HiPEAC 2020

Adaptive CPS architectures, methods and tools: the CERBERO project January 22, 2020

Formal Methods in the CERBERO Toolchain

Luca Pulina, Università degli Studi di Sassari

Horizon 2020 European Union funding for Research & Innovation

Formal Methods

From aeronautic standard DO-178C: "Descriptive notations and analytical methods used to construct, develop and reason about mathematical models of system behavior. A formal method is a formal analysis carried out on a formal model"

- <u>Mathematically</u> based techniques for the <u>specification</u>, development and <u>verification</u> of SW and HW systems.
- Appropriate mathematical analysis can contribute to the reliability and robustness of a design.

Formal Methods (tools) in CERBERO

- ReqV: automatically check consistency of a set of requirements provided by the user.
- **ReqT**: requirement-based automated test generation.
- HyDRA: automated syntesis of high-level policies.

Open-source implementations (see the CERBERO web site)

CERBER

ReqV

ReqT

- Focus on black-box testing
- The quality of the generated test suite is comparable to the one obtained with MBT
- Formal assurance of the testing coverage

			Te	est Details		🛛	
Test Nui Status:	mber: 1 Succe	SS					
Step #	prod_miss	add_p	iece sta	te_overheat	state_working	new_productio	r
1	F	т	F		т	F	
2	т	F	F		т	F	
3	F Test Report						
4	F				· · · · · · · · · · · · · · · · · · ·		
5	F	N	Result			Trace	
6	۲	1	\odot	[{!g_1, !g_0), !r_0, !r_1}, {!g	_1, !g_0, !r_0, r_	1}, {g_1, !g_0
-	-	2	\odot	[{!g_1, !g_0), r_0, !r_1}, {!g_	1, g_0, !r_0, !r_1	.}, {!g_1, g_0,
		3	\odot	[{!g_1, !g_0), !r_0, !r_1}, {!g	_1, !g_0, !r_0, r_	1}, {g_1, !g_0
		4	\odot	[{!g_1, !g_0), r_0, r_1}, {!g_	1, g_0, !r_0, !r_1	}, {g_1, !g_0,
_		5	\otimes	[{!g_1, !g_0), r_0, !r_1}, {!g	1, g_0, !r_0, !r_1	.}, {!g_1, !g_0
		6	\otimes	[{!g_1, !g_0), r_0, !r_1}, {!g	1, g_0, !r_0, !r_1	}, {!g_1, g_0,
< [7	\odot	[{!g_1, !g_0), r_0, r_1}, {!g_	1, g_0, !r_0, !r_1	}, {g_1, !g_0,
		8	\odot	[{!g_1, !g_0), !r_0, !r_1}, {!g	_1, !g_0, !r_0, r_	1}, {g_1, !g_0
		9	\odot	[{!g_1, !g_0), !r_0, !r_1}, {!g	_1, !g_0, !r_0, r_	1}, {g_1, !g_0
		10		[{]a 1 la 0	r 0 r 1} {/a		\ {a 1 \alla 0

Hydra

Hybrid Trajectory

or Failure Explanation

Domain-independent tool for Goal-Oriented control of Cyber-Physical Systems.

AI Planning + Satisfiability Modulo Theories + Numeric Optimization => derivation of goal-oriented, **correct by construction** strategies from high-level model of Hybrid Systems.

References

- Narizzano, M., Pulina, L., Tacchella, A., & Vuotto, S. (2019). Property specification patterns at work: Verification and inconsistency explanation. *Innovations in Systems and Software Engineering*, 15(3-4), 307-323.
- Vuotto, S., Narizzano, M., Pulina, L., & Tacchella, A. (2019, April). Poster: Automatic consistency checking of requirements with reqv. In *2019 12th IEEE Conference on Software Testing, Validation and Verification (ICST)* (pp. 363-366). IEEE.
- Narizzano, M., Pulina, L., Tacchella, A., & Vuotto, S. (2018, April). Consistency of property specification patterns with boolean and constrained numerical signals. In *NASA Formal Methods Symposium* (pp. 383-398). Springer, Cham.
- Vuotto, S., Narizzano, M., Pulina, L., & Tacchella, A. (2019, May). Automata based test generation with SpecPro. In *2019 IEEE/ACM 6th International Workshop on Requirements Engineering and Testing (RET)* (pp. 13-16). IEEE.
- Bit-Monnot, A., Leofante, F., Pulina, L., & Tacchella, A. (2019, July). SMT-based Planning for Robots in Smart Factories. In *International Conference on Industrial, Engineering and Other Applications of Applied Intelligent Systems* (pp. 674-686). Springer, Cham.
- Bit-Monnot, A., Pulina, L., & Tacchella, A. (2019, July). Cyber-Physical Planning: Deliberation for Hybrid Systems with a Continuous Numeric State. In *Proceedings of the International Conference on Automated Planning and Scheduling* (Vol. 29, No. 1, pp. 49-57).