Hands On: The CERBERO Design Flow for
Adaptive Heterogeneous Embedded Systems

This tutorial aims at teaching how to use the CERBERO toolchain for porting an application on
a heterogeneous embedded architecture, embedding hard-cores and an FPGA substrate. The leveraged
example hardware is a Xilinx Zynq board and the chosen educational application is an image edge
detection filter. The CERBERQO toolchain demonstrated in this tutorial is composed of:

e ARTICo® (https://github.com/des-cei/artico3): an open source tool for automating hard-

ware acceleration over reconfigurable logic regions on an FPGA,

e MDC (https://github.com/mdc-suite): an open source tool for managing coarse grain reconfig-

uration of dataflow hardware-ported applications,

e PAPIFY (https://github.com/Papify): an open source tool for live performance monitoring on

parallel and heterogeneous systems,

e PREESM (https://github.com/Preesm): an open source tool for dataflow application design and

parallel systems programming.

The following tools are also used as back-end code production tools in this tutorial:

e The CAPH Compiler (http://caph.univ-bpclermont.fr)): an open source tool for generating
RTL from the higher-level CAPH language,

e The Open RVC-CAL Compiler (https://github.com/orcc): an open source tool for generating RTL
from the higher-level CAL language,

e The Xilinx Vivado design suite for generating FPGA bitstream and programming the target board.

These different tools are integrated for providing seamless porting of dataflow applications to het-
erogeneous hardware. One may note that the tools developed in this tutorial are only a part of the
CERBERO project tooling.

The procedure to follow for building an adaptive system with the demonstrated CERBERO design

flow is:

e Design static versions of your dataflow applications (i.e. with fixed parameter values and fixed
topology) with either PREESM for coarse-grain dataflow actors or CAPH for small-grain, hardware

optimized dataflow actors.
e Exploit PAPIFY performance monitoring to observe the resulting system performance.

e Exploit ARTICo® and MDC reconfigurable hardware management capacity to enhance system

performance and safety.

The tutorial is divided into three parts. In the first part, a dataflow-based application, developed
using PREESM, is shown and explained. PREESM is in charge of automatically dispatching jobs among

available hardware resources (CPUs and/or FPGA slots). A second part shows how to generate and

https://github.com/des-cei/artico3
https://github.com/mdc-suite
https://github.com/Papify
https://github.com/Preesm
http://caph.univ-bpclermont.fr

automatically instrument code in order to monitor the whole hardware infrastructure by using PAPIFY.
In a third part, we create a hardware accelerator with the MDC tool which is compliant with the
ARTICo® processing architecture. The system bitstreams are created using Xilinx Vivado, invoked by
the ARTICo® toolchain.

1 Hardware/Software Model-Based Design for Design Space
Exploration and Code Generation

In this part of the tutorial, we observe how to design an application and model a hardware architecture
for design space exploration and code generation purposes. The application is described with the dataflow
model of computation named Parameterized and Interfaced Synchronous DataFlow (PiSDF), and within
the PREESM tool using a graphical user interface. The architecture is also modeled graphically with the
System-Level Architecture Model (S-LAM). The main idea of these models is to make them coarse grain
and minimal for system-level decisions. A scenario ensures PiSDF and S-LAM models independance,

gathering information that relates to both.

1.1 PiSDF Application Design

The educational considered application is an edge detection application combining two different algo-
rithms: Sobel image filtering and Roberts image filtering.

The algorithm description is based on a dataflow MoC optimized for expressing predictable concur-
rency. The PiSDF MoC is a graph that connects Actors and Parameters through FIFO and Parameter
dependency links. Processing is triggered by data arrival and data rates and actor firings can be impacted

by parameter value modifications.

1. Open PREESM:
Within the folder:
> /home/embedded/Desktop/preesm-3.17.0.201909161224-1inux.gtk.x86_64/
open PREESM by double-clicking on

> eclipse

2. Import the template project:
The project created for this tutorial is located within the folder
> /home/embedded/Desktop/preesm_project/tutorial

In the > Project Explorer panel, click on the > Import projects.

Then, in the appearing wizard window, select:

> General > Existing Project into Workspace > Next

Select root directory:
> /home/embedded/Desktop/preesm_project/tutorial/tutorialSummerSchoolFixedTile

and press OK and Finish:

Within the Algo folder, the algorithm is described with a PiSDF compliant graph. Within the
Archi folder, the hardware architecture is described with an S-LAM compliant graph. Information

Import Projects —

Select a directory to search for existing Eclipse projects. 7

. Selectrooldirectory:‘)jmport utorialSummerSchoolFixedTile[’82 H Browse... ‘
Select archive file: E| Browse...

Projects:

Options
Search for nested projects
Copy projects into workspace
Close newly imported projects upon completion

©) ‘ < Back | Next > ‘ Cancel | Finish

Figure 1: Select Project

on models semantics can be found on the PREESM web pageﬂ

3. Open the PiSDF application description: Within the folder > Algo, double click on the .diagram
file: the PiSDF of the image processing algorithm will be displayed (Fig. [2). The application is
composed of a pipeline of actors with data parallelism introduced by applying image filtering per
tile of the input image. Note that much larger applications are available on https://github.com/
preesm/preesm-appsl

4 -

rpm—————

- -asg=========z3s,

Filter Merge ‘Save_Image
~>1 - >{> FILTER_FUNCTION -~ width 1> with
= *>LRUN_TIMES V- 5Eheight “=3>Lheight
UT_PIXELS_TILE ~==>>width_tie_frame image
~>{50UTPUT_PIXELS_TILE *== > height_tile_frame
-1 portd port2| input output
——>1 portL

Figure 2: PiSDF representation of the image processing algorithm.

1.2 S-LAM Architecture Modeling

The specific platform to be used to test the application, in our case the Xilinx Zynq FPGA of the Xilinx
Pynq board together with ARTICo? slots, is modeled using S-LAM abstract architecture modeling. This

model serves as an input for the mapping and scheduling of the application onto the architecture.

1. Open the S-LAM: Within the > Archi folder, double click on the file ARTIC0o3_4.slam file: the

1htt:ps ://preesm.github.io/

https://github.com/preesm/preesm-apps
https://github.com/preesm/preesm-apps
https://preesm.github.io/

S-LAM model of the computing platform is displayed (Fig. . It is composed of a hardware core

and four ARTICo?® slots supporting dynamic partial hardware reconfiguration.

shared_mem

shared_mem

Figure 3: Architecture: one CPU and four ARTICo? slots.

In Fig. 3] the blue boxes are Processing Elements (PEs) and the pink boxes are communication
facilities of our architecture. The board used for the tutorial is a Pynq equipped with a Zynq device.
The device is composed by two ARM Cortex-A9 and a Xilinx FPGA. In the tutorial S-LAM model,
one CPU core is modelled (Core0), as well as four ARTICo® slots (from Slotl to Slot4). These

numbers can be easily extended to improve system performance.

2. The S-LAM model can be graphically modified to report architecture modifications. Each PE
is related to a code generation back-end within PREESM and libraries must be integrated that

support message passing inter-PE communication.

PREESM gives the possibility to specify the nature of the PEs within the S-LAM model in order to
describe heterogeneous systems. In this case, by choosing a PE and selecting the tab > Properties >
Basic on the bottom of the screen (Fig. |4):

Within the > definition, it is possible to set the PE to:

e ARM: it generates software code ready to be compiled and executed upon an ARM CPU over a
Linux support.

e Hardware: it generates code ready to be compiled to communicate with the corresponding ARTICo?
hardware slot. The resulting system will offload processing into the FPGA logic side and make use
of ARTICo? hardware acceleration.

S| Properties 82 | ¥=| Tasks [:_ Problems B Console

Custom Parameters Property Value
; definition Hardware
Basic ;
hardwareld '3
id Slott
refinement :

Figure 4: Properties tab on the bottom of the screen.

