HiPEAC Conference 22nd January 2020, Bologna, Italy

CERBERO: Cross-layer modEl-based fRamework for multi-oBjective dEsign of Reconfigurable systems in unceRtain hybRid envirOnments

CERBERO Overview, Concept and Methodologies Francesca Palumbo Università degli Studi di Sassari

Horizon 2020 European Union funding for Research & Innovation

CERBERO:

Cross-layer modEl-based fRamework for multi-oBjective dEsign of Reconfigurable systems in unceRtain hybRid envirOnments

- Integrated model-based methodology and framework for multi-objective design of Cyber Physical Systems
- Continuous runtime optimization of Cyber Physical Systems by means of (self-)adaptivity strategy

CERBERO Final Event @ HiPEAC 2020

SESSION 1 - CERBERO OVERVIEW

- Advancement on (dataflow) MoCs
- CERBERO Interoperability Framework (CIF)
- Key Performance Indicators
- CERBERO Adaptation Loop
- Formal methods in the CERBERO Toolchain

Practical Work – VMs are available!

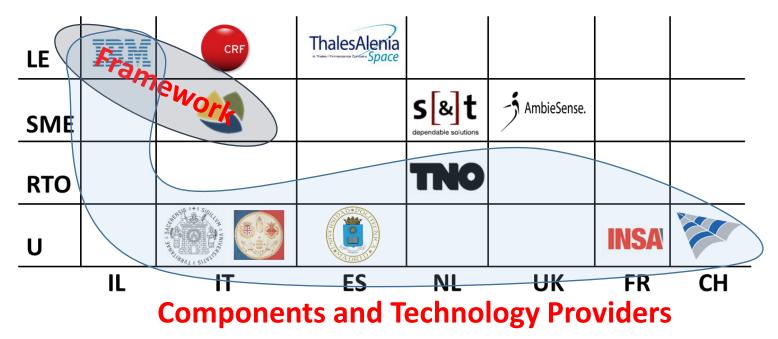
SESSION 2 - HANDS on "CERBERO Interoperability Framework"

SESSION 3 - HANDS on "Adaptation over Heterogeneous Computing Infrastructures"

SESSION 4 - Impact, Demo and Clustering

- The CPSwarm H2020 CPS Project
- Market Trends and Exploitation Potentials for CPS
- Overview of CERBERO demonstrators
 - Self-healing system for Planetary Exploration
 - Smart Traveling for Electric Vehicles, Speakers
 - Ocean Monitoring, Speaker

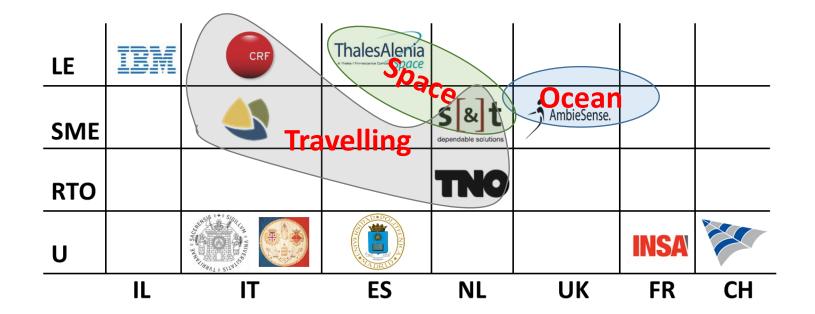
Consortium: 12 partners from 7 countries


