET) of an SDF actor 𝜋.

• 𝑚 – The number of homogeneous processors of the targeted architecture.

• 𝐷𝜋
↑ – The set of all actors of the SDF graph that are data dependent on the SDF actor

𝜋.

• 𝑛𝑏𝑙𝑓𝜋
↑(𝛼) – Given an SDF actor 𝛼 ∈ 𝐷𝜋

↑ , this recursive function computes the

number of firings of 𝛼 that may not be executed before the last firing of SDF actor

𝜋.

Given these notations, a necessary condition for the considered SDF graph to be

schedulable on 𝑚 processors is given by the following equation:

∀𝜋 ∈ 𝑃,
∑ 𝑛𝑏𝑙𝑓𝜋

↑(𝛼) × 𝐶𝛼𝛼𝜖𝐷𝜋
↑

𝑇𝜋 − 𝐶𝜋
≤ 𝑚

The principle of this equation is to verify that within an iteration of the SDF graph, and

considering the periodic constraint of periodic actors, there is enough time between two

executions of the periodic actor to execute all actors that depend on it on the number of

available cores. To be more precise, this equation focuses on the time between the last

H2020-ICT-2016-1-732105 - CERBERO

WP3 – D3.2: Models of Computation

Page 23 of 34

execution of a periodic actor within an iteration and the end of this iteration of the SDF

graph. Proofs and detailed explanation of these notations, as well as an algorithm to

implement the verification of this necessary condition, are available in [Honorat 2019].

Scheduling Algorithm for Partially Periodic SDF Graph: As a necessary schedulability

condition, the equation presented in the previous paragraph can be used to discards rapidly

unfeasible designs. Indeed, failing to satisfy the aforementioned conditions means that the

deployment of the partially periodic SDF graph on the given number of cores is not

possible. When the condition is satisfied though, the existence of a valid scheduled is not

guaranteed and must still be verified. The purpose of the proposed scheduling algorithm is

to make an attempt to find such a valid schedule.

Because the mapping and scheduling of an SDF graph over multiple cores is an NP-

Complete optimization problem, finding the optimal solution (i.e. the schedule with the

shortest latency in our context) is not possible in polynomial time. For this reason, the

proposed scheduling algorithm is a heuristic algorithm that provides no guarantee on the

optimality of the obtained schedules but only guarantees their validity with regards to the

periodic constraints of the SDF graph.

The proposed scheduling algorithm, detailed in [Honorat 2019], was evaluated on a set of

randomly generated graphs in order to evaluate its scalability with regards to the size of

applications. Results of this evaluation are reported in Table 1.

𝑚 100 actors 500 actors 1000 actors 5000 actors

2 cores 11 ms 238 ms 898 ms 23286 ms

4 cores 12 ms 251 ms 989 ms 25916 ms

8 cores 11 ms 254 ms 991 ms 26898 ms

Table 1 - Execution Time of the Scheduling Algorithm for Partially Periodic SDF Graphs.

As can be observed in these results, up to 1000 actors the execution time is lower than

1 second, while it reaches around 26 seconds for 5000 tasks. The execution times are

slightly increasing with the number of cores. These experimental results confirm the

theoretical complexity of the proposed scheduling algorithm in O(|E| + |V|*log(|V|)),

which is upper bounded by the number of edges |E| in the scheduled graph and the sorting

operation on the number of vertices |V|. It is important to note that in these experiments,

the considered graphs are not the SDF graph themselves, but the equivalent directed acyclic

graph derived from them, where each SDF actor is repeated as many times as its number

of executions per iteration of the SDF graph.

Use in CERBERO

Time is an essential physical aspect of a CPS and is often translated into real-time

constraints for the cyber part. Within CERBERO, both the space exploration and the ocean

monitoring use cases require some degree of real-time processing in their cyber part. In the

space exploration use-case, for example, the control of the robotic arm requires both

monitoring the current position of the different segments of the arm, and the control of its

engine with a fixed period. In the case of the ocean monitoring image processing pipeline,

the sampling rate of the cameras imposes a fixed periodic constraint to the computations

performed by the cyber part of the system.

