

Horizon 2020 European Union funding for Research & Innovation

CERBERO

(Cross-layer modEl-based fRamework for multi-oBjective dEsign of Reconfigurable systems in unceRtain hybRid envirOnments) OCEAN MONITORING USE CASE

AmbieSense: Leszek Kaliciak, Hans Myrhaug, Ayse Goker, Stuart Watt

http://www.cerbero-h2020.eu/

CERBERO Goals

Main project goals of CERBERO Ocean Monitoring use-case are:

- Validate CERBERO methodology for development of multi-objective adaptive CPS
- Contribute to development of CERBERO technologies for development of multi-objective adaptive CPS
- Validate developed KPI based adaptation loop

AS Goals

- Hierarchical adaptive system design:
 - Advanced visual sensing for both users and for marine robots.
 - Visual quality most important for users/ human operators.
 - Sensing of the environment is key for autonomous navigation.
- Purpose:
 - To automatically enhance visibility for the users.
 - To enable autonomous navigation obstacle detection, sense environment, distance to objects nearby.
 - To extend the range of marine robots day&night, depth.

The OM solution

Adaptive cameras Embedded sensors and monitoring

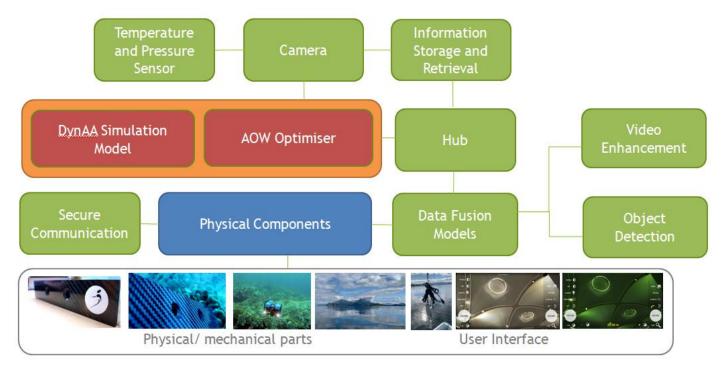
Umbilical cables

Cloud Data archiving Hub alternative for always-on environments

Monitoring hub Underwater video

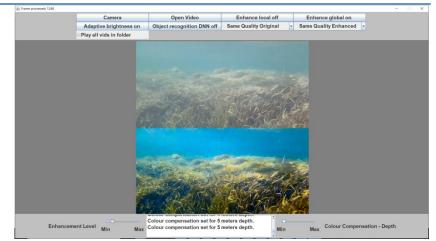
Underwater ROVs Open platform for adaptive cameras and sensors Underwater video enhancement Image indexing and data logging Monitoring and alerting

Use case development


Steps in the development of the use case:

- Requirements gathering
- Development of **adaptation approaches** with **scenarios** which require adaptation (initiated by human and environmental triggers)
- Extend CERBERO technologies by development of information fusion technologies to enable adaptation and support the use case
- Integrate CERBERO tools and technologies into Ocean Monitoring

Skeleton of CERBERO tools for Ocean Monitoring use case

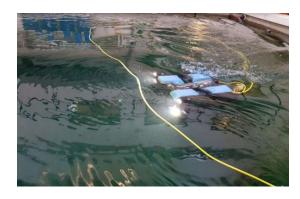


CERBERO Fusion Technologies to enable adaptation:

- Image enhancement level adaptation to different environmental conditions
- Colour adaptation to changing water depth
- Adaptation of object characteristics for tracking purposes based on motion and deep learning detector

DynAA and **AOW**:

- DynAA helped to assess alternative design configuration choices to ensure that the chosen hardware platform met the required KPIs
- AOW helps to optimise the image enhancement model. It can be used to adaptively select the appropriate combination of algorithms to ensure the best result dynamically.



OM Testing:

- Pool testing
- Pressure chamber
- Arctic Ocean

Horizon 2020 European Union funding for Research & Innovation

M36 DEMONSTRATOR