
Implementation of Dynamically Reconfigurable Systems
using commercial Xilinx FPGAs - Tutorial

Andrés Otero, Alfonso Rodriguez, Eduardo de la Torre. Centro de Electrónica Industrial - UPM

This document provides a short summary with the mains steps to be carried our for the implementation of
reconfigurable systems using the Xilinx commercial toolflow. It has been tested with the Digilent Pynq Board
(FPGA ZYNQ XC7Z020-1CLG400C).

The system to be designed in this tutorial is composed of a static system that includes an embedded
processor, as well as two reconfigurable regions (or partitions). For each of the reconfigurable regions, two
reconfigurable modules are generated: an adder and a multiplier. Each of them will act as an IP peripheral
of the processors. Partial bitstreams are created for the configuration of each of the modules in each of the
regions.

The design process comprises two steps: first, reconfigurable modules are synthesized and then the static
system is generated.

IMPLEMENTATION OF THE RECONFIGURABLE MODULES

(Repeat these steps for each reconfigurable module, Adder and Multiplier)

1. Create a new Vivado project.
2. Add the HDL file corresponding to the reconfigurable module as the new Top in the project. The entity

of the module must match the entity of the blackboxes used in the static system.
3. Synthesize the modules (in Out of context mode to avoid the instantiation of IOBs)

4. Write a checkpoint (dcp file) to be used during the generation of the static system (First Multiplier.dcp
then Adder.dcp)

synth_design -mode out_of_context

write_checkpoint -force PATH2TUTORIAL/Adder.dcp

af://n1026
af://n699

IMPLEMENTATION OF THE STATIC SYSTEM

1. Create a new Vivado project. Enable Partial Reconfiguration Flow for the project:

2. In Project Manager, Settings:

Select VHDL as the target language.
Add in IP repository the path to the ip_repo folder. In this repository two IPs are provided: the
IP_Reconfigurable_Interface and the Black_Box, a dummy instance with the same interface as the
reconfigurable modules to be implemented in the system.

3. Create a Block Design. Instantiate a ZYNQ Processing System IP, two IP_Reconfigurable Interface and two
Top_BlackBox Instances in the design.

Apply Pynq Presets in the Processing System. Enable the M_AXI_GP0 Interface

Run Connection Automation and connect manually the Reconfigurable Interface IPs to the Black Box IPs,
as shown in the diagram.

Create the HDL Wrapper for the block design.

Generate Output Products, in Out of context per IP

4. Run Synthesis and Open Synthesized Design

5. Set partitions of the design as reconfigurable (for the Black Boxes that will correspond with the IPs to be
reconfigured)

 set_property PR_FLOW 1 [current_project]

set_property HD.RECONFIGURABLE TRUE [get_cells design_1_i/Top_BlackBox_0]
set_property HD.RECONFIGURABLE TRUE [get_cells design_1_i/Top_BlackBox_1]

af://n691

6. Change to the Floorplanning Layout. Draw two pBlocks manually (Using Draw Pblock) according to the
design rools for reconfigurable systems. Assign the Top_BlackBox_0 and Top_BlackBox_1 netlists to the
pBlocks 1 and 2 respectivetly. To do so, select the netlists, right-click on it, Floorplanning, Assign to
Pblock... A possible layout is shown in the next image.

7. Set the following properties to the pBLOCKs:

Then, for each Reconfigurable Module (Checkpoint) to be instantiated in each Reconfigurable Region
of the design, repeat the following steps:

8. Set each Pblock as a Black box

9. Assign the checkpoint (Netlist) of the Reconfigurable Module to both Black_Boxes (First Multiplier.dcp
then Adder.dcp)

set_property RESET_AFTER_RECONFIG 1 [get_pblocks pblock_Top_BlackBox_0]
set_property SNAPPING_MODE ON [get_pblocks pblock_Top_BlackBox_0]
set_property RESET_AFTER_RECONFIG 1 [get_pblocks pblock_Top_BlackBox_1]
set_property SNAPPING_MODE ON [get_pblocks pblock_Top_BlackBox_1]

update_design -cells [get_cells design_1_i/Top_BlackBox_0] -black_box
update_design -cells [get_cells design_1_i/Top_BlackBox_1] -black_box

read_checkpoint -cell design_1_i/Top_BlackBox_0 PATH2TUTORIAL/Multiplier.dcp
read_checkpoint -cell design_1_i/Top_BlackBox_1 PATH2TUTORIAL/Multiplier.dcp

10. Implement the design

11. Generate full bitstreams and store checkpoints (partial bitstreams are also generated)

Now, steps 8 to 11 are repeated for the second set of modules:

8. Set each Pblock as a Black box

8. Preserve Static Routing. This step is not done for the first set of modules, only for the subsequent
implementations to force the tool to keep the static routing decided in the first iteration:

9. Assign the checkpoint (Netlist) of the Reconfigurable Module to both Black_Boxes (First Multiplier.dcp
then Adder.dcp)

10. Implement the design

11. Generate full bitstreams and store checkpoints (partial bitstreams are also generated)

opt_design
place_design
route_design

write_bitstream -force PATH2TUTORIAL/StaticMult.bit
write_checkpoint -force PATH2TUTORIAL/StaticMult.dcp

update_design -cells [get_cells design_1_i/Top_BlackBox_0] -black_box
update_design -cells [get_cells design_1_i/Top_BlackBox_1] -black_box

lock_design -level routing

read_checkpoint -cell design_1_i/Top_BlackBox_0 PATH2TUTORIAL/Adder.dcp
read_checkpoint -cell design_1_i/Top_BlackBox_1 PATH2TUTORIAL/Adder.dcp

opt_design
place_design
route_design

write_bitstream -force PATH2TUTORIAL/StaticAdd.bit
write_checkpoint -force PATH2TUTORIAL/StaticAdd.dcp

12. Verify the design (it may cause the shutdown of Vivado) and save the implementation constraints in the
XDC file

IMPLEMENTING THE SOFTWARE APPLICATION

1. Export Hardware to SDK, without including bitstream. Launch SDK

2. Create a new Application Project, Empty. Import the source file PCAP_Reconfigure.c

3. Modify the partial bitstream files with an hex editor (HxD) to remove the header. We also need to
modify the sizes included by default in the PCAP_Reconfigure.c file depending on the size of the partial
bitstreams.

Add the math library in the options for the gcc linker.

4. Opent the terminal in SDK

5. Download system for debugging. Select the full bitstream Dowload partial bitstreams to memory. In
application, Advanced Options, select the partial bitstream files to be downloaded in the following
addresses:

Further information can be found in:

https://www.xilinx.com/support/documentation/sw_manuals/xilinx2017_3/ug909-vivado-partial-
reconfiguration.pdf

pr_verify PATH2TUTORIAL/StaticMult.dcp PATH2TUTORIAL/StaticAdd.dcp
save_constraints

af://n1706
af://n2282
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2017_3/ug909-vivado-partial-reconfiguration.pdf

	Implementation of Dynamically Reconfigurable Systems using commercial Xilinx FPGAs - Tutorial
	IMPLEMENTATION OF THE RECONFIGURABLE MODULES
	IMPLEMENTATION OF THE STATIC SYSTEM
	IMPLEMENTING THE SOFTWARE APPLICATION
	Further information can be found in:

