Tutorial: Multi-Dataflow Composer Tool
CGR Coprocessor Generation from Dataflow Networks

This tutorial shows how to generate a processor-coprocessor AXl-based system for Xilinx
FPGA using the MDC tool (http://sites.unica.it/rpct/), and how to simulate it.

The multi-dataflow network performs two functionalities for edge detection: Sobel and
Roberts operators. Both algorithms consider the convolution of two kernels with an grayscale
image (as shown in Fig. 1), in order to highlight the high-frequency variations due to the

horizontal and vertical edges.

Image Convolved
Gradient
Source Al of Source
5 .
Pixel P Pixel By
) Az Ki3 \ B3
Ast K2 B2 B2
K3 K3 B! B2
Az ka2 | Bs
Kas K33 B2 B33

Bs?

Convolution
Kernel

a

Image Image
Bi6 A6
G Source A
Pixel A
B2 \ A3 P
At K2
B A Kat

Ast s
Aaz
PAat ﬁ
Ps?
Pst
s Convolution
: Kernel

Convolved Image

Gradient @
of Source g B
15

Pixel By
\ B3
B2

\ B2
B2

#

B

B2 ot
B3
B

Ba? ’
Baz

Bs?

Figure 1. Computation of the convolution of kernels (x and y) of the Sobel (a) and Roberts

(b) operators with an input image (A).

Figure 2 illustrates the single networks for Sobel (a) and Roberts (b) algorithms.

(1\
~
| line_buffer_4 ‘ delay 6 ‘
_) real_size out_pel in_pel out Jaelb
Q ext_size L
in size Min_pel
delay_5 -
————— |
Min_pel out pel roberts_x_7
N pel00 out_pel
Q J pel01
110
in nel\ W | x” 1
remove_2x2_11
oboriey3 | ‘abs_sum_Ql ‘ thr_10 \ ST)
s | in_gx out g in_g out _pelﬂ—b«.inL -
pel00 out_pel in_gy]
pel01
pel10
Mpelll

http://sites.unica.it/rpct/

delay_11

in_pel out_pel——
delay_8 r
= in_pel out_pel
line_buffer_5 r

‘ Mreal_size out_pel
< <J \b-ext__size -

in size s : R
&in_pe delay_10
rin_pel out_pel!

delay_7

in_pel out_pel
line_buffer_4 r

real_size out_pel® sobel_y_13
ext_size) i

in_pel Wﬁ
mopel delay_9 0
in_pel out_pel [pabi
M pel10

delay_6

>min_pel out_pel Mpel12
- pel20
<} M pel21

in nal f

_3x3_16

||
sobel_x_12 abs_sum_14 thr_15 ' ‘m_’>
»>pel0d out_pel Win_gx out g in_g out_pel®—>min_pel nm oel

pel01 >in_gy |

Figure 2: Dataflow description of the single networks for the Sobel (a) and Roberts (b)
operators and for the multi-dataflow reconfigurable system (c).

The single networks and HDL component libraries have been created using CAPH
tool(http://caph.univ-bpclermont.fr). CAPH is a framework for the specification, simulation
and implementation of stream processing applications based on a dynamic Dataflow MoC

(ref).

Necessary tools:

e MDC tool (to install this tool without a provided executable file, please, follow
installation guide);
Java Runtime Environment (v8 or higher);
Xilinx Vivado tool. (Tutorial has been tested with Vivado 2017.1, 2017.3, 2017.4 and
2018.1);

e A Xilinx FPGA board.

1. Merging Process

e |n folder COWOMOtutorial/MDC _tool/eclipse launch MDC executable;
e Select the folder where is your executable file of MDC as a workspace and then
choose OK.
Create a new run configuration: Run > Run configurations... , right click on Orcc compilation
then select New. Now, chose a name for the configuration, and select
Tutorial_EdgeDetection project, MDC backend and the output folder path.

http://caph.univ-bpclermont.fr/
https://www.researchgate.net/publication/278698706_CAPH_A_language_for_implementing_stream-processing_applications_on_FPGAs
https://docs.google.com/document/d/1G5cKw_gC97QreTQf8Wt6QaS4xfNMwW3k0dqt0z6wVLc/edit
http://www.oracle.com/technetwork/java/javase/downloads/jre8-downloads-2133155.html
https://www.xilinx.com/support/download.html

Name: | Tutorial COWOMO

e Compilation settingg & Compilation options| € Mapping | [Common|

Project:

\ Tutorial_EdgeDetection ‘ Browse...

