
c
e

i@
u

p
m

.e
s

Universidad Politécnica de Madrid

Boosting Flexibility and Computing

Performance in Dynamically Reconfigurable

FPGA-Based Embedded Systems

Andrés Otero, Alfonso Rodríguez and Eduardo de la Torre
{joseandres.otero, alfonso.rodriguez, eduardo.delatorre}@upm.es

2

XI Annual Meeting - CEI

Goals

Provide a step-by-step tour on the design of Dynamically

Reconfigurable Systems using commercial Xilinx FPGAs

3

XI Annual Meeting - CEI

Agenda

Theoretical introduction to the implementation of dynamically

reconfigurable systems

Practical overview of the Vivado Partial Reconfiguration flow.

Implementing dynamically scalable and fault-tolerant solutions

with the ARTICo3 framework

4

XI Annual Meeting - CEI

Theoretical Introduction to the

Implementation of Dynamically

Reconfigurable Systems

5

XI Annual Meeting - CEI

What is Dynamic and Partial Reconfiguration?

Dynamic and Partial Reconfiguration is the ability to dynamically change blocks of

logic by writing partial bit files in the configuration memory of the device while

the remaining logic continues working without interruption.

Configuration Port

or ICAP

Configuration Port

Partial Bit Files

F
u

n
ctio

n
 A

1

F
u

n
ctio

n
 B

1

F
u

n
ctio

n
 C

1
F

u
n

ctio
n

 C
2

F
u

n
ctio

n
 B

2

F
u

n
ctio

n
 A

2
F

u
n

ctio
n

 A
3

Full

Bit File

Hardware Update at Run-time, similar to

context switch in Microprocessors

6

XI Annual Meeting - CEI

A new Operation Mode for FPGAs

F
un

ct
io

n

Power On Time

Configuration Overhead Device Duty-cycle
F

un
ct

io
n

Configuration Overhead
Reconfiguration Overhead

Power On Shut DownTime

Typical Operation Mode

Dynamic and Partial Reconfiguration

Shut Down

7

XI Annual Meeting - CEI

DPR Enables Reconfigurable Computing

Reconfigurable Computing is a computer architecture combining some of the flexibility of software
with the high performance of hardware by processing with very flexible high speed computing
fabrics like field-programmable gate arrays (FPGAs). The principal difference when compared to using
ordinary microprocessors is the ability to make substantial changes to the datapath itself in addition
to the control flow. On the other hand, the main difference with custom hardware, i.e. application-
specific integrated circuits (ASICs) is the possibility to adapt the hardware during runtime by
"loading" a new circuit on the reconfigurable fabric.

Reconfigurable computing combines some of the flexibility of software with the
high performance of hardware.

8

XI Annual Meeting - CEI

Reconfigurable Computing – Why?

 Size and Cost Reduction by silicon reuse
 Time multiplexing allows implementing systems in smaller and cheaper

devices.

 Power Consumption Reduction
 Use of smaller / fewer devices

 Switch-off the unused tasks Reduction of dark silicon

 More optimized and specific Hardware Designs

 System Flexibility, Allows Adaptive Systems
 Adaptable Security Standards and Algorithms

 Communication Systems with upgradable and adaptable Protocols

 Biological Computing

 Artificial Intelligence

9

XI Annual Meeting - CEI

Reconfigurable Computing – How?

Configuration Memory Layer

 We can think on FPGAs as two layered devices:

 Application layer, which contains the whole pool of computing resources

 Logic, Routing, I/O

 Configuration layer, which selects what to use and how to connect it

Configuration memory controls

function computed on logic layer

Configuration

Bitstream

SRAM MEMORY

Logic Layer

10

XI Annual Meeting - CEI

Reconfigurable Computing – How?

Theoretically, reconfiguring an FPGA

is as simple as changing a SW program:

It’s just writing in a memory…

11

XI Annual Meeting - CEI

Reconfigurable Computing – How?

 To Dynamically reconfigure an FPGA…

 Configuration Ports and Interfaces

 Configuration Registers

 Bitstream format

... BUT dealing with a lot of low-level details that

are device dependent ..