H2020-ICT-2016-1-732105 - CERBERO

WP3 – D3.2: Models of Computation

Page 24 of 34

5.3. Moldable Parameters in Dataflow for Extended Design-Space

Exploration

Further work on this topic is scheduled for fall 2019.

Motivations

The DSE phase based on SDF MoCs mostly consists of mapping parallel actor executions

on the heterogeneous computational hardware resources of the targeted architecture, and

the data transfers on the hardware means of storage and communication. In those cases

where the number of parallel actors to map largely exceeds the available resources of the

architecture, DSE optimization algorithms face an important increase in the complexity of

the mapping problem. In such cases, developers will often manually update the model of

their applications to adopt a coarser granularity of description. This coarser granularity

translates into less numerous but ‘larger’ actors to execute. As illustrated in [Hascoet 2017],

by carefully adjusting the granularity of the application description, enough elements will

be exposed to permit a fair distribution of work on the available hardware resources, with

a reasonable complexity exposed to the DSE algorithms.

Envisioned Contribution

The adaptation of the granularity of the application exposed to the DSE algorithm is

generally left to the designer of the application. The objective of this contribution is to

extend the semantics of SDF models to support the specification of so-called moldable

parameters. A moldable parameter is a parameter associated to a range of acceptable

values, thus leaving the responsibility to the DSE algorithm to select the most appropriate

one in its optimization process. In general, moldable parameters are supposed to change

only the ‘organization’ (e.g. like the exposed degree of parallelism) of computations, but

not the output they produce. Hence, by specifying moldable parameters in SDFgraphs, it

will be possible for the designer to let the DSE algorithms automatically control the

parallelism and granularity of the application to obtain the best DSE solution in minimum

time.

Use in CERBERO

The moldable parameters will be integrated within PREESM during the CERBERO

Project. It is envisioned that DSE optimizations based on this extended semantics will be

provided through a connection to AOW.

5.4. Extension of PiSDF MoCs through polyhedral transformations

Motivations

Dataflow applications are modeled as a set of actors interconnected through a set of FIFOs,

used for sending and receiving information in a streaming fashion. One of the main

advantages of modeling an application in such a way is that the structural parallelism can

be exploited since it is directly expressed in the graph. Dataflow frameworks take

advantage of this and provide mechanisms to automatically parallelize applications to use

all the available resources. However, this parallelization is kept within the limits of the

application structure: since actors are considered as black boxes, their behavior remains

H2020-ICT-2016-1-732105 - CERBERO

WP3 – D3.2: Models of Computation

Page 25 of 34

untouched. As a result, some optimization opportunities seem to be missed, as for example

exploiting the intra-actor parallelization is out of the scope of the dataflow MoC.

At this point is where the polyhedral model can become useful. This model is well-known

for applying transformations to optimize computationally-intensive applications, focusing

on aspects such as data locality or memory usage. Some of the transformations that can be

applied to a loop nest are:

⚫ Tiling: This technique splits the loop’s iteration space into smaller blocks to improve

data locality. Specifically, it tries to improve the usage of the cache memory,

maintaining there the data that is going to be reused.

⚫ Loop interchange: Technique to improve memory accesses and, thus, data locality.

⚫ Loop fusion: This technique increases the granularity of the computations to reduce

the loop overhead and improve both spatial and temporal data locality.

⚫ Loop unrolling: Technique for improving scheduling and memory usage.

⚫ Loop skewing: As the name implies, this technique skews the execution of an inner

loop with respect to an outer one, with the objective of removing dependencies that

prevent the code from running in parallel.

