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1. Executive Summary 

This document completes and updates the definition of Key Performance Indicators 

(KPIs) and their definition initiated in D3.4, presents a complete design methodology 

for CPSs based on KPIs, and described how KPIs are used in the tools composing the 

CERBERO toolchain.  

The objective of this deliverable is to complete and finalize the definition of the KPI 

based design methodology. KPIs are following the CPS during its whole lifespan. This 

implies that KPIs should be considered at design time, but also that the infrastructure 

supporting adaptation should be conceived starting from KPIs. To do so, design steps 

should be revised and completed. We add specific steps to the design flow for selection 

of KPI, synthesis of requirements, and synthesis of monitors, and we completed 

standard design steps to carry out also task related to the use of KPIs. 

This deliverable is completed by the detailed description of the way in which KPIs are 

supported by the tools included in the CERBERO tool chain, and by an update of the 

KPI needed in the three use cases of this project. 

1.1. Structure of Document 

The document is organized as follows. Section 2 summarizes the KPI concepts and 

features extensively discussed in D3.4 (this section is in the document for making is 

self-contained). Section 3 presents the whole KPI based design methodology discussing 

in detail each step. Section 4 discuss how the KPIs are mapped to the tools composing 

the toolchain of CERBERO. Section 5 provides an update on the KPIs of the  

CERBERO use cases, summarizing the ones previously discussed in D3.4 and defining 

new ones when needed. 

1.2. Related Documents 

 

• D2.1 - CERBERO Scenario Description: KPIs are defined on the specific use 

case described in the updated scenario description (final version) 

• D2.2 - CERBERO Technical Requirements: D3.1 contributes to satisfy D2.2 

requirements (KPIs will be used at the design time and during the whole 

lifetime of the CPSs) 

• D3.5 – Models of Computation: KPIs will be used to represent the system 

properties which will be verified with different Models of Computation 

• D3.6 - Cross-layer Modelling Methodology for CPS: KPIs have to be robust 

and consistent across different layers and modeling methodologies. This is a 

fundamental contribution of the CERBERO project. 

• D5.6 - CERBERO Framework Components: ultimately, KPIs will be 

integrated and used by the tools composing the CERBERO framework. 

• D3.4 – CERBERO Modeling of KPI: this document provides an update of 

D3.4 and completes it presenting the whole KPI based design methodology. 

1.3. Related CERBERO Requirements 

• Deliverable D2.2 of the CERBERO project [CERBERO_D2.2] defines the 

CERBERO Technical Requirements (CTRs) of the project (identified with an 
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ID ranging from 0001 to 0020). Research topics related to KPIs activities are 

reported in Table 1. 

 

Table 1: Links to CERBERO technical requirements 

CTR 

id 
CTR Description Link with the D3.1 document on Modelling 

KPIs 

0001 CERBERO framework SHOULD 

increase the level of abstraction at 

least by one for HW/SW co-design 

and for System Level Design. 

The proposed methodology is applicable at 

any level of abstraction and requires to 

define Key Performance Indicators that are 

robust against change of layers of 

abstraction. 

0002 CERBERO framework SHOULD 

provide interoperability between 

cross-layer tools and semantics at the 

same level of abstraction. 

The methodology proposed here uses Key 

Performance Indicators that have to be 

defined using a formalism which guarantee 

interoperability between tools and layers. 

0004 CERBERO framework SHOULD 

provide software and system in-the-

loop simulation capabilities for 

HW/SW co-design and System 

Level Design. 

The design methodology proposed here uses 

model-based design space exploration 

driven by the Key Performance Indicators. 

Adaptivity will be also driven by KPIs. 

0005 CERBERO framework SHOULD 

provide multi-viewpoint multi-

objective correct-by-construction 

high-level architecture 

Key Performance Indicators used in the 

proposed methodology allow to define the 

metrics of multiple viewpoints and the 

objectives of the multi-objective 

architecture. 

0007 CERBERO framework SHALL 

define methodology and SHOULD 

provide library of reusable functional 

and non-functional KPIs. 

As defined in D3.4 and completed here, Key 

Performance Indicators are organized in 

family of reusable components. This 

deliverable presents a complete design 

methodology based on the concept of KPIs. 

0009 CERBERO SHALL develop 

integration methodology and 

framework. 

The library of reusable Key Performance 

Indicators is a fundamental component of 

the CERBERO framework. 

0020 CERBERO framework SHALL 

provide methodology and tools for 

development of adaptive 

applications. 

Key Performance Indicators are the way for 

evaluating the state of the system and to 

trigger the adaptation. This deliverable 

presents how adaptivity is explicitly 

integrated into a complete KPI based design 

flow. 
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2. Summary of Key Performance Indicators Definition and 

Properties 

In this section, for completeness, we summarize the main concepts introduced and 

extensively presented in deliverable 3.4. In particular, we report the definition of Key 

Performance Indicators (KPIs) as they have been presented in Section 3 of deliverable 

D3.4  and, from the same section, we recall the concept of family of KPIs, and we 

remind the properties that KPIs should have in the CERBERO project and in the design 

of CPS in general. 

 

In the context of CERBERO, we have defined a KPI as a quantifiable parameter 

associated with a metric. A single KPI evaluates one critical parameters of a CPS and 

evaluates the discrepancies from its long term goal. The whole CPS is evaluated using 

a number of KPIs, grouped in what we called set of KPIs. In our context, KPIs should 

have the following properties: 

• KPIs have to be quantifiable. For this reason, KPIs will always be defined 

together with a metric which allows to measure them or rank them. 

