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Abstract. In this paper we provide a concise survey of our work devoted to ap-
plying formal methods to check the safety of adaptive cyber-physical systems.

1 Introduction

In the past few years, the notion of cyber-physical system (CPS) emerged to define
complex systems intertwining physical processes, hardware, software and communica-
tion networks. With respect to “classical” embedded systems, CPSs add elements of
complexity including different spatial and temporal scales among components, multi-
ple and distinct behavioral modalities, and context-dependent interaction patterns [1].
When considering adaptive (also reconfigurable) CPSs, we refer to implements capable
of modifying their internal parameters to achieve and maintain a prescribed quality of
service even in the face of a partially unknown and mutating environment. The addition
of “adaptive” remarks the sharp distinction we draw between systems which only re-
act according to prescribed control policies and systems which can learn and/or update
their control policies. While adaptation is a desirable requirement for CPSs in many
circumstances, most CPSs are deployed in applications where misbehavior can cause
serious damage to the surrounding environment, which makes their safety a manda-
tory requirement. Unfortunately, adaptivity and safety are two conflicting propositions:
safety can be increased by reducing the amount of automatic reconfiguration, while
changing internal parameters during operation may yield unsafe control policies.

The vision behind our research is that the trade-off between safety and adaptivity
could be reduced substantially by resorting to model-based design (MBD) techniques
and formal methods. While MBD tools represents a steadily growing area in CPSs the
application of formal methods is still confined to a niche. In our view, the availability
of abstract system models from MBD tools is an enabler for analyzing those models
in a precise way, and since it is impossible to foresee all the potential adaptations of a
system in advance, formal verification is the only practical way to increase confidence
in the correct adaptive behavior of the final implement. The research question is thus
whether verification techniques conceived with non-adaptive systems in mind, can be
borrowed and/or extended to verify (industry-scale) CPSs.

In the following, we divide our attempts to answer such question in two families. In
Section 2 we consider the safety of stateless models, i.e., models whose purpose is to
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approximate functional implements. Our main contributions along this research stream
involve safety of artificial neural networks [2,3,4] and kernel-based machines [5]. In
Section 3 we consider modal models, i.e., representations of dynamical systems. Here
we consider both hybrid systems [6] augmented with adaptive capabilities, and prob-
abilistic systems [7,8,9,10], wherein models of environments and control policies are
acquired through approximate dynamic programming.

2 Stateless models

In applications of CPSs, it is often the case that functional relationships between sys-
tem variables are to be approximated and possibly updated to maintain optimal perfor-
mances. Consider, for instance, the relationship between fuel and air intake in electronic
injection systems. While interpolation of a fixed look-up table might suffice to deter-
mine the correct air intake, an adaptive approach might seek to find the best relation-
ship based, e.g., on fuel quality, air relative humidity, and exhaust gas emissions. Both
neural networks and kernel-based machines — see [4,5] for references — have been
proved very successful in fulfilling these tasks by “learning” accurate mappings from
data. However, in spite of some exceptions, their application is confined to non-safety
related implements. The main reason is the lack of general, automated, yet effective
safety assurance methods for learning systems.

Introduced for the first time in our work [4], verification of neural networks known
as Multi-Layer Perceptrons (MLPs) can be carried out using abstraction-refinement
techniques and Satisfiability Modulo Theory (SMT) solvers. The same approach was
later extended to consider several safety-related conditions in [2], and to consider kernel-
based machines in [5]. The key idea of the approach is that both MLPs and kernel-based
machines are linear combinations of non-linear functions. Therefore, it is sufficient to
abstract non-linear elements in order to obtain abstract machines whose input-output
properties can be checked using quantifier-free linear arithmetic over reals (QF-LRA).
Abstract machines are conservative over-approximations of concrete ones. Therefore,
safety of abstract machines implies safety of concrete ones, whereas abstract coun-
terexamples must be checked for realization — a process branded Counter-Example
Triggered Abstraction Refinement (CETAR) in [4]. To a certain extent, spurious coun-
terexamples can also be used to repair the network, i.e., improve its safety. To the best
of our knowledge, this is the only contribution in the literature where formal methods
are leveraged to improve the quality of a functional approximation.