As polyhedral transformations are a well-known optimization technique, multiple tools

relying on this model can be found in the literature [Bondhugula 2008], [Grosser 2011],

[Pop 2006]. However, the restrictions imposed by this model are usually so tight that most

codes are not amenable to the model since it does not allow, for instance, dynamic

behaviors. That is the reason why most tools only work at compile-time, as Polly [Grosser

2011], Graphite [Pop 2006] or Pluto [Bondhugula 2008] However, in recent years, several

tools try to extend the polyhedral scope to overcome these limitations as the APOLLO

(Automatic speculative POLyhedral Loop Optimizer)[Caamaño 2017].

APOLLO applies polyhedral optimizations on-the-fly to loop nests that cannot be

optimized at compile time. In addition, in contrast to the rest of the existing tools, it can

handle not only for loops, but any kind of loop nest. To do so, APOLLO relies on a

speculative system that builds a prediction model to support dynamic transformations

which are applied to the original code thanks to LLVM-JIT (Low Level Virtual Machine -

Just In Time compilation).

Contribution

For the previous reason, combining a dataflow framework as PREESM with a tool like

APOLLO can lead to finally be able to exploit the optimization possibilities within the

actors, hidden until now from the dataflow perspective. These optimization possibilities

can result in creating more threads to exploit all the available resources, or just apply

optimizations to improve the memory usage, resulting in a speedup but without affecting

the number of threads PREESM handles, that is, without modifying the actor-core mapping

performed by PREESM.

To efficiently combine PREESM with APOLLO, several actions have been needed. The

main limitation of APOLLO is that, in order to be an efficient runtime system, it applies

the first transformation that it finds, since evaluating several ones is a computationally

expensive task. However, this does not mean that the transformation is the most efficient,

H2020-ICT-2016-1-732105 - CERBERO

WP3 – D3.2: Models of Computation

Page 26 of 34

or that it is efficient at all. In this sense, the context of dataflow applications opens new

possibilities: since dataflow applications are designed to be executed in a loop, the first

iterations of this loop could be considered as a training phase to test different

transformations, so as to choose the most efficient one at the end of this phase and maintain

it until the end, considering the performance as the main criterion. To do so, APOLLO

needs to store information about the transformations already tried and relate it to the actor

parameters. This mechanism, developed in the context of CERBERO, is known as multi-

versioning, and it has already been implemented and tested within APOLLO.

Furthermore, neither APOLLO nor the libraries upon which it is built have been designed

to be used in a multithreaded context. This is the case of dataflow applications since actors

that are being executed simultaneously can make a call to APOLLO at the same time. As

a result, all the modifications needed to make APOLLO thread-safe have been made. This

includes both APOLLO runtime system and some libraries, as Pluto and Piplib.

To exemplify the new functionalities, a toy example is going to be presented. In this

example, a PREESM application to multiply two matrices has been implemented. This

application contains four actors: two for generating the matrices to be multiplied, another

one for performing the multiplication, and the last one to store the result. This example has

been used to generate two different configurations:

• sequential configuration (1-core): in which the computation is performed by one

thread,

• multithreaded configuration (2-cores): which uses two threads to compute the

matrix multiplication in parallel.

Figure 9 - PREESM toy example to demonstrate CERBERO polyhedral multiversioning mechanism

 Table 2 gathers the results, in seconds, for both configurations and three different

scenarios: when compiled with gcc, when compiled with APOLLO and when compiled

with APOLLO and using the multi-versioning mechanism. Table I also presents the

speedups obtained with the configurations using APOLLO, both with respect to the

execution time obtained with GCC. It should be highlighted that, to use APOLLO, the user

needs to add a specific pragma (#pragma dcop) enclosing the loop that is going to be

optimized, and then compile the code generated by PREESM with APOLLO. Additionally,

H2020-ICT-2016-1-732105 - CERBERO

WP3 – D3.2: Models of Computation

Page 27 of 34

please note that these times have been measured in an Intel Core i7-4790 with 4 cores

running at 3.6 GHz and 32GB RAM.