Other types of PEs are natively supported, such as x86 cores. New PE types can be created if
related code generation and communication libraries are introduced. In the tutorial, an S-LAM model
is proposed with one CPU and four ARTICo® slots (Fig. |3).

1.3 Scenario

The Scenario is the third input to the mapping and scheduling within PREESM. It aims at separat-
ing algorithm concerns from architecture concerns and contains information such as: optional affinity
(constraints) for actors, forcing their execution on specific PEs, data size for the communication First-In-
First-Out (FIFO) queues, timing of actor firings, etc. A detailed explanation of all the features available
in the Scenario can be found online?]

Let us open the scenario: in the Project Explorer tab, double click on:

Scenario > pyng4slot.scenario.

as shown in Figure

Let us now set up the input files for the PiSDF and the S-LAM by clicking on Browse and by choosing:
- PiSDF : FixedTileSize.pi

- S-LAM : ARTICo3_4.slam

2 ARTIC03_4.5lam [#] pyngdslots.scenario 82

Overview

~ Algorithm file path

Enter a file path that contains the algorithm
Editfile JjtutorialSummerSchoolFixedTile/Algo/FixedTileSize.pi

|Br0wse|

= Architecture file path

Enter a file path that contains the architecture
Editfile | /fwutorialsummerSchoolFixedTile/Archi/ARTICo3 4.slam

|Br0wse|
Figure 5: Scenario overview.

Details of the tab > PAPIFY are going to be analyzed in a subsequent section of the tutorial. Let us

2https ://preesm.github.io/tutos/

https://preesm.github.io/tutos/

focus the attention on the tab > Constraints as highlighted in Fig. [G}

T FixedTileSize Z ARTIC03_4.slam [#] pyng4slots.scenario 23
Constraints

= Constraints file path

Enter a excel file (xs) path that contains timings with task names in the first column
the next columns. Operators with timings will be automatically added to the constrair
timings will be removed from the constraints.

Edit file

f]

~ Constraints

The constraints precise which task can be executed on the given operator.

Core0 v

w] FixedTileSize
["] Read_Image
[] Save_Image

[Tiling
["] Merge

Overview | Constraints | Timings | Simulation| Codegen| Parameters| PAPIFY| Energy‘

Figure 6: Scenario in PREESM.

In this tab, we can assign a specific actor (or a set of actors) firings to a specific PE (or a set of specific
PEs). Keep in mind that you can execute on the FPGA only actors which behaviour has been previously
synthesized and implemented using Vivado. Indeed, this part is external from PREESM. Conversely,
actors can be moved to software, provided that C code for internal actor behavior is provided.

Having designed only the hardware accelerator for the Filter actor, let us set the Constraints as follow:
- CoreO: select all actors executions

- Slot1: select just Filter

- Slot2: select just Filter

- Slot3: select just Filter

- Slot4: select just Filter

Using such configuration, some instances of the filter can also be executed in software, based on

automated resource mapping decisions.

Computing the Gantt chart of execution
- Within PREESM, right click on Codegen.workflow available in Workflows folder
- Click on Preesm > Run Workflow

- Select pyng4slots.scenario from tutorialSummerSchoolFized Tile/Scenarios folder

The Gantt chart displays, as a prediction of future execution times and synchronization.

1.4 Early Design Space Exploration

It is possible to change the parameter values on the PiSDF, the S-LAM and/or the Scenario and execute

the workflow many times and explore design. As a rule of thumb, PREESM workflow executions remain

under a few minutes for a number of actors firings limited to a thousand. After the execution of the
generated code on the target device, the consequence of the changing can be observed and collected, thus

providing Design Space Exploration (DSE) possibilities.

As an example, in the scenario, constraints can be put to manually invalidate hardware accelerators.
These design space exploration steps are labelled as 0 to 4 in Figure The next presented steps
will build a more advanced profiling-based DSE, exploiting hardware system generation and performance

profiling.