The results obtained in [2] and [5] show that CETAR based on SMT solvers is
applicable to small-to-medium sized networks. However, recent advancements in the
machine learning community command for much larger and complex networks known
as Deep Neural Networks. While the performances of such networks in terms of pre-
dictive power on a variety of tasks are impressive, they also feature some unexpected
behaviors. For instance, in [1] it is shown that very small perturbations on input in-
stances can cause dramatic effects on output results. This “instability” of deep neural
networks was the inspiration behind recent contributions, see, e.g., [11,12]. In spite of
these recent advancements, the problem of verifying large and complex networks is still
an open question worth of further investigation.



3 Modal models

Modeling CPSs as a whole usually requires modal models. Furthermore, due to the in-
teraction with physical processes, discrete-time finite-state models are not sufficient to
capture all the subtleties of a CPS. Hybrid and/or probabilistic models are to be consid-
ered instead. With respect to the classical tasks of controller verification and synthesis,
such models introduce additional computational issues which might make formal ap-
proaches untenable in practical applications. Adaptivity, i.e., learning parameters and/or
control strategies, thickens the plot even further. Our research has focused on applica-
ble formal methods for verification, synthesis and repair of controllers, considering the
robotic domain as benchmarks for realistic, yet reasonably sized CPSs.

In [6] we considered a robot learning to play defense in the air hockey game. This
setup is paradigmatic since the robot must see, decide and move fastly, but, at the same
time, it must learn and guarantee that the control system is safe throughout the process.
The (multi-agent) control system is comprised of a vision agent devoted to visual per-
ception, a motion control agent sending position commands to the manipulator and a
coordination agent converting stimuli into commands. The parameters of the coordi-
nation agent change over time, possibly improving on the robot’s ability to intercept
the puck. The system is unsafe if the manipulator moves too close to the table’s edges.
Agents are modeled as hybrid automata, and execution traces are checked for safety
with HYSAT [13]. Because of learning, the whole system must be (re)verified even-
tually. The key idea is to preserve safety at all times by keeping safe – and possibly
ineffective – parameters of the coordination agent in place, until a more effective – and
definitely safe – setting is available. Experimental analysis in the air hockey setup shows
that this approach can yield safety without heavily compromising on effectiveness.

In a series of papers started with [9], we considered the problem of synthesizing safe
controllers using probabilistic models. In these works, we assume that the interaction
between the robot and the environment can be modeled as a Markov Decision Process
(MDP), and that a control strategy for the task at hand can be acquired by approximate
dynamic programming — also known as Reinforcement Learning (RL). Here, the focus
is on safety at the deliberative level, enabling a discrete-time, discrete state abstraction
of the problem domain, where probabilistic effects account for noise in sensing and
acting.3 Since RL acquires (an implicit) system model and an (explicit) control strategy
by trial and error, we postulate that learning is performed in a simulator and then the
control strategy is deployed on the actual robot. The key idea is that, given a control
strategy, an MDP becomes a Markov chain so that safety properties can be expressed
using probabilistic temporal logic and verified using model checkers. In [9] we consider
a task wherein a humanoid should grasp some object while avoiding others, whereas
in [8] we consider a standing-up task for a small (19 degrees-of-freedom) robot. In both
contributions we consider both the problem of verifying that a learned control strategy
fulfills some requirements, and the problem of repairing it until it does. Moreover, in [8],
we consider also the problem of monitoring that the (verified, repaired) control strategy
maintains its properties once deployed on the actual robot.

3 It is however assumed that the state can be detected with sufficient precision, i.e., we postulate
full observability.
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