12

XI Annual Meeting - CEI

Reconfiguration Ports

▪ Reconfiguration ports provide access to the configuration memory.
 Internal ports are embedded in the device and accessible from the configurable logic. In

Zynq:

• ICAP (Internal Configuration Access Port) From FPGA

• PCAP (Processor Configuration Access Port) From processor logic

 External configuration: JTAG, SelectMAP, SPI, Serial Configuration …

Self-Reconfigurable Systems

Configuration Memory Layer

Configuration Bitstream

Logic Layer

Configuration Port

13

XI Annual Meeting - CEI

Configuration Memory: Addressing Scheme

▪ The minimum addressable unit in the configuration memory is called frame.

▪ One reconfigurable frame defines the finest granularity for partial reconfiguration.

Xilinx Series 7

Granularity in Xilinx Series-7 is

Slice region: 50 CLB high by 1 CLB wide

BRAM region: 10 RAMB36

DSP region: 20 DSP48

In Ultrascale / Ultrascale+

Slice region: 1 CLB high by 2 CLB wide

Column

Minor
top

row

bottom

14

XI Annual Meeting - CEI

Reconfiguration Ports: AXI HWICAP

▪ The core is a wrapper for the ICAP port enabling partial
reconfiguration in a processor-based system.

 Accessible through software API in xhwicap.h

▪ Provides the interface necessary to transfer data to and
from the ICAP device Primitive

▪ Required data is first stored within a Write FIFO, from
where it can be sent to the ICAP

▪ The data that is read from the ICAP is stored in the Read
FIFO before it is read by the application

▪ Two clock domains
 The s_axi_aclk for the AXI-Lite interface

 The ICAP_Clk for the data exchange between the core

and the ICAPE

• Recommended speed of ICAP_Clk is 100 MHz

15

XI Annual Meeting - CEI

Reconfigurable Computing – How?

 To Dynamically reconfigure an FPGA…

 Configuration Ports and Interfaces

 Configuration Registers

 Bitstream format

... BUT dealing with a lot of low-level details that are
device dependent ..

.. and so we need specific Design Methodologies and
Tools!

16

XI Annual Meeting - CEI

DPR Design Flow Overview: bottom-up strategy

▪ Partial Reconfiguration requires the isolation of the different
Reconfigurable Modules. Bottom-up strategies are needed!

▪ The bottom-up strategy is to implement each reconfigurable module
and the static system independently, so:
 For each module a netlist (checkpoint) is generated

 Changing a module involves implementing only the affected module.

 Referred to as out-of-context (OOC) synthesis in Xilinx Vivado

▪ Top-down synthesis, where design is flattened is not (generally) used for
DPR.

Necessary for Partial Reconfiguration

Reconfigurable IOs described as ports in

HDL and mapped to external IOBs

17

XI Annual Meeting - CEI

Typical DPR Design Flow Overview

Reconfigurable Modules Static System

Placement

Routing

Full Bitstream
generation

FPGA
configuration

Placement
Constraints

Routing
Constraints

RTL synthesis

Translation

HDL code

RTL synthesis

HDL code

Partial Netlists

Partial Bitstream
generation

Partial Bitstream
generation

Partial Bitstream
generation

Interfaces

Cores to be consumed during the system life time are

designed along with it using a hierarchical flow.

18

XI Annual Meeting - CEI

DPR Design Flow Overview: Specific Steps

Floorplanning – allocate physical

resources to the reconfigurable regions

on the device

Interface - All the RMs to be configured

in a given RR must share the same.

Temporal Partitioning the design into independent functionalities to be considered as

one of the reconfigurable modules.

Placement

Routing

Full Bitstream

generation

FPGA
configuration

Placement
Constraints

Routing
Constraints

RTL synthesis

Translation

HDL code

RTL synthesis

HDL code

Partial Netlists

Partial
Bitstream
Partial Bitstreams

Generation

Interfaces

19

XI Annual Meeting - CEI

Placement Flexibility: Virtual Architectures

 Island Style – Reconfigurable Regions can not be merged
 Suffers from fragmentation

 Slot Style – Also suffers from fragmentation, but less…
 Strictly defines all slots to be equal and to use special resources to access the on-chip

communication.

 Optimal slot size depends on the modules and communication costs.

 Slots can be grouped

 Grid Style – Reduced fragmentation, difficult run-time implementation

Island Based Slot Based Grid Based

Virtualization of FPGA physical architecture that includes a resource distribution and defines how modules

are interconnected.