As can be observed, the execution times when using APOLLO are drastically reduced, and

the multi-versioning mechanism makes them even smaller, which validates the initial

hypothesis of the potential advantages of applying polyhedral transformations to dataflow

applications.

Matrix

size

1-core 2-cores

GCC APOLLO
Partial

speedup

APOLLO

+ multi

versioning

Global

speedup
GCC APOLLO

Partial

speedup

APOLLO +

multiVersioning

Global

speedu

p

1000 x

1000
3.1 2.3 1.3x 0.7 3.3x 1.5 1.5 1x 0.4 3.8x

2000 x

2000
80.0 7.1 11.3x 5.4 14.9x 41.5 4.8 8.6x 2.7 15.4x

3000 x

3000
403.4 20.0 20.2x 18.2 22.2x 207.3 12.3 16.9x 9.2 22.5x

Table 2 - Execution time, in seconds, of the matrix multiplication example for three different matrix

sizes using one and two cores, and with and without APOLLO.

Use in CERBERO

The proposed combination between APOLLO & PREESM, and their integration into the

CERBERO toolchain will make it possible to perform powerful polyhedral optimization

seamlessly for all software parts of the CPS systems modeled with the dataflow models of

computation. In particular, massively parallel computation with a fine granularity of

parallelizable actors, such as the computation used in matrix operations, are particularly

well suited to benefit from polyhedral optimizations.

5.5. Numerical Representation of Directed Acyclic Graphs for

Dataflow-Based Embedded Runtime Resources Allocation

Summary of a work submitted to ESWEEK2019 [Arrestier 2019]

Motivation & Problematic

In an embedded context, taking fast and efficient resource allocation decisions requires an

efficient intermediate representation of the application. Using compact and expressive

dataflow MoC, such as the Cyclostatic Dataflow (CSDF) [Bilsen 1996], the PiSDF [Desnos

2013] or the Interface-Based SDF (IBSDF) [Piat 2009] MoC, allows for a high-level

description of an application. However, the more compact and expressive the

representation, the more costly it can be to extract information. For instance, extracting

fine-grain dependencies information from a Directed Acyclic Graph (DAG) is

straightforward whereas it is first necessary to compute model transformations on a CSDF-

based application to do so. The more expensive stages of expressive model analysis have

led to the more frequent use of DAG-based models in programming frameworks.

Frameworks such as StarPU [Augonnet 2009], OpenVX [Khronos 2013] or TensorFlow

[Abadi 2016] rely on DAG dataflow MoC. DAG efficiently model directed workflows with

H2020-ICT-2016-1-732105 - CERBERO

WP3 – D3.2: Models of Computation

Page 28 of 34

task-level parallelism. However, complex structures such as loops are cumbersome to

model with DAG due to the fact that the entire loops have to be unrolled.

There is a paradox in developing more expressive and more compact dataflow MoC and

the fact that analysis methods often remain oriented toward the need of expanding

expressive graphs into DAGs. For example, the SDF graph of Figure 10 with only 4 actors

can be transformed into the equivalent DAG presented in Figure 11 with 30 actors. The

large size of the resulting DAG is due to the repetition vectors of the original actors, but

also to the addition of “special” actors, noted F and J, responsible for distributing tokens

to several consumers, or gathering tokens from several producers.

The SPiDER tool uses a PiSDF input representation of an application and performs a

transformation to an expanded intermediate DAG representation to perform the scheduling

and mapping of the application onto multi-core platforms. Construction of the intermediate

representation is a costly step that needs to be repeated multiple times in the context of

dynamically reconfigurable applications.

Contribution

The CERBERO contribution is a numerical model of the expanded DAG representation of

the PiSDF MoC, compatible with both the SDF and IBSDF MoCs, which makes it possible

not to build the intermediate DAG when scheduling the application, thus improving

significantly the performance of the embedded runtime. The objective of the proposed

representation is to allow DAG oriented analysis methods while maintaining the

compactness and expressiveness of the targeted dataflow MoC.