• The set of KPIs that are used to evaluate its performance are specific of the 

target CPS. To measure effectively the performance of the CPS, in fact, KPIs 

have to be very tailored to it. 

• KPI definitions could be reused in designing different CPS or provide basis  for 

system specific KPIs. If the set of KPIs have to be specific, the single KPI can 

the same over several CPS or can be generic (and specialized on the target CPS 

afterwards). 

• KPIs would drive the evaluation of the system during the whole live cycle of 

the CPS. In CERBERO, KPIs will be used to drive the conception of the system, 

but also to steer the continuous adaptation. 

A key concept of CERBERO is the one of “family of KPIs”. This concept was 

introduced to allow reusability of KPIs (which, by nature, are instead intrinsically 

tailored on the specific CPS). A family of KPIs has been defined as a set including all 

the KPIs accommodated by the same properties and to which the same algebraic 

operations are valid. KPIs and the way in which they are evaluated are described with 

an algebraic formulation. The evaluation of a KPI falls always into some definable 

algebra, and often exhibiting a well know structure. CERBERO proposes ways to 

formally define, model, and classify KPIs according to the mathematical structure they 

exhibit (or need) in their calculations. We call each class of KPIs obtained in this way 

family of KPIs. Since the properties and the algebraic operations are defined at the 

family level, once that they are defined or demonstrated for one KPI, they are 

immediately valid for all the other ones belonging to the same family. The properties 

and the algebraic operations associated to the KPIs are thus the main reusable 

components. A critical point for leveraging on KPIs is to measure them, since for some 
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KPIs define a metric is not straightforward. The KPIs, for which a metric is too complex 

to be defined, will be modeled as a list, containing all the possible options, and a partial 

order between the elements in the list, given by the designer to each of the options.  

One possible example of KPI is the one that we called additive, namely that the KPIs 

are calculated by an addition operation (examples of this is for instance area). Area, can 

be defined in a template fashion, as the sum of all the elements composing the system 

(without specifying, at the template level, if elements are gates, or look-up-tables). For 

all the KPIs belonging to area, we can assert certain properties (still using the example 

of area, we can state that the area of the whole system is certainly greater or equal to 

the area of the processor included in the system). In addition to additive, other families 

of KPIs we identified are multiplicative, maximum, minimum, average, hierarchical, 

weight sum, weighted average, complex 
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3. The Complete KPI Based Design Methodology 

In deliverable D3.4 we have presented the generic approach for classifying, modeling 

and measuring KPIs. In this section we use these concept to describe a complete KPI 

based design methodology. Although the concept of KPI is widely used since several 

years in many fields and the notion of KPI based methodology is often used also in the 

context of design of CPSs, a clear identification of the steps that composes this 

methodology is still missing.  

 

The starting point of our design methodology is the model based design methodology  

[7] proposed to design cyber-physical systems. We maintain the main concepts and 

steps of that methodology, extending them to include the notion of KPIs and adding the 

needed steps to carry out a design flow based on them.  

 

1. State the problem: 

The first step of the whole design process it to have a clear problem statement. 

This step is identical to the one propose by the Jensen et al. [7]. The problem to 

be solved has to be firstly described in simple language, without use of 

mathematical formalism or specific terminology. In fact, as pointed out, the 

design of cyber-physical system problem is a multidisciplinary one and “this 

step is necessary to effectively communicate design requirements” [7]. 

 

2. Select the KPIs 

Together with the statement of the problem, it is necessary to select the KPIs 

which the system should try to optimize. In fact, KPIs are effective only if they 

are specific to the system they are applied to. At this stage of the design flow, 

KPIs should still be defined in a simple language. As what is happening in Step 

1, the outcome of Step 2 should be a simple and accessible reference for all the 

teams involved in the design of the CPS. We separated the step of KPI selection 

from the one of the statement of the problem because we believe that the 

selection of KPIs, being related with the evaluation of the system performance, 

should be emphasized.  

 

3. Model the physical processes and the KPIs 

As in the work of Jensen et al [7], we need to model the physical processes in 

an iterative fashion. However, together with the physical systems, we need to 

model also the KPIs. A model is a simplified representations of a system or of 

a phenomena. Models of KPIs are the same: a simplified representation of the 

real KPIs and of a metric to measure it. We would like to stress on this aspect 

of KPIs: we believe that a KPIs should necessary be defined together with a 

metric to evaluate it. So has to be the model. Models of KPIs should also be 

defined in an iterative step, till the model is sufficiently accurate to provide an 

representation of the reality that is sufficient to measure the needed quantity. In 

fact, KPIs may lead model’s fidelity – given the model of a KPI, all its inputs 

should be contained in the CPS model.  

 

4. Characterize the problem and the KPIs 
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For the problem characterization, this step is similar to the one proposed by 

Jensen et al [7]. We add to this step the characterization of KPIs. We introduced 

in deliverable D3.4 the concept of family of KPI that is a set including all the 

KPIs accommodated by the same properties and to which the same algebraic 

operations are valid. Here we need to characterize the KPIs to assign them to 

the correct family of KPIs. The KPIs characterization has to be completed to 

take full advantage of the properties of the family of KPIs during the design 

phase. The characterization of the KPIs will also dictate the model of 

computation. Similarly to the model of physical processes, when it is clearly 

defined to what is needed to be measure to evaluate the CPS, it is immediately 

possible to discard the models of computation that do not allow to evaluate the 

KPIs. For this reason, we removed the step five from the work of Jensen et al. 

[7], since the model of computation is dictated here in Step 4 by the 

characterization of KPIs. 

 

5. Derive the control algorithm 

This is the same step of Jensen et al. [7], which determines the conditions under 

which a system can be controlled and in the selection of an appropriated 

algorithm for controlling it. 