Started: January 1, 2017

Duration: 36 months

+ 2 additional months for dissemination and exploitation events

To build Cognitive Cyber Physical Systems

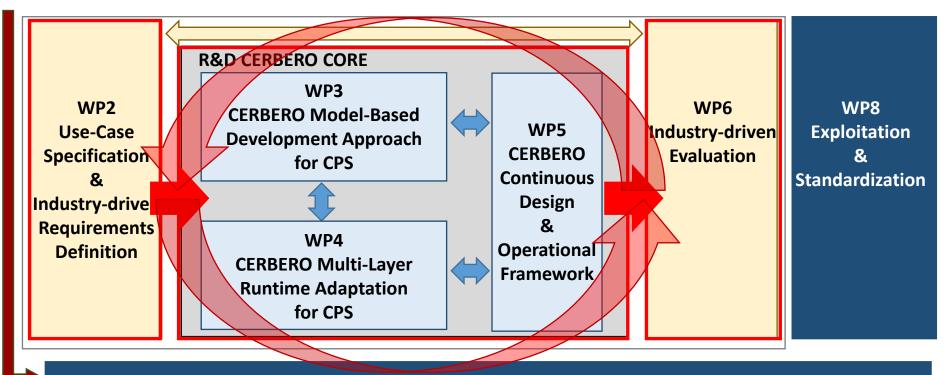

Started: January 1, 2017

Duration: 36 months

+ 2 additional months for dissemination and exploitation events

and evaluate by 3 use cases

Started: January 1, 2017


Duration: 36 months

+ 2 additional months for dissemination and exploitation events

Industry Driven Development Approach

WP1 Project Management

WP7 Dissemination and Communication

CERBERO Use Cases

Self-Healing System for Planetary Exploration:

- Accessing a new technology for computing purposes in Space Applications
 - Controller of a robotic arm implemented over a FPGA.
 - Operation under harsh environmental conditions
 - Self-healing and self-adaptive capabilities

Ocean Monitoring:

- An unmanned vehicle is meant to perform different tasks
 - Information Storage and Information Fusion models
 - Video Enhancement strategies
 - Individual and fleet self-operation, power management and navigation

CERBE

Smart Travelling for Electric Vehicle:

- Improve reactiveness of the electric vehicles to perturbations.
 - Virtual Reality simulated environment for driver support in electric vehicles
 - Highly networked scenario composed of heterogeneous concurrent subsystems
 - Autonomy and support for adaptability

Use Case 1: Planetary Exploration

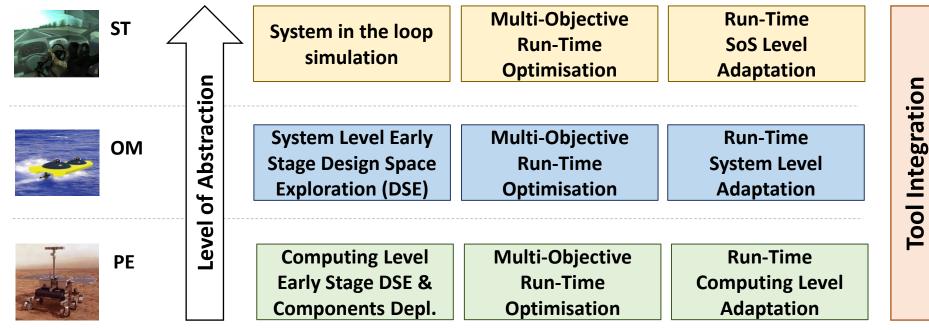
• Challenges:

- Improve computing robustness;
- Enable correction capabilities.

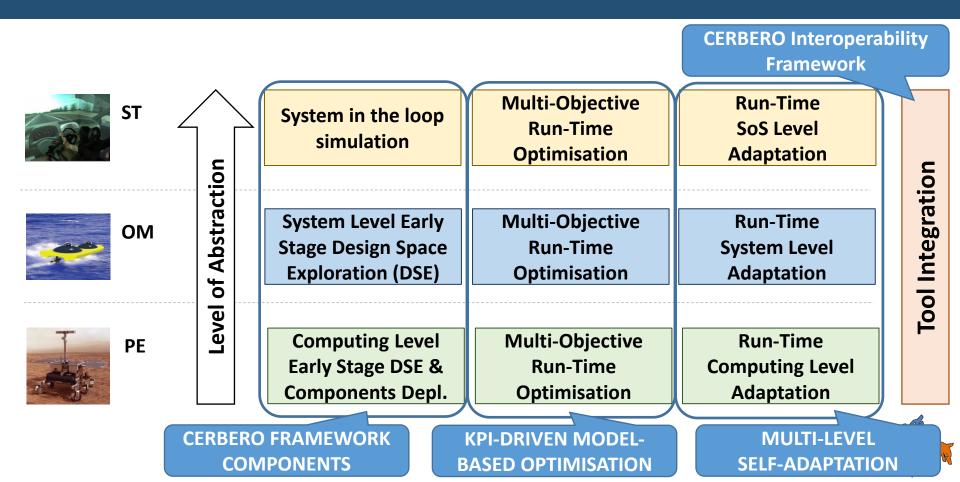
- Infrastructure:
 - Heterogeneous embedded computing platform.
- What is requested to CERBERO:
 - Minimize the designer effort;
 - Computing level (self-)adaptive run-time management;
 - **Trade-off** among resiliency, high performance and energy efficiency.