Figure 10 - SDF Graph Example.

The number of firings per graph

iteration is given below each actor.

Figure 11 - Directed Acyclic Graph (DAG) derived from the

SDF Graph of Figure 10.

Intuitively, the idea behind the proposed numerical representation is to compute on-the-fly

the dependencies between the different firings of actors of the original SDF graph when

scheduling the application, instead of computing these dependencies when building the

DAG. The drawback of this approach is that if a data-dependency needs to be evaluated

several times by the scheduling algorithm, for example when checking whether all

H2020-ICT-2016-1-732105 - CERBERO

WP3 – D3.2: Models of Computation

Page 29 of 34

predecessors of a given actor firing have completed their execution, then this data

dependency will be re-computed every time, while the DAG can be used directly. The

advantage of the proposed numerical representation is that it requires very little memory

compared to the amount needed to allocate and store all data structures of a DAG. The

proposed set of notations and theorem for this numerical representation are thoroughly

detailed in [Arrestier 2019].

An experimental evaluation of the proposed numerical representation implement within

SPiDER was conducted on four machine learning (SqueezeNet, Reinforcement Learning)

and computer vision (Stabilization, Sobel-Morpho) algorithms. The amount of memory

required to store the DAG and the numerical model for each application is presented in

Table 3. The proposed numerical representation for the four applications is more than 94%

more compact than the DAG representation, making it an interesting solution for embedded

architectures where memory resources are generally scarce.

Application DAG Num. Representation Gain

1- SqueezeNet 8405 kB 515 kB 94%

2 - Reinforcement Learning 5183 kB 70 kB 99%

3 - Stabilization 782 kB 12 kB 98%

4 - Sobel-Morpho 405 kB 7 kB 98%

Table 3 - Memory Footprint of the DAG and Numerical Representation used for Scheduling in

SPiDER.

Then the latency overhead of the numerical representation was compared with the building

time of the DAG for the execution of the four applications on three different architectures:

an Intel i7 core, a Jetson TX2, and an Odroid-XU3 board. Results of this comparison are

presented in Table 4. The IR column corresponds the time taken to initialize the structures

of the Numerical Representation minus the time taken for building the DAG. The Sched.

column corresponds to the time taken by the scheduling algorithm when the numerical

representation, and the on-the-fly computation it involves, is used, minus the time taken by

the scheduling algorithm when the DAG is used. A negative number in the IR and Sched

column indicates that the scheduling algorithm is faster when using the numerical

representation than when using the DAG, and a positive means the opposite. The Gain

column corresponds to the overall gain in the latency of the scheduling process when using

the Numerical representation, relatively to the total time taken when building and using a

DAG.

H2020-ICT-2016-1-732105 - CERBERO

WP3 – D3.2: Models of Computation

Page 30 of 34

 i7 TX2 XU3

App. IR Sched Gain IR Sched. Gain IR Sched. Gain

1 -6.89 ms +2.34 ms -47% -38.77 ms -8.01 ms -76% -77.87 ms +0.09 ms -76%

2 -0.69 ms +0.22 ms -48% -5.48 ms +0.41 ms -78% -10.70 ms +0.93 ms -76%

3 -0.12 ms +0.04 ms -54% -0.61 ms +0.05 ms -75% -1.51 ms +0.06 ms -77%

4 -0.06 ms +0.00 ms -79% -0.21 ms -0.02 ms -48% -0.63 ms -0.05 ms -85%

Table 4 - Latency gain and overhead of the Numerical Representation in the Scheduling Process,

compared to the legacy DAG-based representation, on three architectures and four application.

Use in CERBERO

Dynamic reconfiguration capabilities are at the core of the CERBERO Toolchain. To be

usable in highly reactive self-adaptive scenarios where application computational

performance is an important KPI of the CPS, such as in the space exploration or ocean

monitoring use cases, the overhead of reconfiguration managers should remain as

contained as possible. The proposed numerical representation helps achieve this purpose

by drastically lowering the latency overhead of the dataflow mapping/scheduling process.