 

6. Define the toolchain 

One of the pillars of KPI based design is that KPIs are following the CPS for its 

whole lifespan. This however has to be supported. In fact, it is useless to define 

and model KPIs that can not be used during the design phase since tools do not 

support them. Also, it is useless to define KPIs that can be monitored at runtime 

to drive adaptivity if there are no tools able to generate the needed structure to 

expose the parameters needed to evaluate KPIs at runtime. For this reason, we 

the selection of the tool chain is as fundamental as the selection of the mode of 

computation. Select the tool chain that supports the KPIs that have been selected 

in Step 2. We state that a tool supports a specific KPI is it has the capability of 

driving its decision based on that KPI or if it has the capability to generate the 

infrastructure needed to expose the KPI at runtime. Problems can occur when 

well established tools do not have the possibility to compute the KPIs as 

specified in Step 2. Designers should pay attention to this designing, when 

possible, dedicated wrappers to adapt to the situation. 

 

7. Synthesize the low level requirement 

Low level requirements should be derived directly from higher level KPIs. 

Where automatic synthesizers of implementation requirements from KPIs are 

not available, hand written low level requirements should be prepared. However 

it is necessary that the requirements carefully adhere to the specified KPIs. 

Synthesis of the requirements include the specification of constraints for the 

design tools to drive their decisions. In this step, what it is needed is to express 

the KPIs by means of a design constrain tool. For example, if a KPIs is critical 

path that has to be minimized and the tool is a synthesis tool, then a way to 

express this KPI in terms of constrains of the target tool is to set the clock for 

the synthesis to a minimal level. This step could require some iterations, since 

the imposed requirements might be too tight. 
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8. System Architecture 

At this stage, the partitioning between hardware and software portions of the 

system have to be carried out. Partitioning of monitors that control both parts 

have also to be carried out here. Hardware/software co-optimization is also 

carried out in this step.  Hardware/software partitioning is pretty dynamic and 

iterative process. Because of this dynamicity, the order of Step 8, Step 9, Step 

10 and Step 11 is not strict and these steps are carried out in an iterative and not 

necessary sequential fashion. 

 

9. Define  the hardware 

This is similar to the step of Jensen et al. [7], which consists in the selection of 

the hardware capable of fulfill the requirements of the CPS. We extend this step 

including explicitly, when needed, in the requirement that the selected hardware 

should support adaptivity (for instance, the hardware should support voltage 

scaling if power consumption is one of the KPIs). 

 

10. Synthesize the monitors 

As requirements, monitors for evaluating KPIs at runtime and support 

adaptivity should be derived directly from KPIs. Again as for low level 

requirements, where automatic synthesizers of monitors from KPIs are not 

available, hand written monitors strictly adhering to the KPIs should be 

prepared. Depending on the selected hardware, it could be possible that the 

needed monitors are not directly available, or that the KPI to be monitored can 

be inferred by a combination of existing monitors. When not possible 

automatically, should be designer’s care to develop the needed wrapper or 

routine to build the desired monitor starting from the existing ones. 

 

11. Synthesize the software 

This is similar to the step of Jensen et al. [7], which consists in realizing the 

software to be executed by the system. We extend this step including explicitly, 

the need for a adaptivity algorithm which has to be included in the CPS. 

Software is needed for hardware software co-optimization, so it is anticipated 

here compared to the work Jensen et al. [7]. 

 

12. Assemble and Simulate 

This is similar to the “Simulate” step of Jensen et al. [7], which consists of 

solving the problem to be solved, identified in Step 1 using simulation tools 

running at the appropriated model of computation. This step needs to be 

extended to simulate also the adaptivity of the CPS. Here, using simulation, we 

will carry out early validation, early verification and early testing of each 

component and of the whole systems. 

 

13. Construct 

This is similar to the “Construct” step of Jensen et al. [7], which builds the 

system according to the specifications. 
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14. Verify, validate and test 

This is similar to the step “Verify, validate and test” of Jensen et al. [7], which 

consists in verifying validating and testing the system of the global system 

completely assembled. We extend this step including explicitly the need for 

testing the adaptivity and the correctness of the evaluation of the KPI carried 

out at run time. 
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4. Mapping to the CERBERO tool chain 

This section provides an update on which KPI are mapped to the CERBERO tool chain 

and describe how KPIs are supported by each component of the tool chain. One of the 

pillars of the CERBERO project is the KPI based design. KPIs are following the CPS 

during the whole lifespan of the CPS, starting from the requirements, and are used to 

drive adaptivity. Based on this concept, we can see that tool composing a toolchain that 

supports KPIs based design can do so in two ways: 

• being able to directly use, at design time or at run time, one or more KPI during 

the generation of the output of the tool. This implies the capability of calculate 

the given KPI. In the rest of this document, we will call this support of type one. 

• producing the infrastructure needed for exposing one or more KPI at runtime or 

at design time (if needed in simulation) or producing the infrastructure for 

modifying, at run time, the behavior of a system in a way that affect the value 

of one or more KPIs. We will call this support of type two. 

Taking as example power consumption as KPI defined as addition of the power 

consumption of each component of a CPS and that as to be minimized. For a tool, the 

first way of supporting this KPI (directly use of KPI) would be accepting, as input, a 

parameter that allows to specify constraints on power consumption or relevant objective 

functions, such as “generate a solution that minimize the power consumption”. This can 

be done by means of constraints (for instance, an ideal parameter definition “set power 

consumption = minimal”).  As mentioned, this way of supporting KPIs implies that the 

tool has the capability of computing the given KPI. This assumption can be pretty 

strong, thus users of the tool should be particularly careful with compatibility aspects. 