Use Case 2: Ocean Monitoring

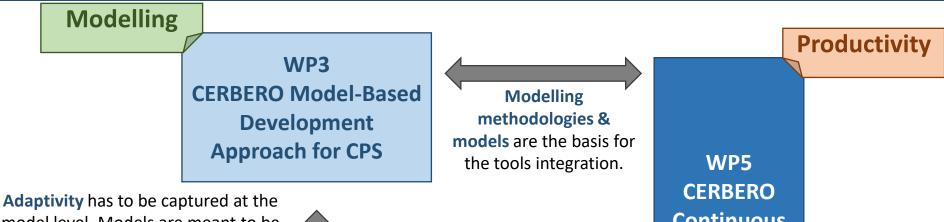
- Challenges:
 - Current solutions are not specific for marine applications;
 - Vision/sensing challenges are not addressed.
- Infrastructure:
 - Smart multi-lenses camera system.
- What is requested to CERBERO:
 - Minimize the effort for system-level analysis;
 - New adaptive image processing methods for video enhancing;
 - System-level (self-)adaptive run-time management.


Use Case 3: Smart Travelling

- Challenges:
 - Incremental development of a reactive and hybrid CPSoS.
- Infrastructure:
 - SoS with physical and virtual components.
- What is requested to CERBERO:
 - Testing different driving experience;
 - SoS (self-)adaptive run-time management;
 - Strong **real-time guarantees** during execution of the tests.



CERBERO Challenges: What



CERBERO Challenges: How

CERBERO R&D core

Adaptivity has to be captured at the model level. Models are meant to be integrated in the self-adaptation manager, to master adaptivity.

WP4 CERBERO Multi-Layer Runtime Adaptation for CPS

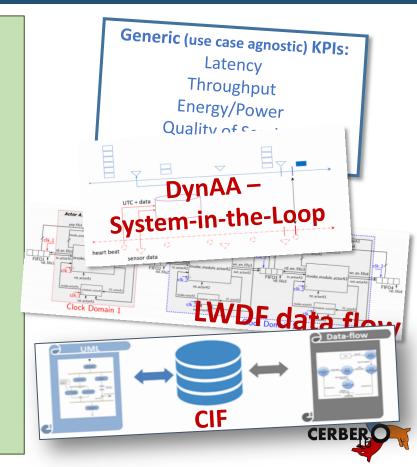
Runtime methodologies have to be supported by

the design environment. Tools aid designers to handle reconfiguration. WP5 CERBERO Continuous Design & Operational Framework

Adaptivity

Modelling CPS

Models of Computation have limits in express adaptive systems and their properties.


Separation of concerns simplifies complexity and heterogeneity, but may lead to miss important cross-domain interactions.

CERBERO R&D Core: Modelling [WP3]

CERBERO major activities & outcomes:

- Classified a relevant set of *generic and re-usable Key Performance Indicators* (KPIs).
- Surveyed/improved *Models of Computation* to access/overcome their features/limitations: focus on adaptivity.
- Semantic integration approach: CERBERO Interoperability Framework (CIF):
 - To make layers talk through KPIs.
 - To improve tools interoperability.

CERBERO R&D Core: Modelling [WP3]

CERBERO major activities & outcomes:

- Classified a relevant set of *generic and re-usable Key Performance Indicators* (KPIs).
- Surveyed/improvement *Models of Computation* to access their features/limitations: focus on adaptivity.
- Integral approach for modelling the different abstraction levels: *CERBERO Cyber-Physical Intermediate Format* (*CIF*):
 - To make layers talk through KPIs.
 - To improve tools interoperability.

RELATED AGENDA SESSION 1:

- Advancement on (dataflow) MoCs
- CERBERO Interoperability Framework (CIF)
- Key Performance Indicators

SESSION 2: HANDS on "CERBERO Interoperability Framework"

Challenge #2

Heterogeneity and Flexibility in CPS

CPS are requested to be reactive and dynamic:

- to adapt to internal and external triggers;
- to satisfy multiple, concurrent and competing requirements.

Self-adaptation is primarily defined and addressed at the software level.

Self-Adaptation

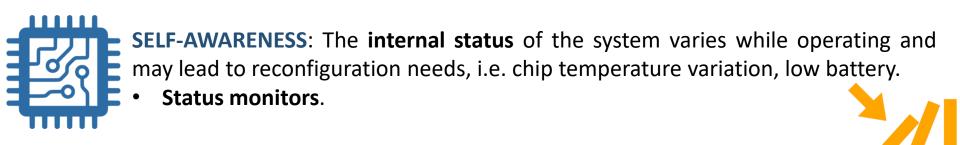
Self-adaptation: *runtime* action *changing structure, functionality and/or parameters of a system,* according to environment, user or self-sensing info.

[F.D. Macías-Escrivá, et al. "Self-adaptive systems: A survey of current approaches, research challenges and applications" In Expert Systems with Applications, 2013]

System self-adaptation: combination of *awareness* and *reconfiguration*.

- Reconfiguration decided *inside the CPS (CPSoS)* by a *self-adaptation manager* (*hierarchy of managers*).
- Decisions taken on the basis of KPI measurements and estimations.

Triggers for Adaptation



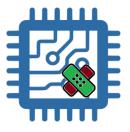
ENVIRONMENTAL AWARENESS: Influence of the **environment** on the system, i.e. daylight vs. nocturnal, radiation level changes, etc.

Sensors.

USER/EXTERNALLY-COMMANDED: **System-User** interaction, i.e. user preferences, commands from SoS managers (the boss), etc.

• Human-machine interfaces.

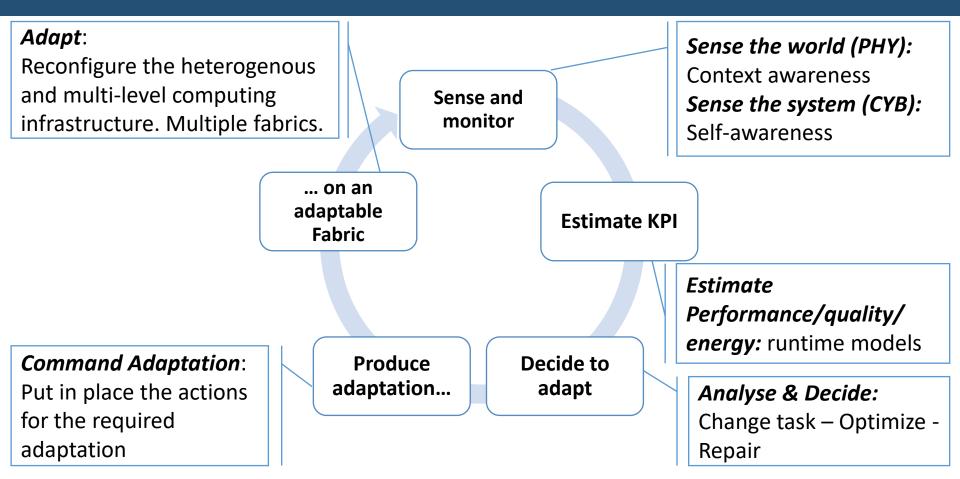
Types of Adaptation


FUNCTIONALITY-ORIENTED:

When the CPS mission or the data being processed change.

EXTRA-FUNCTIONAL REQUIREMENTS-ORIENTED:

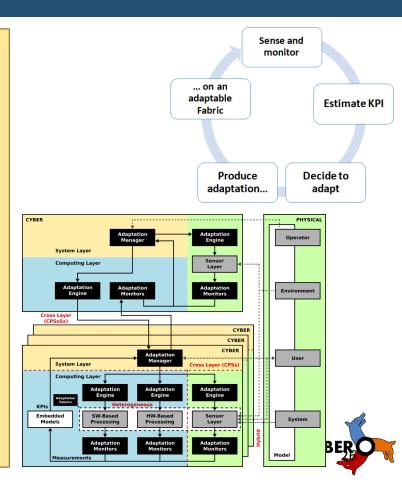
The functionality is fixed, but different performance are required.



REPAIR-ORIENTED:


For safety and reliability purposes, adaptation may be used in case of faults.

Adaptation Loop


Self-Adaptive Multi-Level Infrastructure

CERBERO R&D Core: Adaptivity [WP4]

CERBERO major activities & outcomes:

- Formalization of the **self-adaptation loop**.
- Definition of the **CERBERO Self-Adaptive Multi-Level Infrastructure**.
- Novel approaches at loop components level:
 - monitors, manager, reconfigurable fabric;
 - sensor/Information fusion techniques.

CERBERO R&D Core: Adaptivity [WP4]

CERBERO major activities & outcomes:

- Formalization of the self-adaptation loop.
- Definition of the **CERBERO Self-Adaptive Multi-Level Infrastructure**.
- Novel approaches at loop components level:
 - monitors, manager, reconfigurable fabric;
 - sensor/Information fusion techniques.

RELATED AGENDA SESSION 1:

CERBERO Adaptation Loop

SESSION 3: HANDS on "Adaptation over Heterogeneous Computing Infrastructures"

Challenge #3

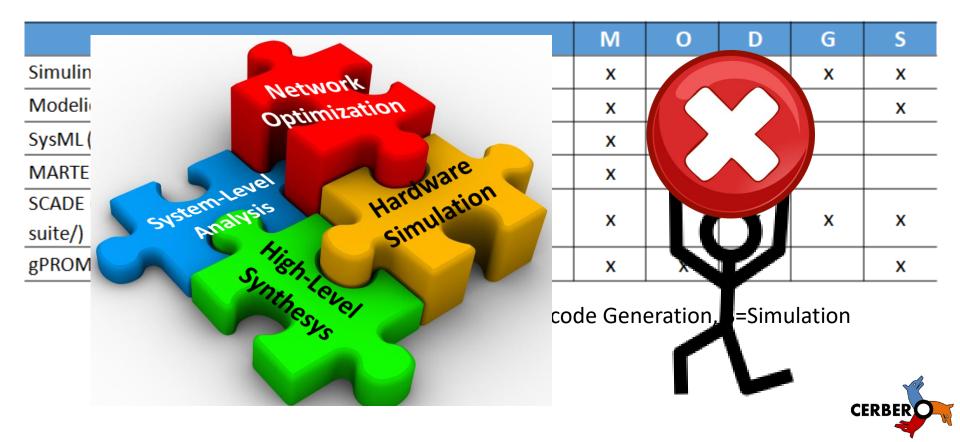
Model-based Engineering and Design Tools

Despite their big promise, model-based frameworks are not as popular as it could be expected.

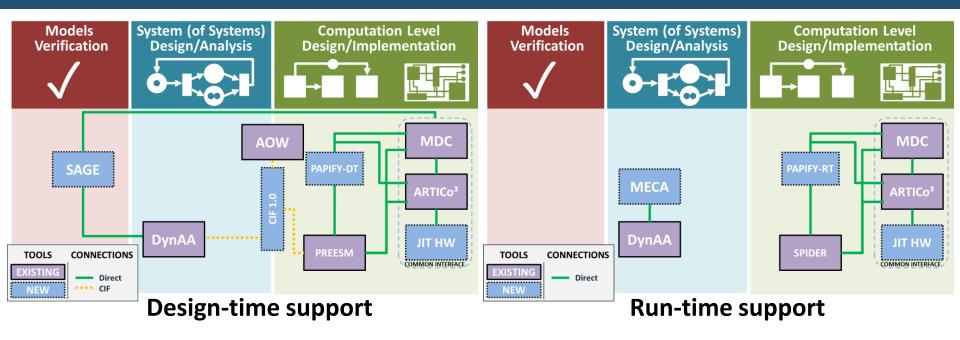
Modeling, maintenance, and interoperability overhead are not addressed in a satisfactory way.

Adaptivity is poorly supported.

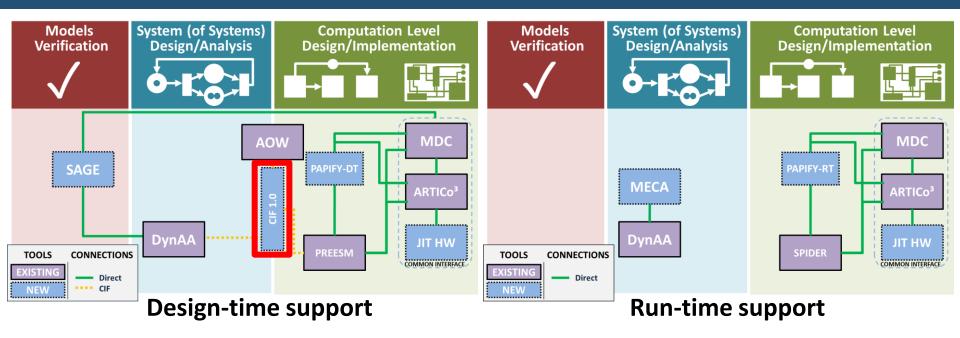
Surveyed tool @ Project Start


	Μ	0	D	G	S
Simulink/Stateflow (www.mathworks.nl/products/simulink)	x		x	x	x
Modelica/Dymola (www.3ds.com)	x		x		x
SysML (www.sysml.org)	x		x		
MARTE (www.omgmarte.org)	x		x		
SCADE (www.esterel-technologies.com/products/scade- suite/)	x		x	x	x
gPROMS (www.psenterprise.com/gproms.html)	x	x			x

M=Modelling, O=Optimization, D=Design, G= code Generation, S=Simulation



Tool Integration Nightmare

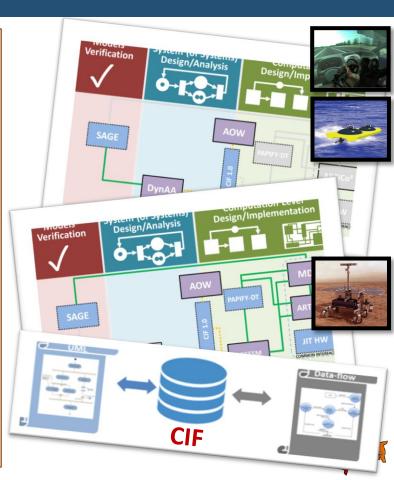


CERBERO Framework

CERBERO Framework – Tool Integration

CERBERO Interoperability Framework

Combination of data or information from multiple heterogeneous sources


Presented to the NBMP Group at the 125th MPEG Meeting.

CERBERO R&D Core: Design Productivity [WP5]

CERBERO major activities & outcomes:

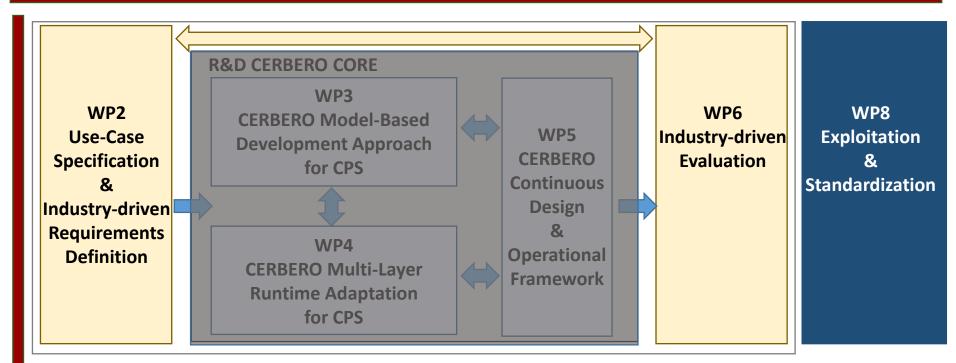
- Use Case needs/targets scouting and Use-case to tool mapping.
- **Design/enhance/develop** components, with special emphasis on adaptivity support.
- Framework Integration.

CERBERO R&D Core: Design Productivity [WP5]

CERBERO major activities & outcomes:

- Use Case needs/targets scouting and Use-case to tool mapping.
- **Design/enhance/develop** components, with special emphasis on adaptivity support.
- Framework Integration.

RELATED AGENDA SESSION 1:


- CERBERO Interoperability Framework (CIF)
- Formal methods in the CERBERO Toolchain

SESSION 2: HANDS on "CERBERO Interoperability Framework"

Industry Driven Development Approach

WP1 Project Management

WP7 Dissemination and Communication

CERBERO Final Event @ HiPEAC 2020

SESSION 1 – CERBERO OVERVIEW

- Advancement on (dataflow) MoCs
- CERBERO Interoperability Framework (CIF)
- Key Performance Indicators
- CERBERO Adaptation Loop
- Formal methods in the CERBERO Toolchain

SESSION 2 - HANDS on "CERBERO Interoperability Framework"

SESSION 3 - HANDS on "Adaptation over Heterogeneous Computing Infrastructures"

SESSION 4 - Impact, Demo and Clustering

- The CPSwarm H2020 CPS Project
- Market Trends and Exploitation Potentials for CPS
- Overview of CERBERO demonstrators
 - Self-healing system for Planetary Exploration
 - Smart Traveling for Electric Vehicles, Speakers
 - Ocean Monitoring, Speaker

HiPEAC Conference 22nd January 2020, Bologna, Italy

CERBERO: Cross-layer modEl-based fRamework for multi-oBjective dEsign of Reconfigurable systems in unceRtain hybRid envirOnments

CERBERO Overview, Concept and Methodologies Francesca Palumbo Università degli Studi di Sassari

Horizon 2020 European Union funding for Research & Innovation [1] M. Masin, et al. Cross-layer design of reconfigurable cyber-physical systems , in Proc of Design Automation and Test 2017

[2] F. Palumbo, et al. Cross-layer modEl-based fRamework for multi-oBjective dEsign of Reconfigurable systems in unceRtain hybRid envirOnments, in Proc of. ACM International Conference on Computing Frontiers 2019