The proposed numerical representation was integrated within the SPiDER runtime to make

it seamlessly usable for all users of the CERBERO Toolchain.

H2020-ICT-2016-1-732105 - CERBERO

WP3 – D3.2: Models of Computation

Page 31 of 34

6. Conclusions

Models of computations are the foundation of the CERBERO Toolchain as their semantics

provides the necessary formalism for the design, the analysis, the optimization, the

refinement, and the runtime management of complex CPS. The models of computations

supported in the different tools of the CERBERO toolchain were surveyed in D3.5, and are

reminded in Table 6 (slightly updated with new supporting tools for the PiSDF MoC).

Dataflow models of computation used in CERBERO, which are tailored for modeling and

managing parallel and reconfigurable behaviors for mid to low-level software and

hardware system, are a key element of the CERBERO self-adaptation reconfiguration loop.

For this reason, MoC-related technical requirements of CERBERO, reminded in Table 1

have been identified and a lot of research effort has been, and will be, spent accordingly to

improve the capabilities of these dataflow models by:

• improving their expressiveness for capturing states of applications,

• integrating real-time concerns in the design and analysis of application graphs,

• offering new optimization opportunities for design space exploration with

moldable parameters (planned),

• studying the compatibility and use of polyhedral optimization techniques with the

dataflow approach,

• improving the performance of dataflow graphs management for runtime mapping

and scheduling.

The integration and support for these achievements within tools (PREESM, SPiDER,

PAPIFY, ARTICo3, MDC) of the CERBERO toolchain make them readily available to all,

including for the support of the different use-cases implemented with them.

Table 6 – CERBERO Tools to MoC Mapping. S: support, P: planned support within CERBERO duration

 SDF
PiSD

F
PN KPN

DPN RTL DES SCE TS

MECA S

VT S

DynAA S S S

AOW

PREESM S S

SPiDER S

PAPIFY S S

JIT HW S

ARTICo³ S S

MDC S S S S

H2020-ICT-2016-1-732105 - CERBERO

WP3 – D3.2: Models of Computation

Page 32 of 34

7. References

[Abadi 2016] Matin Abadi et al. 2016. TensorFlow: A system for large-scale machine

learning. 265–283.

[Arrestier 2018] Florian Arrestier, Karol Desnos, Maxime Pelcat, Julien Heulot, Eduardo

Juarez, and Daniel Menard. 2018. Delays and states in dataflow models of

computation. In Proceedings of the 18th International Conference on

Embedded Computer Systems: Architectures, Modeling, and Simulation

(SAMOS '18). ACM, New York, NY, USA, 47-54. DOI: https://doi-

org.insis.bib.cnrs.fr/10.1145/3229631.3229645

[Arrestier 2019] Arrestier F., Desnos K., Juarez E., Menard D. Numerical Representation of

Directed Acyclic Graphs for Efficient Dataflow Embedded Resource

Allocation. Submission under review (2nd round) to ESWEEK 2019.

This publication is currently under review. It can be made available upon

request in a confidential manner.

 [Augonnet 2009] Cédric Augonnet, Samuel Thibault, Raymond Namyst, and Pierre-André

Wacrenier. 2009. StarPU: a unified platform for task scheduling on

heterogeneous multicore architectures. (2009), 16.

[Bhattacharya 2001] Bhattacharya, Bishnupriya, and Shuvra S. Bhattacharyya. "Parameterized

dataflow modeling for DSP systems." IEEE Transactions on Signal

Processing 49.10 (2001): 2408-2421.

[Bhattacharyya 2006] S.S. Bhattacharyya and W.S. Levine. Optimization of signal processing

software for control system implementation. In Computer Aided Control

System Design, 2006 IEEE International Conference on Control

Applications, 2006 IEEE International Symposium on Intelligent Control,

2006 IEEE, pages 1562-1567. IEEE, 2006

[Bilsen 1996] Bilsen, G., Engels, M., Lauwereins, R., & Peperstraete, J. (1996). Cyclo-

static dataflow. IEEE Transactions on signal processing, 44(2), 397-408.