20

XI Annual Meeting - CEI

Virtual Architectures: 2D Grid Architectures

UF&Router 1

UF&Router 1

UF&Router 1 UF&Router 2

UF&Router 2

UF&Router 2

IM2IM1

C
o
m
1

C
o
m
2

Static
Design

(Including
IC and OC)

Input Data
to the DF

Output
processed

data
OM1 OM2

Scalable Deblocking Filter
Device: FPGA V5-LX110T
Array 3×2 Fus

 2D placement provides a higher flexibility and reduces
internal fragmentation but with a higher
communication cost.
 ¿Buses? ¿NoCs? ¿Point-to-point connections?

21

XI Annual Meeting - CEI

Placement Flexibility: Relocation

▪ Relocation involves both Design and Run-time issues:
 At run time: Reduces the memory footprint needed to store a modular and regular

architecture (M vs. MxN, being M the number of RM and N the number of RRs)

• … but bitstream header must be modified at run-time
 At design time: Arrangement of resources must be considered when floorplanning a

Reconfigurable System.

The main requirements to enable Relocation are:
• identical (size and resources arrangement) origin and destination region
• identical relative Communication Interfaces
• Identical routing between the static part and relocatable regions

22

XI Annual Meeting - CEI

Placement Flexibility: pBlocks

CLBs

IOBs

DCMs and
Clock Dist.

DSP48s

BRAMS and
FIFOs

Figure 1. Virtex-4 LX15 FPGA layout

Pblocks - Physical constraints that define the reconfigurable regions.

set_property SNAPPING_MODE ON [get_pblocks]

The implementation tools automatically see the
corrected Pblock ranges.

23

XI Annual Meeting - CEI

Implementation of DPR Systems (I)

▪ Guarantee that identical wires are
used to connect all the partial
modules to be configured in a given
region.

 With a Low Area and Delay Overhead

▪ Each reconfigurable module must be constrained
within a bounded reconfigurable region without
overlapping any other.
 Logic area constraints supported by commercial tools.

 Routing constraints are a problem

Routing Conflicts

Inter-module Communications

24

XI Annual Meeting - CEI

Implementation of DPR Systems (II)

▪ Activate all the clock trees used by reconfigurable modules

▪ Extract the configuration corresponding to each reconfigurable module

Pre-route Global Clock Trees

Generation of Partial Bitstreams

Generated Clock Tree

25

XI Annual Meeting - CEI

Routing Conflicts

Each reconfigurable module must be constrained

within a bounded region without overlapping any

other.

Conflicts

▪ Allow static Routes crossing the Reconfigurable Regions
 Prevents Relocation.

▪ Re-route conflicting Nets or use Blocking Nets to prevent routes
exiting the reconfigurable regions.

26

XI Annual Meeting - CEI

Routing Conflicts: The XILINX Solution

▪ Static routes (feed-through routes) are maintained for all RMs
 Reconfigurable Regions can have both static and RM routes within them

 Static routes have precedence with all others being implemented in contex

 It is not compatible with module Relocation.

▪ RM routes must be fully contained within the RP boundary
 For larger RMs it may be more difficult to route and/or meet timing

 Recommendations: Make the RP boundary 5–10% larger than an equivalent
flat design

27

XI Annual Meeting - CEI

Inter-module Communications: The XILINX Solution

Partition Pins

▪ Crossing Wires (mid-route) are automatically identified by the tool,
similar to Virtual Borders. Not under the control of the user.

▪ No overhead (LUTs or FFs) at reconfigurable partition interface

INT tile

Similar approach provided by Virtual Borders (CEI-UPM)

28

XI Annual Meeting - CEI

Practical overview of the Vivado Partial

Reconfiguration flow.

29

XI Annual Meeting - CEI

Some Definitions…

▪ Partition
 A logical block (entity or instance) to be used for design reuse

 User determines implementation versus preservation for each block

▪ Reconfigurable Partition (RP)
 Design hierarchy instance marked by the user for reconfiguration

▪ Reconfigurable Module (RM)
 Portion of the logical design that occupies the Reconfigurable Partition

 Each RP may have multiple Reconfigurable Modules

▪ Static Logic
 All logic in the design that is not reconfigurable

30

XI Annual Meeting - CEI

Some Definitions…

▪ Configuration
 A full design image consisting of Static Logic and one Reconfigurable