Backend:
Select a backend: MDC v

Output folder: C:\Tutorial-EdgeDetection-CoprocessorGen\data\mdc_outputs\CG R_accelerator} Browse...

Then select the two input dataflow networks: edgeDetection.roberts and
edgeDetection.sobel and choose the merging algorithm (EMPIRIC or MOREANO, ref). In
this tutorial we adopt the EMPIRIC one.

Options:
List of Networks to be Compiled and Merged

Number of Networks: { 2 '

XDF List of Files: ’ edgeDetection.roberts, edgeDetection.sobel | Add...

Merging Algorithm
EMPIRIC v
Generate RVC-CAL multi-dataflow

Tick “Generate RVC-CAL multi-dataflow”. And Run.
This step merges the two input dataflow networks, through the selected datapath merging
algorithm. Click on Run.

Refresh the project folder to visualize the output folder with the generated multi-dataflow. In
the generated networks you can notice as actors are shared, and functionalities of the two
input networks are guaranteed by the insertion of the switching boxes.

https://ieeexplore.ieee.org/document/1227149/

2. HDL Generation

Open again the configuration window: Run > Run configurations...
Choose previous configuration, unselect “Generate RVC-CAL multi-dataflow” and tick
“Generate HDL multi-dataflow”.
Then choose the protocol file and the HDL component Library.
1. Protocaol file is in Tutorial-EdgeDetection-CoprocessorGen/data/mdc_inputs/protocol/

(link) folder.

2. HDL component library is in
Tutorial-EdgeDetection-CoprocessorGen/data/mdc_inputs/HDL_compLib (link)
folder.

The HDL component library has to contain all of the necessary hdl files. If some file, related
to a specific library are needed, the should be put in: Component_Library_Folder/lib/libName
folder. Please pay attention that libName folder name has to match the library name!

Generate HDL multi-dataflow

Protocol File:[C:\Tutorial-EdgeDetection-CoprocessorGen\data\mdc_inputs\protocol\protocol CAPH.xml ‘ Browse...

HDL Component Library:: C:\Tutorial-EdgeDetection-CoprocessorGen\data\mdc_inputs\HDL_complib ‘ Browse...

Output folder

Output folder contains one folder and two files:
1. HDL: includes all of the necessary files to create simulate and synthesize our CGR
accelerator..
| contains also two files:
1. configNetID.txt - reports the ID value associated to each input dataflow.
2. report.txt - reports:
a. the number of actors of each input network
number of merged networks,
number of actors
number of original actors
number sbox actors
number of shared actors

~®ooo0CT

3. Coprocessor Generation

To generate the Ip, you need to choose:
1. The processor-coprocessor coupling (ref), memory-mapped or stream . In this tutorial
the memory-mapped is chosen.
2. The Host Processor. In this tutorial we use the ARM Processor.
If you want to use the DMA module (ref). We tick this box.
4. Kind of Xilinx board. In this tutorial the ZedBoard Zynqg Evaluation and Development
Kit is adopted:
a. Board Part: em.avnet.com:zed:part0:1.0

w

https://drive.google.com/drive/folders/119dGOHhdyoGmOHCXryL6khIiJ3Ntfl9X
https://drive.google.com/drive/folders/1au0F4E8QVDqZaL0TMWrrsKMHWlGEcQQM
https://www.xilinx.com/support/documentation/ip_documentation/axi_ref_guide/v13_4/ug761_axi_reference_guide.pdf
https://www.xilinx.com/support/documentation/ip_documentation/axi_ref_guide/v13_4/ug761_axi_reference_guide.pdf

b. Partname: xc7z020clg484-1

[] Compute Logic Regions
] Import Buffer Size File List
[] import Clock Domain File List
Generate Accelerator IP
Processor-Coprocessor Coupling
MEMORY-MAPPED v
Host Processor
ARM v
Adopt DMA

Board Part: ‘ em.avnet.com:zed:part0:1.0 ‘

Partname: ‘ xc7z020clg484-1 ‘

[_] Enable Profiling

Select Apply and choose Run.