[Bondhugula 2008] Uday Bondhugula, M. Baskaran, S. Krishnamoorthy, J. Ramanujam, A.

Rountev, and P. Sadayappan. Automatic Transformations for Communication-

Minimized Parallelization and Locality Optimization in the Polyhedral

Model International Conference on Compiler Construction (ETAPS CC), Apr

2008, Budapest, Hungary.

[Bouakaz 2012] Bouakaz, A., Talpin, J. P., & Vitek, J. (2012, June). Affine data-flow graphs

for the synthesis of hard real-time applications. In Application of

Concurrency to System Design (ACSD), 2012 12th International Conference

on (pp. 183-192). IEEE.

[Caamaño 2017] Caamaño, Juan Manuel Martinez, et al. "APOLLO: Automatic speculative

polyhedral loop optimizer." IMPACT 2017-7th International Workshop on

Polyhedral Compilation Techniques. 2017.

[Davis 1999] Davis II, J., Goel, M., Hylands, C., Kienhuis, B., Lee, E. A., Liu, J., ... &

Smyth, N. (1999). Overview of the Ptolemy project (Vol. 99). ERL Technical

Report UCB/ERL.

[Desnos 2013] Desnos K., Pelcat M., Nezan J.-F., Bhattacharyya S., Aridhi S. PIMM:

Parameterized and interfaced dataflow meta-model for mpsocs runtime

reconfiguration,In proceedings of SAMOS XIII, IEEE, 2013.

http://www.csa.iisc.ernet.in/~uday/publications/uday-cc08.pdf
http://www.csa.iisc.ernet.in/~uday/publications/uday-cc08.pdf
http://www.csa.iisc.ernet.in/~uday/publications/uday-cc08.pdf

H2020-ICT-2016-1-732105 - CERBERO

WP3 – D3.2: Models of Computation

Page 33 of 34

[Grosser 2011] Grosser, Tobias, et al. "Polly-Polyhedral optimization in LLVM." Proceedings

of the First International Workshop on Polyhedral Compilation Techniques

(IMPACT). Vol. 2011. 2011.

[Heulot 2014] Heulot, J., Pelcat, M., Desnos, K., Nezan, J. F., & Aridhi, S. (2014,

September). SPiDER: A synchronous parameterized and interfaced dataflow-

based rtos for multicore dsps. In Education and Research Conference

(EDERC), 2014 6th European Embedded Design in (pp. 167-171). IEEE.

[Honorat 2019] Honorat A., Desnos K., Bhattacharyya S., Nezan J.-F. Scheduling Analysis of

Partially Periodic Real-Time Constraints in Synchronous Dataflow Graphs.

Submission under review to RTNS 2019

This publication is currently under review. It can be made available upon

request in a confidential manner

[Khronos 2013] Khronos Group. 2013. The OpenVX API for hardware acceleration. In http://

www.khronos.org/openvx.

[Klikpo 2016] Klikpo, E. C., Khatib, J., & Munier-Kordon, A. (2016, April). Modeling

multi-periodic simulink systems by synchronous dataflow graphs. In Real-

Time and Embedded Technology and Applications Symposium (RTAS), 2016

IEEE (pp. 1-10). IEEE

[Kwok 1999] Yu-Kwong Kwok and Ishfaq Ahmad. 1999. Static Scheduling Algorithms for

Allocating Directed Task Graphs to Multiprocessors. ACM Comput. Surv.

31, 4 (Dec. 1999), 406–471. https://doi.org/10.1145/344588.344618

[Lee 1987] E.A. Lee and D.G. Messerschmitt. Synchronous dataflow. Proceedings of the

IEEE, 75(9):1235-1245, sept. 1987.