This mean that the way in which the tool computes the KPI must be consistent with the 

one used in the KPI definition. The second way to support a KPI would be to be able 

to produce the infrastructure to monitor the power consumption of a CPS at run time 

and expose it to the system, so that the system can dynamically adapt its behaviour to 

reduce the power consumption. In the rest of this section we explore the tools 

composing the CERBERO toolchain. For each tool, we quickly recall the tool 

functionality and we detail on how the considered KPIs are supported.  

 

MECA:  

In recent years we have reached significant automation level in environments such as 

industrial production or transport. Applications for these complex environments require 

enhanced technologies for allowing human supervision and decision support. 

The MECA (Monitoring Execution Control Advice) technology is a framework 

designed to properly monitor and trigger adaptation behavior, keeping the user 

informed and providing advice and explanation about how to better interact with a 

system to improve the efficiency, safety and user wellness. MECA provides supports 

for KPIs of type one. In general, MECA support the optimization of all KPIs. However, 

it does this in a way that is somewhat different of most of other tools. MECA allows 

the system to be extended beyond hardware and software, by involving human 

operators in decision making. As such, it allows humans to provide input to the system, 

which can serve as constraints to KPIs. 

There is one specific KPI that applies to MECA: 

• User satisfaction: In the smart traveling use case, the role of MECA is to ask 

input from the user regarding the trip they wish to make. This information is 
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collected essentially as constraints, then it is sent to the rest of the system (in 

particular DynAA).  However, rather than automatically optimizing the system 

to the constraints given to the user (in terms of e.g. travel time and energy), the 

system supplies MECA with possible optimization solutions.  MECA then ranks 

these solutions based on various parameters (see also Figure 1), such as: 

▪ Distance 

▪ Travel time 

▪ Number of stops 

▪ Cost 

These ranked features are presented to the user, which makes the ultimate 

decision. By giving the user on the one hand the freedom to choose the 

optimization, but on the other also decision support due to ranking, user 

satisfaction is optimized. 

 

 

Figure 1: visualization of ranking performed by MECA. 

DynAA:  

 

DynAA is a generic event-based simulation environment for evaluating dynamic 

models. Its key strengths are its capabilities to deal with modifications that occur during 

the simulation without having to describe the exact behavior of the system when that 

happens. For instance when a component fails or disappears it will simply stop 

responding to events, and as soon as it reappears it will start to work as it did previously. 

Especially in a large-scale simulation with adaptive components this is beneficial when 

adaptation is frequent, or the system must be able to deal with failing components.  

As a general remark, DynAA supports KPIs in a very broad and flexible sense.  Users 

can define their own KPIs by indicating Java functions that are invoked during 

simulations.  These Java functions may be triggered upon user defined events, and have 

access to measurement points in the model, as well as to variable status at the given 

simulation time.  In this way, DynAA users are able to fine tune their KPIs according 

to their need, and for every system simulation.  Here, we discuss the definition in 

DynAA of the KPIs specific to the Smart Travelling use case, which are the following: 

• Energy: The electric vehicles have a key limiting resource, which is the battery. 

Different itineraries put the battery under differing constraints, and may or may 

not be feasible providing the vehicle battery. In the DynAA simulation this is 
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computed by cumulatively adding all segment energy consumptions provided 

by the EV model. The input for the model is the predicted vehicle speed, the 

segment length and the road type. 

• Travel time: The travel time will be a considerable KPI for the end user as it 

will have a direct impact on his agenda. In the DynAA simulation environment 

the itineraries are evaluated by taking the predicted segment speed and length, 

and combined with the duration of the required stops (for charging the EV) the 

total travel time is computed. 

• Number of stops: During the smart travelling simulation, a huge amount of 

trajectories are followed by cars (agents).  Cars are allowed to stop at certain 

stop points during the trajectories (for example, to recharge the car or give the 

driver resting time).  Every time a car stops at one of these points a specific 

event is generated.  The total number of stop events is computed per agent, and 

per trajectory, and constitutes this KPI.  The number of stops is a KPI that can 

be used later on as constraint (selecting trajectories with a maximum number of 

stops) or as optimization criteria (minimize the number of necessary stops in the 

way). 

• Cost: During the smart travelling simulation, the cars (agents) stop for 

recharging at different charging poles.  Each charging pole has its own price 

rate, incurring in different total monetary cost at the end of a trajectory and 

depending on where the car (agent) decided to stop.  The cost KPI in this case 

refers to the added (cumulative) costs accumulated during the whole trajectory. 

Measured per agent, per trajectory. 

• Response time to trigger: The response time to trigger is the time spent 

between the arrival of a reconfiguration trigger and the end of the 

reconfiguration phase. As DynAA is a discrete event based simulation/analysis 

tool, the natural way to calculate the response time to trigger is to associate 

DynAA events to both simulation moments: an event is associated to the 

occurrence of the trigger, and an event is associated to the moment when the 

system finishes all reconfiguration phase actions.  The response time to trigger 

is measured by subtracting the time of the first event from the time of the second 

event.  For a given simulation, the user has to indicate the event types he 

associates with start and end of a reconfiguration phase.  

• Battery lifetime: the battery lifetime is the average time measured between full 

battery discharging cycles, under typical and/or constant load.  Each discharging 

cycle begins when the charging of the battery stops (charging circuit is 

disconnected).  That is indicated in DynAA by a specific event.  Each 

discharging cycle ends when the battery level reaches a minimum level 

(minimum level is indicated as part of the user model); this moment is also 

associated with a specific event.  For each fully completed discharging cycle, 

DynAA registers the time difference between the indicated events.  The battery 

lifetime KPI is an average of the registered discharging cycle times for a given 

battery.  Such KPI is included in the battery model.  

