

CERBERO Scientific Highlights

Innovation on Models of Computation and Architecture

INSA-UPM-UNISS Contributions

Horizon 2020 European Union funding for Research & Innovation

Model of Computation

a.k.a. programming paradigm

Definition:

• Set of operational elements that can be composed to describe the behavior of an application.

→ Semantics of the MoC

Objective:

- Specify implementation-independent system behavior.
- Ease specification, (parallel) implementation, and verification of system properties.

How:

• MoCs act as the interface between computer science & mathematical domain.

• CERBERO Tools are Model-Based from the Start

		Dataflov	v MoC	S					
	SDF	PiSDF	KPN	DPN	ΡΝ	RTL	DES	SCE	TS
MECA								~	
VT									 ✓
DynAA			V		~		~		
AOW	V								
PREESM	~	v							
SPider		V							
PAPIFY		V		 ✓ 					
JIT HW						~			
ARTICo³		v				~			
MDC	~	V		V		V			

Table from D3.2 – Models of Computations

Innovation Drivers: CERBERO Requirements

- Increase the level of abstraction for HW/SW co-design.
- Support cross layer interoperability between tools.
- Foster performance-aware design (KPI-based).
- Provide development tools for adaptive systems.

What's new from CERBERO?

- Dataflow Extension for Persistent State Representation
- Modeling Periodic Real-Time Constraints in the SDF Model
- PiSDF MoC Extension through Polyhedral Transformations
- Numerical Representation of Directed Acyclic Graphs
- Models of Architecture

Dataflow Extension for Persistent State Representation

Motivation: Persistent State Specification

- Poorly captured by stream-processing MoCs.
- Indispensable for computer vision or machine learning.

Contribution: Meta-Model for Dataflow MoCs

• Extends semantics with explicit delay initialization & hierarchical persistence.

Modeling Periodic Real-Time Constraints in the SDF Model

Motivations:

- Needed for KPI-oriented design.
- Needed for real-time CPS design with fixed sensor sampling rates.

Contribution:

- Semantics for specifying periodic constraints for <u>some</u> dataflow actors of a graph.
- Necessary conditions for checking constraints validity and schedulability.
- Scheduling algorithm enforcing the specified constraints.

PiSDF MoC Extension through Polyhedral Transformations

Motivations: Intra-actor optimization

Missed optimization opportunities in compute-intensive codes

Contribution: Extension of APOLLO to PiSDF MoC

- APOLLO is a compiler framework to optimize compute-intensive codes through polyhedral transformations (data locality, data independency)
- APOLLO-multiversioning tries several transformations and selects the best one
- Each actor can be optimized independently
- Integrated with PREESM and SPiDER to exploit intra-actor optimizations

Numerical Representation of Directed Acyclic Graphs (DAGs)

Motivations: Overheads of DAG management for scheduling

- SDF to DAG conversion make data parallelisms and task dependencies explicit.
- Important computational and memory overhead.

Contribution: On-the-fly DAG information computations

- Computed whenever needed during the runtime mapping/scheduling process.
- Numerical representation vs DAGs
 - Memory usage reduced by at least 94%
 - Scheduling time reduced by at least 47%

Innovation on Models of Architecture (MoA)

MoC-like abstractions of sub-systems interactions and bottlenecks

Motivations: performance evaluation should be repeatable and portable between tools Model & Conforms to Mo

Contribution: State of the Art and defined properties of MoAs

- Proposed the linear LSLA model of architecture, and the notion of *activity*.
- Demonstrated energy modeling of a complex SoC with 86% fidelity

Innovation on Dataflow MoCs and MoAs

• Selected Publications from CERBERO on MoCs and MoAs:

- Arrestier, F.; Desnos, K.; Juarez, E.; Menard, D. "Numerical Representation of Directed Acyclic Graphs for Efficient Dataflow Embedded Resource Allocation" Transactions on Embedded Computing Systems EMSOFT Proceedings, 2019.
- Honorat, A.; Desnos, K.; Pelcat, M.; Nezan, J.-F. "Modeling Nested For Loops with Explicit Parallelism in Synchronous Dataflow Graphs" International Conference on Embedded Computer Systems: Architectures, Modeling, and Simulation (SAMOS), Pythagorion, Greece, 2019
- Arrestier, F.; Desnos, K.; Pelcat, M.; Heulot, J.; Juarez, E.; Menard, D. "Delays and States in Dataflow Models of Computation" International Conference on Embedded Computer Systems: Architectures, Modeling, and Simulation (SAMOS), Pythagorion, Greece, 2018
- Desnos, K.; Palumbo, F. "Dataflow Modeling for Reconfigurable" Chapter of Handbook of Signal Processing Systems 3rd Edition. Springer, 2018.
- Pelcat, M., Mercat, A., Desnos, K., ... & Bhattacharyya, S. S. "Reproducible evaluation of system efficiency with a model of architecture: From theory to practice". IEEE TCAD, 37(10), 2017.
- Pelcat, M. "Models of architecture for DSP systems" Chapter of Handbook of Signal Processing Systems 3rd Edition. Springer, 2018.
- ... and more to come.

Open-source implementations:

• All listed contributions are publicly available within the open-source components of the CERBERO toolchain.

Additional slides