[Lee 1995] Lee, E. and Park, T. (1995). Dataflow Process Networks. In Proceedings of

the IEEE, volume 83, pages 773-799.

[Lee 2017] Edward A. Lee and Sanjit A. Seshia, “Introduction to Embedded Systems, A

Cyber-Physical Systems Approach”, Second Edition, MIT Press, ISBN 978-0-

262-53381-2, 2017.

[Ostroff 1995] J.S. Ostroff. Abstraction and composition of discrete real-time systems. Proc.

of CASE, pp 370-380, 1995.

[Palumbo 2017] F. Palumbo, C. Sau, T. Fanni, P. Meloni and L. Raffo, SS-design: Dataflow-

based design of coarse-grained: Reconfigurable platforms reconfigurable

platform composer tool project. In proceedings of the IEEE International

Workshop on Signal Processing Systems, 2016.

[Pelcat 2014] Pelcat, M., Desnos, K., Heulot, J., Guy, C., Nezan, J. F., & Aridhi, S. (2014,

September). Preesm: A dataflow-based rapid prototyping framework for

simplifying multicore dsp programming. In Education and Research

Conference (EDERC), 2014 6th European Embedded Design in (pp. 36-40).

IEEE.

[Piat 2009] Piat, J., Bhattacharyya, S. S., & Raulet, M. (2009, October). Interface-based

hierarchy for synchronous data-flow graphs. In Signal Processing Systems,

2009. SiPS 2009. IEEE Workshop on (pp. 145-150). IEEE.

[Pop 2006] Pop, Sebastian & Cohen, Albert & Bastoul, Cédric & Girbal, Sylvain & Silber,

Georges-André & Vasilache, Nicolas. (2006). GRAPHITE: Polyhedral

analyses and optimizations for GCC. Proceedings of the GCC Developers'

Summit 2006.

https://doi.org/10.1145/

H2020-ICT-2016-1-732105 - CERBERO

WP3 – D3.2: Models of Computation

Page 34 of 34

[Savage 1998] Savage, J.E. Models of Computation, Volume 136, Addison-Wesley Readings,

MA, 1998

[Shen 2011] Shen, C. C., Wang, L. H., Cho, I., Kim, S., Won, S., Plishker, W., &

Bhattacharyya, S. S. (2011). The DSPCAD lightweight dataflow environment:

Introduction to LIDE version 0.1.

[Sriram 2009] Sundararajan Sriram and Shuvra S. Bhattacharyya. 2009. Embedded

Multiprocessors: Scheduling and Synchronization, Second Edition. CRC

press.

[Stuijk 2006] Stuijk, S., Geilen, M., & Basten, T. (2006, June). Sdf^ 3: Sdf for free. In

Application of Concurrency to System Design, 2006. ACSD 2006. Sixth

International Conference on (pp. 276-278). IEEE.

[Tripakis 2013] Tripakis, S., Bui, D., Geilen, M., Rodiers, B., & Lee, E. A. (2013).

Compositionality in synchronous data flow: Modular code generation from

hierarchical sdf graphs. ACM Transactions on Embedded Computing Systems

(TECS), 12(3), 83.

[Van Hasselt 2007] Hado Van Hasselt and Marco A. Wiering. 2007. Reinforcement learning in

continuous action spaces. In Approximate Dynamic Programming and

Reinforcement Learning, 2007. ADPRL 2007. IEEE International Symposium

on. IEEE, 272–279

[Wen 2018] ShuhuanWen, Miao Sheng, Chunli Ma, Zhen Li, H. K. Lam, Yongsheng Zhao,

and Jingrong Ma. 2018. Camera Recognition and Laser Detection based on

EKF-SLAM in the Autonomous Navigation of Humanoid Robot. Journal of

Intelligent & Robotic Systems 92, 2 (01 Oct 2018), 265–277.

https://doi.org/10.1007/s10846-017-0712-5