DynAA provides support of KPIs of type one and of type two. In fact DynAA is able 

to generate the infrastructure to compute KPIs that can be used externally and it also 

contains an optimization engine that can optimize specific KPIs. 

 

AOW:  
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Architecture Optimization Workbench (AOW) is a tool for Design Space Exploration 

(DSE) in different levels of abstraction. In CERBERO, AOW is mostly used for 

HW/SW co-design, with the goal of finding, over a specific architecture, the best 

mapping and scheduling of application activities. The application is given to the tool as 

a dataflow model. The available software and hardware components are the model of 

the given architecture. The tool also receives a list of possible mapping scenarios. AOW 

provides KPI support of type one. The following KPIs are currently directly used or 

can be used to drive the HW/SW co-design optimization    

• Monetary cost of the used components (output) – sum of cost of all 

components needed for application’s execution. Cost of all components is 

defined in the model of architecture. 

• Hardware and network communication utilization (output) – weighted sum 

of all activities or communication packages using hardware or network channel, 

respectively. Activities and communication packages are defined by the design 

space exploration model based on model of application, model of architecture 

and mapping scenarios. 

• Energy consumption (output) – weighted sum of energies consumed by 

hardware, communication channels and memory / storage. Defined by design 

space exploration and model of architecture. 

• Throughput (input) – in streaming applications it is defined by number of 

application executions per cycle time. Defined by model of application. 

• Latency (output) – in streaming application, it is defined as time from receiving 

the data until output based on the data. In AOW latency is calculated based on 

a system of linear inequalities that eventually provide a lower bound on the 

latency of each application activity, while the application latency bound is 

defined by their maximum. Defined by design space exploration, model of 

application, model of architecture and mapping scenarios. 

 

PREESM/SPIDER:  

 

PREESM and SPIDER have similar behavior with regards to the management and 

optimization of KPIs. The two tools take as inputs a model of the architecture, a model 

of the application which has to be mapped on the architecture, expressed as data-flow 

graph, and a set of constraints, as for instance which task can be mapped to which core. 

The output of the tool is an optimized mapping of the application on the target 

architecture, an optimized scheduling and an optimized memory allocation for the 

selected resources. The tool also generates the codes and wrappers needed for the 

allocation and the scheduling selected. The main difference between the two tools is 

that PREESM operates at compile time, based on a static description of the application, 

while SPIDER operates at runtime, and make all resource allocation decision, and KPI 

optimizations, during the execution of the application, thus supporting adaptive 

reconfiguration of the application. KPIs here are used to drive the  

 decisions of the tool, thus both tools provide support of type one. Among them, the one 

relevant for us are: 

  

• Throughput: Throughput as a KPI is passed to the tool using the model of the 

application. This choice was made because the application may dictate the 
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throughput requirements, for instance, if a sensor should have a specific 

sampling rate, this is coming from the application. 

  

• Latency: Latency of computations is a KPI which is dependent both on the 

application and the targeted architecture. Because, of this dual dependency, 

latency of the actor, is defined in the set of constraints given to the tool, for 

each pair of application-architecture model, and reporting the worst case 

execution time, or the mean execution time of actors. 

  

• Resource utilization: Resource utilization, is both an input and an ouptut KPI 

to PREESM. As an input, constraints on the resource utilization are given to 

the tool, constraining for example the cores on which the actors can be 

executed, or limiting the capacity of available memories. As an output, 

PREESM maps and allocates computing and communication of the 

application to the resources of the architecture. Some useful resource 

utilization KPIs are thus obtained, such as load balancing and processing load 

of computing resources, or the percentage of available memory being used. 

  

The following KPI could be or will drive the decision of the tool 

  

• Energy consumption: The energy consumption is not yet supported by 

PREESM. However, the work to integrate energy consumption is pretty 

advanced, and it is already possible to discuss how energy consumption will 

be included in the tool. Energy consumption will be passed to the tool mainly 

by annotating it in the model of the architecture and in the constraints but 

energy consumption will be also included in the description of the application. 

The tool, internally, will take the contribution from each of the inputs to obtain 

a complete picture of the energy consumption to be used during the 

optimization. 

  

• Reconfiguration time: This KPI is not yet included in the tool, but a 

preliminary analysis demonstrates that also this KPI could be easily supported 

by PREESM. From this initial exploration, it seems that the most suitable 

place to include reconfiguration time is in the model of the architecture. 

 

 

ARTICo3:  

ARTICo3 is a hardware-based reconfigurable processing architecture for high-

performance embedded computing systems. Dynamic and Partial Reconfiguration 

(DPR) is used to change the number and type of hardware accelerators in the FPGA, 

creating a run-time adaptive solution space with selectable tradeoffs between 

computing performance, energy consumption and fault tolerance. ARTICo3 provides 

KPI support of type two.  Hence, the main KPIs in the ARTICo3 framework are: 

• Latency/Throughput: ARTICo3 architecture exploits task- and data-level 

parallelism by using one or more hardware accelerators per functionality. Its 

optimized communication infrastructure enables almost linear scalability in 

terms of execution time when working with heavily computing-bounded tasks. 
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Hence, latency and throughput are reduced and increased, respectively, 

transparently and at run-time by dynamically changing the number of 

accelerator instances in the FPGA. ARTICo3 toolchain does not require inputs 

to specify latency and throughput, however the tool generate the support to 

promptly react at run time to measures of latency and throughput coming from 

the dedicated monitors. 

