Generating Energy-optimized Adaptive Software on
a Heterogeneous MPSoC with PREESM

Florian Arrestier*, Karol Desnos*, Julien Heulot*, Alexandre Honorat*, Daniel Ménard*,
Antoine Morvan*, Jean-Francois Nezan* Maxime Pelcat*!, Claudio Rubattu*!,
*IETR UMR CNRS 6164, INSA Rennes, Rennes, France
Institut Pascal, UMR CNRS 6602, Université Clermont Auvergne, Aubiere, France
iDepartment of Chemistry and Pharmacy, University of Sassari, Sassari, Italy
{first}.{last} @insa-rennes.fr

Abstract—This Booth demonstrates how PREESM and SPIDER
tools generate energy-optimized sensor-based adaptive software
on a heterogeneous platform. PREESM is a rapid system proto-
typing tool provided with a runtime manager named SPIDER .
PREESM simulates stream processing applications and generates
code for multi/many-cores. Processing can either be statically
mapped or adaptively managed by SPIDER . Steps when using
PREESM are: (1) Model your Application: PREESM provides
you with a dataflow language, designed to express parallelism.
(2) Model your architecture: PREESM simulates and generates
code for a wide range of systems (e.g., ARM, DSP, FPGA).
(3) Prototype and Run your Design: PREESM takes mapping
decisions and provides early design space information such as
scheduling, memory use, and core loads. PREESM and SPIDER
are available on GitHub, and supported by tutorials and a
reactive community. PREESM and SPIDER are part of the H2020
CERBERO framework.

Index Terms—MPSoC programming, Design space explo-
ration, Dataflow models of computation, Adaptive runtime

I. PREESM FOR DESIGN SPACE EXPLORATION

PREESM [1] is an Eclipse-based environment for parallel
applications development with design-time prediction, as well
as code generation and code re-use capabilities. PREESM input
models are the Parameterized and Interfaced Synchronous
Dataflow (PiSDF) [2] for application, and a Model of Architec-
ture (MoA) [3] for platform. PREESM simulates the execution
and provides early performance predictions in terms of latency,
workload, and memory footprint. Moreover, it generates a time
and memory optimized code to execute the application on a
range of parallel and heterogeneous architectures.

II. SPIDER FOR RUNTIME APPLICATION MANAGEMENT

Many applications have data dependent computational
loads. Their resource requirements and parallelism depend on
constantly changing parameters acquired from sensors or from
user commands. On platform architecture side, the availability
of resources such as cores, accelerators or subsystems may
change at runtime, due to either subsystem failures or dy-
namic hardware reconfiguration. SPIDER is a system runtime
manager that takes on-the-fly resource re-mapping decisions
based on these modifications.

Authors are listed in alphabetical order. The presented work has received
funding from the European Unions Horizon 2020 research and innovation
programme under grant agreement No 732105.

TABLE I
ENERGY CONSUMPTION OF AN IMAGE FILTERING MANAGED BY SPIDER
ON AN 8-CORE HETEROGENEOUS PROCESSOR.

Algorithm Energy v§/1th‘ p%atfom'l Energy \fvlo‘pl~atf0rn}
heterogeneity information | heterogeneity information
Full filter 2.35 J/frame >4 J/frame
Reduced filter 1.92 J/frame 2.3 J/frame

SPIDER and PREESM are strongly coupled and rely on the
same models of computation and architecture that balance
expressiveness and system predictability. Models are con-
stantly updated to match system state. SPIDER is implemented
as a C++ library for scheduling applications at runtime on
multi/many-core/accelerated heterogeneous systems. SPIDER
is composed of a global runtime that takes re-mapping de-
cisions and issues job execution requests to local runtimes
managing the execution of self-contained tasks. The main
performance indicator observed in SPIDER is latency.

III. GENERATING ENERGY-OPTIMIZED MPS0C
SOFTWARE

Table I shows experimental results' on the energy consump-
tion measured per frame for an image filter running on an
8-core ARM big.LITTLE architecture managed by SPIDER .
Two SPIDER cases are considered: with or without platform
heterogeneity knowledge. SPIDER can also reconfigure be-
tween two application configurations. Having a knowledge on
the platform heterogeneity during re-mapping is demonstrated
on the example to save between 16% and 40% of energy, while
SPIDER manages to reduce energy when filtering effort is
reduced. Code, tutorials and documentation are on preesm.org.

REFERENCES

[1] M. Pelcat, K. Desnos, J. Heulot, C. Guy, J.-F. Nezan, and S. Aridhi,
“PREESM: A dataflow-based rapid prototyping framework for simplify-
ing multicore DSP programming,” in EDERC Conference, 2014.

[2] K. Desnos, M. Pelcat, J.-F. Nezan, S. S. Bhattacharyya, and S. Aridhi,
“Pimm: Parameterized and interfaced dataflow meta-model for MPSoCs
runtime reconfiguration,” in SAMOS XIII, 2013.

[3] M. Pelcat, A. Mercat, K. Desnos, L. Maggiani, Y. Liu, J. Heulot, J. F.
Nezan, W. Hamidouche, D. Menard, and S. S. Bhattacharyya, “Repro-
ducible evaluation of system efficiency with a model of architecture: From
theory to practice,” IEEE TCAD, 2017.

ICheck experiments in: http://youtu.be/a9WIucWfjkU.



