
1

Tutorial: Multi-Dataflow Composer Tool
CGR Coprocessor Generation from Dataflow Networks

This tutorial shows how to generate a processor-coprocessor AXI-based system for Xilinx

FPGA using the MDC tool (http://sites.unica.it/rpct/), and how to simulate it.

The multi-dataflow network performs two functionalities for edge detection: Sobel and

Roberts operators. Both algorithms consider the convolution of two kernels with an grayscale

image (as shown in Fig. 1), in order to highlight the high-frequency variations due to the

horizontal and vertical edges.

a b

Figure 1: Computation of the convolution of kernels (x and y) of the Sobel (a) and Roberts

(b) operators with an input image (A).

Figure 2 illustrates the single networks for Sobel (a) and Roberts (b) algorithms.

a

http://sites.unica.it/rpct/

2

b

Figure 2: Dataflow description of the single networks for the Sobel (a) and Roberts (b)

operators and for the multi-dataflow reconfigurable system (c).

The single networks and HDL component libraries have been created using CAPH

tool(http://caph.univ-bpclermont.fr). CAPH is a framework for the specification, simulation

and implementation of stream processing applications based on a dynamic Dataflow MoC

(ref).

Necessary tools:

● MDC tool (to install this tool without a provided executable file, please, follow

installation guide);

● Java Runtime Environment (v8 or higher);

● Xilinx Vivado tool. (Tutorial has been tested with Vivado 2017.1, 2017.3, 2017.4 and

2018.1);

● A Xilinx FPGA board.

1. Merging Process

● In folder COWOMOtutorial/MDC_tool/eclipse launch MDC executable;

● Select the folder where is your executable file of MDC as a workspace and then

choose OK.

Create a new run configuration: Run > Run configurations… , right click on Orcc compilation

then select New. Now, chose a name for the configuration, and select

Tutorial_EdgeDetection project, MDC backend and the output folder path.

http://caph.univ-bpclermont.fr/
https://www.researchgate.net/publication/278698706_CAPH_A_language_for_implementing_stream-processing_applications_on_FPGAs
https://docs.google.com/document/d/1G5cKw_gC97QreTQf8Wt6QaS4xfNMwW3k0dqt0z6wVLc/edit
http://www.oracle.com/technetwork/java/javase/downloads/jre8-downloads-2133155.html
https://www.xilinx.com/support/download.html

3

Then select the two input dataflow networks: edgeDetection.roberts and

edgeDetection.sobel and choose the merging algorithm (EMPIRIC or MOREANO, ref). In

this tutorial we adopt the EMPIRIC one.

Tick “Generate RVC-CAL multi-dataflow”. And Run.

This step merges the two input dataflow networks, through the selected datapath merging

algorithm. Click on Run.

Refresh the project folder to visualize the output folder with the generated multi-dataflow. In

the generated networks you can notice as actors are shared, and functionalities of the two

input networks are guaranteed by the insertion of the switching boxes.

https://ieeexplore.ieee.org/document/1227149/

4

2. HDL Generation

Open again the configuration window: Run > Run configurations...

Choose previous configuration, unselect “Generate RVC-CAL multi-dataflow” and tick

“Generate HDL multi-dataflow”.

Then choose the protocol file and the HDL component Library.

1. Protocol file is in Tutorial-EdgeDetection-CoprocessorGen/data/mdc_inputs/protocol/

(link) folder.

2. HDL component library is in

Tutorial-EdgeDetection-CoprocessorGen/data/mdc_inputs/HDL_compLib (link)

folder.

The HDL component library has to contain all of the necessary hdl files. If some file, related

to a specific library are needed, the should be put in: Component_Library_Folder/lib/libName

folder. Please pay attention that libName folder name has to match the library name!

Output folder

Output folder contains one folder and two files:

1. HDL: includes all of the necessary files to create simulate and synthesize our CGR

accelerator..

I contains also two files:

1. configNetID.txt - reports the ID value associated to each input dataflow.

2. report.txt - reports:

a. the number of actors of each input network

b. number of merged networks,

c. number of actors

d. number of original actors

e. number sbox actors

f. number of shared actors

3. Coprocessor Generation

To generate the Ip, you need to choose:

1. The processor-coprocessor coupling (ref), memory-mapped or stream . In this tutorial

the memory-mapped is chosen.

2. The Host Processor. In this tutorial we use the ARM Processor.

3. If you want to use the DMA module (ref). We tick this box.

4. Kind of Xilinx board. In this tutorial the ZedBoard Zynq Evaluation and Development

Kit is adopted:

a. Board Part: em.avnet.com:zed:part0:1.0

https://drive.google.com/drive/folders/119dGOHhdyoGmOHCXryL6khIiJ3Ntfl9X
https://drive.google.com/drive/folders/1au0F4E8QVDqZaL0TMWrrsKMHWlGEcQQM
https://www.xilinx.com/support/documentation/ip_documentation/axi_ref_guide/v13_4/ug761_axi_reference_guide.pdf
https://www.xilinx.com/support/documentation/ip_documentation/axi_ref_guide/v13_4/ug761_axi_reference_guide.pdf

5

b. Partname: xc7z020clg484-1

Select Apply and choose Run.

Output folder

Output folder contains two folders:

2. Mm_accelerator:

a. hdl: includes all of the necessary files to create the Custom IP in Vivado.

b. bd: include the necessary file to properly import the Custom IP in a top

project.

c. drivers: include the .c and .h files necessary to easily communicate with

accelerator from the host processor.

3. Scripts: contains two scripts:

a. generate_ip.tcl - uses inputs in mm_accelerator to create a project and

package a Custom IP.

b. generate_top.tcl - create a top project, where the IP is instantiated and

connected to Host Processor, using the necessary logic according to user

requirements.

By default these scripts consider as root the folder where mm_accelerator and scripts folder

are saved.

If vivado is launched in that folder, they don’t need any modification. If Vivado is launched in

a different folder (e.g Windows users), the users should open the scripts and replace root

path “.” (set root ".") with were necessary folders are saved.

4. Processor - Coprocessor System Generation

Launch Vivado.

Change directory to the root folder of the generated scripts, as:

.../data/mdc_outputs/CGR_coprocessor

6

Now, in the main menu (only in Linux environment):

Tools → Run tcl Script… and choose .../CGR_coprocessor/scripts/generate_ip.tcl.

When the IP is generate, it is possible to see the HDL files in the Source panel.

Then, launch the other script file at the same manner:

Tools → Run tcl Script… and choose .../CGR_coprocessor/scripts/generate_top.tcl.

At this point, the Processor-Coprocessor System is ready for the synthesis or simulation.

7