• Energy consumption: while it is true that increasing the number of hardware 

accelerators inside an FPGA leads to increased power consumption, it can also 

lead to a significant decrease in terms of energy consumption if execution time 

is also drastically reduced. In ARTICo3, the multi-accelerator setups that can 

be configured in the FPGA enable energy-efficient execution of heavily 

computing-bounded tasks. As in the case of latency and throughput, ARTICo3 

does not use energy consumption directly, but generates the infrastructure for 

reacting to run time measures of energy consumption coming from dedicated 

monitors. 

• Reliability: one of the built-in features of the ARTICo3 architecture is its 

capability of performing redundant execution on demand. Hence, the 

reliability of the hardware-accelerated processing is increased by using two or 

three copies of the same accelerator but working in Double or Triple Modular 

Redundancy (DMR, TMR). The specific configuration of a task is set at run-

time from the host code defined by the user/developer. As in the case of 

latency and throughput, ARTICo3 does not use reliability directly but 

generates the infrastructure for reacting to run time measures of reliability 

coming from dedicated monitors. 

• Resource utilization (in terms of area of basic components): reconfigurable 

computing systems based on DPR technology enable time-multiplexing of the 

FPGA fabric. However, in ARTICo3 the FPGA is partitioned in several 

reconfigurable regions called slots, where only a limited amount of resources 

is available for designers to describe their custom logic. To estimate the 

resource utilization ARTICo3 uses the external tool chain specific of the target 

FPGA, and uses the results of that toolchain to verify the feasibility of the 

proposed design. 

• Reconfiguration time: DPR is a time-consuming procedure that cannot be 

neglected when computing the overall execution time for a given task. 

However, this time is usually bounded, and can be used at run-time to perform 

more accurate predictions/estimations on the behavior of any task being 

executed in the architecture. As latency and throughput, reconfiguration time 

is measured at runtime using dedicated monitor. For reconfiguration time the 

monitor can be as simple as a counter. 

Just-In-Time Hardware Composition (JIT-HW): 

Just-In-Time HW composition is a tool for composing accelerators at run-time using 

Dynamic Partial Reconfiguration (DPR). It consists of a multi-grain reconfigurable 

overlay which can be used to map different accelerators. Two different approaches are 

envisaged. An evolutionary/iterative approach that has been implemented using Block-

Based Neural Networks (BBNNs) which finds a solution of a problem finding the 

weights, biases and the topology of the network using an evolutionary algorithm, and a 

deterministic approach for composing accelerators from dataflow graphs obtained from 

SW descriptions (still under development), by relying on intermediate representations. 



H2020-ICT-2016-1-732105 - CERBERO 

WP3 – D3.1: CERBERO Modelling of KPI 

Page 20 of 27 

JIT-HW provides KPI support of type one and type two. The KPIs relevant to this tool 

are the following ones: 

  

• Implementation/training time: one of the main objectives of this tool is to 

compose accelerators in the minimum possible time, from high-level goals or 

from the software descriptions. In the evolutionary/iterative approach, there is 

a training phase where different parameters are modified using an evolutionary 

algorithm until finding a valid solution. In the deterministic approach, there is 

a mapping phase where the nodes of an intermediate representation in the form 

of a dataflow graph are mapped onto the overlay and a routing phase where 

the different processing elements of the overlay are routed as indicated in the 

dataflow graph. There is a trade-off between the time dedicated to these 

phases and other KPIs as resource utilization, latency and quality of service. 

This KPI is used to decide, based on the implementation or training time, the 

number of accelerators (composable overlays) being trained in parallel.  

Specific monitors getting information from the fitness function have been 

implemented with this aim. This information is available also for future uses, 

for instance to improve the training algorithms (for instance, by adjusting the 

parameters of the evolutionary/iterative mapping algorithms). 

• Reconfiguration time: the implementation/training phases use DPR to adapt 

the reconfigurable overlay to compose the required accelerator. Traditional 

dynamic partial reconfiguration may be not fast enough in some cases and can 

lead to very long implementation/training phases. In order to improve 

reconfiguration times, we have developed IMPRESS, a tool made specifically 

for JIT-HW composition that allows to use different reconfiguration 

granularities. Coarser granularities can be used to add or change processing 

elements of the overlay while finer granularities can be used to reconfigure 

LUT-based components that are part of a processing elements (e.g., constants, 

multiplexers and functional units) in a fast way by only changing LUT truth 

tables. In that way, a coarser granularity is only used for changing the overlay 

(i.e., adapt its size in the BBNN or modify the PE in the deterministic overlay) 

and a finer granularity is used to fine-tune a specific overlay. As in the case of  

ARTICo3, reconfiguration time is measured at runtime using dedicated 

monitor. Based on the information provided by the monitor, the adaptation 

manager could take decisions on which granularity (fine or coarse) and the 

flavour of reconfiguration to be used to provide adaptation.  

• Resource utilization (in terms of area of basic components): an accelerator 

can be mapped in overlays with different size. In resource constrained systems 

the smaller the overlay, the better. However, there are trade-offs between this 

KPI and other KPIs. On the one hand, in the deterministic approach, a smaller 

overlay can lead to longer place and route implementation times. On the other 

hand, in the iterative approach, a smaller overlay will have shorter training 

phase at the expense of a possible worst solution. As in the case of ARTICo3, 

resource utilization report is generated by an external tool chain and the result 

is used to verify that the proposed design fits the constraints. 

• Quality of service and latency: these KPIs indicate the quality of the 

accelerator. The total latency of the accelerator is one of the metrics that can 

be used in both approaches to see how good the accelerator is. Moreover, in 

the iterative approach it is possible to build accelerators that can be 
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approximated to the desired functionality with different levels of quality of 

service.  Information about quality of service are collected at run time using 

dedicated monitor specifically designed to compute the quality of service (i.e. 

fitness resulting from evolution) function. 