Output folder

Output folder contains two folders:
2. Mm_accelerator:

a. hdl: includes all of the necessary files to create the Custom IP in Vivado.

b. bd: include the necessary file to properly import the Custom IP in a top
project.

c. drivers: include the .c and .h files necessary to easily communicate with
accelerator from the host processor.

3. Scripts: contains two scripts:

a. generate_ip.tcl - uses inputs in mm_accelerator to create a project and
package a Custom IP.

b. generate_top.tcl - create a top project, where the IP is instantiated and
connected to Host Processor, using the necessary logic according to user
requirements.

By default these scripts consider as root the folder where mm_accelerator and scripts folder
are saved.

If vivado is launched in that folder, they don’t need any modification. If Vivado is launched in
a different folder (e.g Windows users), the users should open the scripts and replace root
path “.” (set root ".") with were necessary folders are saved.

4. Processor - Coprocessor System Generation

Launch Vivado.
Change directory to the root folder of the generated scripts, as:
.../data/mdc_outputs/CGR_coprocessor

Now, in the main menu (only in Linux environment):

Tools - Run tcl Script... and choose .../CGR_coprocessor/scripts/generate_ip.tcl.

Tools Window Help Q- Quick Act

Run Tcl Script...
¢ Compile Simulation Libraries...
H Xilinx Tcl Store...
Custom Commands »
Q Language Templates
£ Settings...
¢ Run Script X
Look in: scripts v 2ol @XC EEi=

| generate_ip.tcl Recent Directories

- generate_top.tcl C:/Mutorial-EdgeDetection-CoprocessorGen/data/mdc_outputs... v

File Preview
i I P P P P P R F Z P F 2 Lo
(onmmm——— @0 >
File name: generate_ip.tcl
Files oftype: Tcl Files (.tcl) v

When the IP is generate, it is possible to see the HDL files in the Source panel.

Then, launch the other script file at the same manner:

Tools - Run tcl Script... and choose .../CGR_coprocessor/scripts/generate_top.tcl.

At this point, the Processor-Coprocessor System is ready for the synthesis or simulation.
BLOCK DESIGN - design_1

Sources Design x Signals Board ' O = i <.
Q| = |4 o
design_1

> External Interfaces

> Interface Connections
> Nets
> ¥ axi_cdma_0 (AXI Central Direct Memory Access:4.1

> [F] axi_mem_intercon
> % mm_accelerator_0 (mm_accele

> ¥ processing_system7_0 (ZYNQ7 Processing System:5.5
> [¥] ps7_0_axi_periph
> % rst_ps7_0_100M (Processor System Reset5.0

rst_ps7_0_100M

slowest_sync_cli

ext_reset_in
aux_reset_in

L&

dem_locked

bus_struct_
peripheral s
mb_debug_sys_rst interconnect_aresetn[0:0]

mb reset
reset[0:0] jm
reset[0:0] =

ps7_0_axi_periph

peripheral_ar

Processor System Reset

processing_system7_0

S00_AXI
ACLK
ARESETN
S00_ACLK
S00_ARESETN

MOO_AXI - e
MOL_AXI +

axi_cdma_0

Y4 S_AXILUTE

MOO_ACLK.
MOO_ARESETN
MO1_ACLK

—— m_axi_aclk M_AXI +

t—— s axilite_aclk cdma_introut

MO1_ARESETN

AXl'Interconnect

s axi_lite_aresetn

AXI Central Direct Memory Access

axi_mem_intercon

[+]
+ S00_AXI

|Il+ s_Ax1_HPO_FIFO_CTRL

+ S_AXLHPO
M_AXI_GPO_ACLK
S_AXI_HPO_ACLK.

ZYNQ®

DDR +

ACLK

FIXED_IO +

USBIND_O +
M_AXI_GPO - |} it
FCLK_CLKO

FCLK_RESETO_N p—

ZYNQ7 Processing System

mm_accelerator_0

*|+ s00_axi
b 501 axi

s01_axi_aclk

s01_axi_aresetn

S00_axi_aclk

S00_axi_aresetn

ARESETN
S00_ACLK
S00_ARESETN
MO00_ACLK.
MOO_ARESETN
MO1_ACLK

MOL_AXI + i

111

]

MO1_ARESETN

AXI Interconnect

mm_accelerator vl _0