Module for each Reconfigurable Partition

 Any combination of RM for each RP where it can be reconfigured is a valid

configuration (Relocation not allowed with Xilinx Flow)

RP “A”

Static

RP “B”

RP “C”

A1
A2

A3

B1
B2

C1
C2

C3
C4

Reconfigurable Modules

31

XI Annual Meeting - CEI

Summary of the Design Flow

▪ Structure your design
 Static Logic (unchanging design)

 Reconfigurable Partitions (RP)

• Instances to be reconfigured

 Reconfigurable Modules (RM)

• Functional variations for each RP

▪ Synthesize bottom-up
 synth_design –mode out_of_context

▪ Define resources to be reconfigured
 Pblocks map design modules to

physical regions

• Define XY ranges and resource types

▪ Mark pblocks as reconfigurable
 HD.RECONFIGURABLE initiates flow

Static Logic

RP_color RP_pos

RM_orig

RM_rev

RM_allc

RM_gray

RM_sepia

i_PR_color

i_PR_pos

32

XI Annual Meeting - CEI

Summary of the Design Flow

 Vivado stores design data in checkpoints
 Save full design as a configuration checkpoint for bitstream creation

 Save static-only checkpoint to be reused across multiple configurations

• Routed static checkpoint can remain open in memory

• Results are locked at the routing level

 Reconfigurable modules can also be stored as their own checkpoints

static.dcp
BB BB

RP_1 RP_2

config_1.dcp config_2.dcp

RM_1a.dcp RM_2a.dcp

RP_1 RP_2

Load new synthesized modules to replace

black boxes and

create new configurations

33

XI Annual Meeting - CEI

Summary of the Design Flow

 Place and Route all design configurations
 Apply full design constraints in-context

 Use normal timing closure, simulation and verification techniques

 Use scripted non-project flow or new RTL-based project flow

 Final Verification
 Validates consistency of place and routed results across the entire system

 Generate Bitstreams
 write_bitstream automatically creates all full and partial bit files by default

 Selectively generate full bitstreams or specific partial bitstreams

34

XI Annual Meeting - CEI

Implementing dynamically scalable and fault-

tolerant solutions with the ARTICo3 framework

35

XI Annual Meeting - CEI

ARTICo3: Motivation

Put as many people as
possible to work, and save

time

Independent of the
task itself!

Do not tell others what you
are doing, protect from

others

Let more than one do the
same work and compare

result

Replicate xN
Multithreaded solutions

HPC-like approach

Duplicate
Dual-rail techniques for side-

channel attack protection

Replicate x2 or x3
(+ voter unit) DMR and TMR

Dynamic and Partial Reconfiguration
(hardware acceleration + module replication)

36

XI Annual Meeting - CEI

The ARTICo3 Framework

37

XI Annual Meeting - CEI

ARTICo3 Architecture

Arquitectura
Reconfigurable para el
Tratamiento
Inteligente de
Cómputo
Consumo
Confiabilidad

Bus-Based, DMA-Enabled
Communication

Extended
Features

Hardware
Acceleration

Hierarchical
Memory

Approach

Monitoring
InfrastructurePower Monitor

Reconfigurable
Architecture to enable
Smart
Management of
Performance
Energy Consumption and
Dependability

38

XI Annual Meeting - CEI

ARTICo3-Compliant Accelerator Design

C, C++,
OpenCL

High-Level Synthesis

HDL HDL

Code Generation IP Packaging

Developer

HDL

Wrapper

39

XI Annual Meeting - CEI

DPR-Compatible Floorplanning

Technology Dependencies

“Homogeneous” Fabric Layout

Low-Level Constraints

Design Placement

Design Routing

Common Interfaces

Hardware “Copy & Paste”

40

XI Annual Meeting - CEI

Runtime Support

Run-Time Adaptation

Computing Performance

Energy Consumption

Fault Tolerance

41

XI Annual Meeting - CEI

Tutorial Outline

▪ The ARTICo3 repo
 Where are architecture, toolchain and runtime?

 I don’t know how to set up an embedded Linux, can I use ARTICo3?

 Open Source (not available yet!): https://github.com/XXX/artico3.git

▪ Demo applications
 Dummy HLS-based kernel generation

• ARTICo3 project structure and configuration

• Memory-based I/O, register-based I/O

• Host application development: ARTICo3 API

 Matrix multiplication (yes, we know…)

• Test of a prebuilt example