• Energy consumption: when JIT-HW composition is used in embedded 

systems, is important to reduce energy consumption. Energy consumption can 

be divided in the energy used to reconfigure the overlay in the 

implementation/training phase and the energy consumed by the accelerator 

once it has been composed. As in the case of ARTICo3,  energy consumption is 

measured at runtime by dedicated monitor. Energy measurements could also 

be used at run-time as a metric to guide the evolution (composition) of the 

architecture (accelerators).  

MDC:  

MDC is a tool for dataflow to hardware composition. Starting from different input 

specifications, it is capable of assembling a target-agnostic coarse-grained 

reconfigurable datapath that can be used within a co-processing unit. MDC provides 

support of KPIs of type one and of type two. Below the set of KPI that are relevant for 

MDC or the co-processing units created using MDC. 

• Resource utilization (in terms of area of basic components): This KPI is 

relevant for the tool to deploy constraint-aware system configurations. MDC 

exploits datapath merging techniques to merge the different input dataflow 

specifications within a single reconfigurable datapath. Datapath merging 

process, in genral, is meant to minimize the number of actors and connections. 

MDC has an extension specifically related to structural profiling, which is for 

ASIC technology only. The profiler explores all the possible topologies in the 

design space and extracts some pareto curves, which are used from by users to 

select the configuration respecting his/her area and frequency constraints. In the 

FPGA case, Pareto analysis in not yet available and actors and connection 

minimization are minimized [3]. 

• Throughput, Latency, and Energy Consumption: These KPIs are relevant 

for the deployed accelerator and can be used at runtime to drive it. Given a fixed 

operation, for example a filter or a jpeg decoder [6], different configurations of 

the actors in the input kernel could lead to architectural implementations 

offering different throughput, latency and energy consumption profiles. The 

different profiles can be mixed together to support different runtime trade-offs 

exploitable at runtime, in a self-automated manner or in a user-commanded 

manner, to meet non-functional constraints [2]. Latency and throughput are 

predictable at design time at the dataflow specification level [1]. The energy 

consumption can be evaluated at runtime by measuring the power consumption 

of each single configuration and then multiplying it by the latency of the 

selected execution [2]. The possibility of using these KPIs within MDC 

compliant accelerators depends by the users and the context of application. It is 

user’s responsibility to provide different profiles as input to MDC. 

• QoS This KPI is relevant for the deployed accelerator and can be used at 

runtime to drive it. Similarly to the throughput, latency, and energy 

consumption case it is user’s responsibility to provide different profiles as input 

to MDC. In this case the profiles shall match different quality profiles. For 

instance, in the case of the interpolation filters of an HEVC decoder, an MDC 

compliant coarse-grained accelerator can support different approximated 
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computations offering different precisions of computation, by changing the 

number of taps in the input kernels [5].  The different profiles, in [5], 

corresponds to different power (and energy) consumptions values; therefore, at 

runtime, profiles can be tuned to meet the current requirements.  

• Reconfiguration time: This KPI is relevant for the deployed accelerator when 

different types of reconfiguration are supported. Generally speaking, to 

configure and MDC compliant accelerator, the host processor writes the 

configuration register of the co-processing unit, then 1 clock cycle is needed to 

reconfigure the datapath infrastructure of the central computing core of the co-

processing unit itself. This series of actions is fixed for MDC-compliant 

accelerators. Therefore, in stand-alone MDC usage reconfiguration time may 

not be considered as a KPI. Nevertheless, it becomes a KPI of the deployed 

accelerator in a multigrain reconfigurable infrastructure as that one presented in 

[4]. 

 

PAPIFY:  

PAPIFY is a tool for dataflow application monitoring and instrumentation. Starting 

from a dataflow specification and relying on components included in the Performance 

Application Programming Interface (PAPI) library, PAPIFY provides both the 

instrumented code and the monitoring infrastructure required to access, in run-time, 

low-level performance information. With this information, the different KPIs required 

(in run-time) by the tools/applications can be inferred. For this reason, PAPIFY has not 

relevant KPIs itself, but generating the support to expose low-level performance 

information, enables the run time KPI estimation associated to the CERBERO tools. 

PAPIFY provides KPI support of type two. 

 

SAGE:  

The SAGE verification suite is actually composed of two tools, namely ReqV, that is 

devoted to the automated (formal) consistency checking of requirements expressed in 

natural language, and HyDRA, which allows the automated synthesis of high-level 

task-oriented optimal “correct-by-construction” policies. As in the case of PAPIFY, the 

tools in the suite do not manage KPIs in specific ways. In particular, in the case of 

ReqV, KPIs could be involved in the requirements formulation by the designer as input 

variables or state variables in the high-level system model under verification. SAGE 

provides KPI support of type one. 

 

 

Table 4.1 summarizes the type of KPI support provided by each tool. 
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TOOL Support type one Support type two 

MECA X  

DynAA X X 

AOW X  

PREESM/SPIDER X  

ARTICo3  X 

JIT-HW X X 

MDC X X 

PAPIFY  X 

SAGE X  

2. Table:  the X indicates that the tool provide the support for KPIs of that type. 
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5. KPIs within use cases 

This section provides an update on the  KPIs and the metrics that are used to measure 

them in CERBERO use cases. For the previously defined KPIs, for completeness we 

provide a summary of the definition present in D3.4. For the newly introduced KPIs, or 

for the one that have been modified after D3.4, we provide the new definition. 