2 System Performance Monitoring Setup

As an overlay of the PAPI (Performance Application Programming Interface) libraryﬂ PAPIFY makes
it possible to observe different events through different Performance Monitoring Counters (PMCs). The
PAPIFY configuration steps consist in choosing the events of interest, among the ones offered by the
platform. The ARTICo® and MDC hardware support offer different PMCs and the software stack to
observe their related events.

Monitoring Configuration
The configuration of the system monitoring is done in the PAPIFY tab of PREESM, in the scenario file.

The resulting configuration is shown in Figure

1. Import monitoring info if it is not already done
- Click on Browse button
- Select PAPI info.xml available in tutorialSummerSchoolFizedTile/Code

2. In PAPIFY PE configuration, associate PAPI components with PE types
- perf_event—x86

- artico8— Hardware

3. In PAPIFY actor configuration, associate PAPI events with actors
- Select timing event for every actor
- Select PAPI L1 DCM event for every actor
- Select artico3:::MDC CLOCK CYCLE event for every actor

The monitoring configuration to be used will be selected automatically during the application execu-

tion.

3 Creating Hardware Accelerators with DPR and CGR

The PiSDF graph designed in PREESM is a dataflow representation of the algorithm at a coarse gran-
ularity: each actor firing thus comprises a large set of operations, processing large data. Conversely,

hardware offloading requires a fine-grain dataflow representation of the algorithm to be offloaded to

3https: //icl.utk.edu/papi/

Identification
(of HW functions N\
0]

Application |
Parameters N

: PiSDF
Mapping /
SCheduIing & PREESM

Ger?olii'o driven
g‘, cration feedback o
N °°

\—,.[Hardware Accelerators
3 Synthesis (MDC + A3) 1 |
‘ System g
' y 3
A@ DDE%@ Generation ‘
R For v, o
i 0 Q)
\ y) |

i Platform

3

)

Automate
Profiling

Desig
Constraints

Figure 7: Flowchart of Profiling-based DSE: three different inputs are provided to the Mapping/Scheduling
algorithm of PREESM. The architecture description of the targeted platform (S-LAM), the PiSDF de-
scription of the application and the scenario containing the constraints linking the two. After the
Mapping/Scheduling part, PREESM generates compilable code within few seconds. Then, the ARTICo3
toolchain performs system generation taking as inputs the MDC verilog code of the accelerators. An
instrumented run of the application is performed with automated profiling and tests. If the design
constraints are satisfied then the DSE is finished, otherwise the provided feedbacks are used to modify
parameters in either of the inputs.The figure describes a DSE as presented here.

HW. This is supported in MDC through CAPH and CAL languages. Transformations from coarse-grain
dataflow to hardware has been considered in CERBERO but kept out of this tutorial that puts focus on
the highest possible degree of system adaptivity.

The hardware datapaths and HDL component libraries for supporting the demonstration application

have been created using the CAPHE| dataflow high level hardware design tool. They implement the firing

4http://caph.univ-bpclermont.fr

https://doi.org/10.1016/j.micpro.2019.102882
http://caph.univ-bpclermont.fr

[2] pyngdslots.scenario 53 = 0
PAPIFY
- PAPIFY file path - PAPIFY PE configuration
Enter an xml file path that contains the output of the papi_xml_event_info command executed Each SLAM processing element instance needs to be associated with its corresponding PAPI
within the target platform. PAPL components and their associated events will be automatically component
added to the selection options. e e x86 Hardware
Edit file JtutorialsummerSchoolFixedTile/Code/PAPLinfo.xml
perf_event V’ YES b4 NO
Browse artico3 ® NO 4 YES
~ PAPIFY actor configuration
Each actor needs to be associated with its corresponding event(s)
Actor name \ Event name Timing PAPI_L1_DCM PAPI_L1_ICM PAPI_TLB_DM PAPI_TLE_IM PAPI_HW_INT
FixedTileSize W YES W YES ® NO ® NO ® NO ® NO
Read_Image 4 YES 4 YES ® NO ® NO ® NO ® NO
Save_Image 4 YES 4 YES ® NO %® NO ® NO ”® NO
Filter W YES W YES ® NO ® NO ® NO ® NO
Tiling W YES W YES ® NO ® NO ® NO ® NO
v 4 ® ® ® ®»