5.1. Smart Traveling 

 

The Smart Traveling use case address the problem of driving assistance for electric 

vehicle, considering several parameters and constrains, including the insurance of the 

sufficient level of battery, use driving styles, and different types of cars.  

 

The following KPI, have been initially defined in deliverable D3.4 for this case of study. 

Below we summarize and update these definitions. Also, for this use case, we introduce 

here a new separation of KPIs into two categories, the first category contains measures 

on the primary process of the system, being the proposed routes, whereas the second 

category contains KPIs that are about the reconfiguration process (secondary process). 

Note that for the primary KPIs only the KPIs of the eventual best recommendation is 

taken into account, and not all rejected itineraries. As such on a global level the primary 

process KPI is of type maximum since only the best performing recommendation is 

used. 

 

Primary KPIs 

• Energy, defined as the total amount of electric energy required to bring the car 

from the start to the end of the itinerary. This is of type minimum since the 

minimal amount of used energy in the simulation is the one that is taken into 

account in the final user recommendation 

• Cost, defined as the financial cost of the charged energy during the travel. This 

KPI is of type additive since the total cost can be computed by the cost of the 

individual charging actions. 

• User compliance. The systems’ proposed itinerary should be in compliance 

with defined user preferences. This includes the number of proposed stops, as 

well as usage of preferred charging services, or other facilities that are available 

at intermediate stopping points. This type of KPI is a ranked feature. 

• Total travel time. The time to traverse the itinerary is the use case specific 

physical variant of the latency KPI. However, this KPI is of type minimum, as 

only the shortest proposed total travel time is taken into account. 

• Driver status. The driver support functionality should be able to verify the 

current status of the driver in order to provide or adapt advice to the driver. For 

this special sensors will be added to the simulator to monitor eye movement and 

eye lids during the trip to detect status of the driver (like tiredness). This KPI 

belongs to the family of minimum, because we conservatively select the 

minimum threshold for parameters that allows to identify the status of the driver 

in order to react to the situation. 
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Secondary KPIs 

• Latency: defined as the delay time of signals within the system. Both the 
latency of the reconfiguration process (for communication between system 
components) is used as a performance indicator. This KPI is of type additive.  

• Throughput: defined as the amount of data transmitted from sources to 

destinations. This KPI is of type minimum. 

• Quality of service: defined as the overall performance of the simulations 

executed for the of the Smart Travelling scenario and related to correctness of 

events, response to events, precision of the simulation, accuracy of the timing 

events, accuracy of the responses. This is a ranked feature. 

• Response time to triggers: defined as the number of seconds or milliseconds 

needed for the simulation to respond to triggers. This total response time 

contains the latency, but also the time needed to run the simulations. This KPI 

is of type additive. 

 

5.2. Self-Healing for Planetary Exploration  

Self-healing for planetary exploration explores the use of self-monitoring and  

self-healing capabilities to overcome the failures caused by cosmic radiations. For this 

use case, there is no change in the type of KPIs and in the definition of them with respect 

to deliverable D3.4. For completeness, we report a summary of the previously defined 

KPIs in the following bullet lists: 

 

• Latency is the delay before the robotic arm starts moving after solving the 

kinematic equations. This KPIs is of type additive. 

• Throughput is maximum rate that inverse kinematics equations can be solved.  

This KPI is of type minimum. 

• Energy due to computation and movements of the robotic arm. This KPI is of 

type additive. 

• Power due to computation and movements of the robotic arm. This KPI is of 

type additive. 

• Resources utilization is the amount of resources used in rad-tolerant Zynq 

FPGA. This KPI is additive. 

• Security is the confidentiality in communication with the robotic arm. This KPI 

is a ranked feature. 

• Reliability is the reliability of the system in harsh environments with radiation 

effects. This KPI is a ranked feature. 

• Response time to triggers Reconfiguration time due to radiation effects. 

Different topologies will be used to analyze response time to triggers and 

reconfiguration. This KPI belongs to the family maximum. 

• Availability Availability of communication with the robotic arm. This KPI is 

of type ranked feature. 

• Cost: the development cost. This KPI is additive. 
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5.3. Ocean Monitoring 

 

The Ocean Monitoring use case exploits video-sensing, mounted on underwater ocean 

robots, to serve as marine eyeballs that can capture live videos and images. For this use 

case, we updated the list of KPIs with respect to deliverable D3.4. Below we report a 

summary of the previously defined KPIs together with the new KPIs. 

 

• Throughput is mainly related with the throughput of the communication and it 

is defined as the amount of data transferred per time unit within a given 

communication channel. It is a KPI belonging to the family minimum. 

• Energy is the amount of energy available in a battery used for the motor and 

electronic equipment in a marine robot. This KPI belongs to the family 

maximum. 

• Power is the power needed for propulsion, steering, and other digital equipment 

onboard the marine robot. This KPI is additive. 

• Response time [to triggers] is related with the time needed to retrieve the data 

once they are requested. This KPI is of time maximum. 

• Cost are of two types 1) the financial cost to prepare robot for trip and 2) the 

time cost to prepare robot for trip and duration of trip. Both KPIs are additive. 

• Image Quality can be defined in terms of measurable characteristics, perceived 

degrees of quality, or a combination of these. In our case, image quality is a 

ranked feature.  

The following KPIs have been added with respect to deliverable D3.4 

• Disparity. The difference in image location of the corresponding points from 

two images of scene taken from different viewpoints when projected under 

perspective transformation. 

• Geometric distortion. The dissimilarity between rectified and original image. 

 

The new KPIs are needed to measure the quality of image rectification which 

in turn is needed for certain image fusion techniques such as depth maps and 

super-resolution. 
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