+ KPI estimation based on PAPIFY

Overview | Constraints | Timings | Simulation | Codegen | Parameters | PAPIFY | Energy

Figure 8: PAPIFY configuration in the scenario tab of PREESM.

of the hardware ported actors.

Starting from the two dataflow descriptions of an image filter: a Sobel filtering variant and a Roberts
filtering variant of the application, the MDC tool merges them in a multi-dataflow one with automated
coarse-grain reconfiguration. The resulting application can switch dynamically between the two alterna-
tives, according to useful information, i.e. performance requirements. Such a coarse grain reconfiguration

support extends to complex datapaths with thousands or more parameters combinations.

In the advanced hardware setup underlying this tutorial, ARTICo® dynamically reconfigurable hard-
ware kernels themselves embed Coarse-Grain Reconfigurable (CGR) computing logic generated by MDC.
The rationale behind combining CGR with MDC and Dynamic Partial Reconfiguration (DPR) with
ARTICo? is that CGR offers clock-cycle-time reconfiguration between two datapaths but hardware reuse
is partial, while DPR offers millisecond-scale reconfiguration with total hardware reuse. In the tutorial
application, DPR manages different tiles of the input image, thus exploiting data parallelism, while CGR
switches between Sobel and Roberts filters.

ARTICo® Kernel Generation with MDC-powered CGR inside.
To use the coarse-grain reconfigurable code generated by MDC within an ARTICo® compliant kernel,
one needs to use the following procedure. MDC is a datapath merging tool compatible with several code

generations and technologies, hence requiring configuration.

1. Launch MDC executable, placed in folder /home/embedded/Desktop/MDC_CPS/MDC_tool/eclipse.

2. Check the project.

If not present in the workspace, import Tutorial_EdgeDetection project:

10

> File > Import... > General > Existing Project into Workspace

Browse to /home/embedded/Desktop/MDC_CPS/MDC_input/Tutorial_EdgeDetection, then:

> 0K > Finish

Here we can browse and check (double click) the input dataflows to be used: > Tutorial_EdgeDetection
> src > edgeDetection > roberts.xdf and > Tutorial_EdgeDetection > src > edgeDetection
> sobel.xdf.

3. Open and check the run configuration as follows:
> Run > Run configurations...

then Select "Tutorial EdgeDetection" under Orcc compilation on the left menu.

4. Check the following compilation settings, as shown in Figure
Name: name for the configuration (for instance "Tutorial EdgeDetection")
Project: "Tutorial EdgeDetection"
Backend:
- Select a backend: MDC
- Output Folder: /home/embedded/Desktop/artico3/demos/mdc_monitors
Options:
- "List of Networks to be Compiled and Merged" ticked
- Number of Networks: 2
- XDF List of Files: "edgeDetection.roberts, edgeDetection.sobel"
- Merging Algorithm: EMPIRIC
- "Generate RVC-CAL multi-dataflow" ticked with "DUMMY" as "CAL type"
- "Generate HDL multi-dataflow" ticked
- Protocol file: MDC_CPS/MDC_input/protocol/protocol _CAPH.xml
- HDL component library: MDC_CPS/MDC_input/HDL_compLib (this folder must contain all the nec-
essary HDL files)
- "System Generation" ticked
- "ARTICo® Backend" ticked (see Fig. E[)

- "Enable Monitoring" ticked with the last three monitors selected

5. Select Apply and choose Run.

- Generated files within MDC workspace will appear as soon as the > Tutorial_EdgeDetection >
src folder is refreshed. A new sub-folder with the date and hour of the run is created, containing
the combined reconfigurable dataflow (multi_dataflow.xdf) that can checked with a double click.
- Generated files outside MDC workspace are located in the specified output folder. In particular
the src/ sub-folder includes all the necessary files to create the PAPIFY-monitored and ARTICo3-
compliant CGR accelerator, while mdc-papi_info.xml describes the PAPI configurations of the
MDC accelerator.

System Implementation
- input: HDL files generated by the MDC framework

11

3
ARTICo? slot wrapper MDC generated IP
Accelerator Wrapper] Configuration registers
Ropistor 0 General Purpose o reg slvo General Purpese

5 Register #1 Registers M, e reg_slvi Registers

H Register 2 1)3 T reg_sivZ :

:E 1 Register 8N-1 E‘ . T reg_sIv(M-1)

&

E Kernel “E Local Memory

H A | Momary Bank#0 | Bk, Custom Logic H Ao | lacal memory 0 | By Fre

&

& nasress o] Ar| Memory Bank#1 | By -—-: @ 5 A | 1ocal_memory 1 | B,

3 A |ension 5 =l

1= Logic a x

E ’ H £ < |2 | — Back-end

.—.|A,_,| Memary Bank #2°1 | By he—s]= Ara| local_memory_2°-1 | By |rreni= i
L e

Accelerator Wrapper

Register #0 General Purpose
- Register #1 Registers
we Regster #2 i
od ! Register #M-1

e A; | Memory Bank #0

Address [Ay | Memory Bank #1
fe—»] A |Transiation
Logic

I
~4|Ar.. Memory Bank #2"-1 Bz_1|<—>

Figure 9: MDC accelerator in a ARTICo3-slot wrapper. By choosing the option "ARTICo® Backend", the
MDC design suite is able to generate an ARTICo3-compliant accelerator that makes possible the use of
the new CGR accelerator within the ARTICo® hardware structure on the FPGA.

I v | v ¢ + v ¥
ARTICo® P2P Interconnection

- output: bitstreams of the synthetized system

Let us run the synthesis and the bitstream generation by using the ARTICo® toolchain and a config-
uration file build.cfg.

This file can be created ex novo with the option shown in the Fig[IT] but there is one located in the
output folder /home/embedded/Desktop/artico3/demos/mdc_monitors, for tuning the option depend-

ing on one’s specific needs.

1. Open a terminal in the output folder (/home/embedded/Desktop/artico3/demos/mdc_monitors)

in which next commands will be launched.

2. Set up the ARTICo® enviroment by running:
$ source /home/embedded/Desktop/artico3/tools/setting.sh

3. Generate the RTL system:
$ a3dk
$ export_hw

4. Build the system (we are going to SKIP THIS STEP during the tutorial for timing reasons):
$ build_hw

12

Tuterial_EdgeDetection

Tutorial_EdgeDetection I

|' |
Brome..

edgeDetectionroberts, edgeDetectionsobel |

/home/embedded/Desktop/MDC_CPS/MDC_input/protocol/protocol CAPH.xm | | |
/home/embedded/Desktop/MDC_CPS/MDC_input/HDL_compLib || |

Figure 10: Compilation settings as in the MDC GUI

The bitstream is created (the blue part highlighted in Fig in the folder . . ./mdc_output/build.hw/bin/.
At this point, bitstreams should be moved upon the target device OS: ARTICo® runtime functions will be

in charge of managing the FPGA reconfiguration. All the necessary steps are detailed on the ARTICo®
website?]

Optional:

qhttps ://des-cei.github.io/tools/artico3/tutorials/setup#execute- on—target—platforml

https://des-cei.github.io/tools/artico3/tutorials/setup#execute-on-target-platform

13

build.cfg *

1 FE[Generall

2 Name = MDC_filters

3 TargetBoard = pyng,c

4 TargetPart = xc7z020clg480-1
5 ReferenceDesign = mdc

6 Target0sS = linux

7 TargetXil = vivado,2017.1

8 CFlags = -03

g L

18 H[A3Kernel@CGR_accelerator]
11 HwSource = verilog

12 MemBytes = 49152

13 MemBanks = 3

14 Regs = 8

15 RstPol = low

16 S

Figure 11: Configuration File Options

Control Bus [AX]|4-Lite)

J Scrubber |
E
i | Registers |
?{ Shuffler [] Accelerator
: . Local Logic
3 c Memory
2 9
@ i =
= c Registers
g 2 2 e E Accelerator
v ° = o = [« . Local Logic
H L o |8 5| |¢ oy
@ -g c >° = = Memory
£ o W s
] « = e o 0
Flash - | Registers |
Accelerator
Performanc Fault . Local Logic
Monitor Monitor Memory
SRAM-Based FPGA

Figure 12: ARTICo? architecture structure on the FPGA. The ARTICo® framework is capable of automati-
cally generating the whole system making the FPGA slots available and manageable through High-Level
sotfware APIs. In the proposed tutorial, the Accelerator Logic is created by using the MDC design suite.

In order to connect the PYNQ board to a PC, two options are available for the tutorial:
1. Using a serial connection using the Port USB1 with a Baud Rate of 1152001?_;]

2. Using the Ethernet port of the PYNQ board connected to your Local Area Network (LAN (or

6Teraterm and Putty are two options among many for connecting to the serial port.
7https ://www.wikihow.com/Create-a-Local-Area-Network- (LAN)

https://www.wikihow.com/Create-a-Local-Area-Network-(LAN)

14

directly to your PC with a cable). The Pynq board can be set up with a static IP:
$ ifconfig ethO 192.168.0.xxx

To have access to the PYNQ OS command line, please use the ssh protocol:

$ ssh linaro@192.168.0.xxx

If you want to have full access to the PYNQ Filesystem, a convenient option is to use the Ubuntu’s File

Manager and the sftp protocol as shown in Figure

> tmp - File Manager - + X
{ File Edit WView Go Help

& A A& || sfpir92.1680000x A

DEVICES Name

Figure 13: Ubuntu’s File Manager to navigate the Pynq Filesystem

4 System Generation and Execution, and Performance Pro-
filing

Code Generation under PREESM
- Within PREESM, right click on Codegen.workflow available in Workflows folder
- Click on Preesm > Run Workflow

- Select pyng4slots.scenario from tutorialSummerSchoolFizedTile/Scenarios folder

Compile and Execute on Pynq Board

- Copy on the Pynq board the complete tutorialSummerSchoolFizedTile/generated/Code folder
- Compilation and execution set up: source compile_and_setup.sh

- Go to execution directory: cd /home/linaro/mdc_summer_school/bin

- Execute the application: ./summerSchoolFixedTile

Profiling analysis with Papify-Viewer

- Open the folder in which Papify-Viewer is installed:

cd /home/Desktop/papify/PapifyViewer

- Launch PAPIFY-VIEWER tool: python PapifyViewerDynamic.py
- In Choose Folder option, select the papify-output folder

e If you have a PYNQ board the folder is /home/linaro/mdc_summer_school/bin/papify-output
e If you do not have a PYNQ, there is a papify-output folder in /home/Desktop/papify-output

- Select Cores fized option to visualize the application timing execution. The result should be equivalent
to the one shown in Figure

Core0

Slot4

Figure 14: PAPIFY-viewer resulting Gantt charts.

15

FixedTileSize/Filter I
FixedTileSize/Merge I
FixedTileSize/Read_Image I
FixedTileSize/Save_Image l

FixedTileSize/Tiling I

	Hardware/Software Model-Based Design for Design Space Exploration and Code Generation
	PiSDF Application Design
	S-LAM Architecture Modeling
	Scenario
	Early Design Space Exploration

	System Performance Monitoring Setup
	Creating Hardware Accelerators with DPR and CGR
	System Generation and Execution, and Performance Profiling

