

Information and Communication Technologies (ICT) Programme

Project No: H2020-ICT-2016-1-732105

D5.7: CERBERO Framework Demo

(Ver. 1)

Lead Beneficiary: AI

Workpackage: WP5

Date: 31/07/2018

Distribution - Confidentiality: [Public]

Abstract: This deliverable describes all the CERBERO framework components,

identifying all the parts composing the cross-layer model-based structure for design,

optimization, verification and deployment of complex cyber-physical systems and systems

of systems. The document presents separately all the components/tools, starting from their

motivations and already provided features, going to the extensions envisioned in order to

attain CERBERO objectives and to accomplish use case requirements.

© 2017 CERBERO Consortium, All Rights Reserved.

Disclaimer

Ref. Ares(2018)4048107 - 31/07/2018

H2020-ICT-2016-1-732105 - CERBERO

WP5 – D5.7: CERBERO framework demo

Page 2 of 27

This document may contain material that is copyright of certain CERBERO beneficiaries,

and may not be reproduced or copied without permission. All CERBERO consortium

partners have agreed to the full publication of this document. The commercial use of any

information contained in this document may require a license from the proprietor of that

information.

The CERBERO Consortium is the following:

Num. Beneficiary name Acronym Country

1

(Coord.)
IBM Israel – Science and Technology LTD IBM IL

2 Università degli Studi di Sassari UniSS IT

3 Thales Alenia Space Espana, SA TASE ES

4 Università degli Studi di Cagliari UniCA IT

5
Institut National des Sciences Appliquees de

Rennes
INSA FR

6 Universidad Politecnica de Madrid UPM ES

7 Università della Svizzera italiana USI CH

8 Abinsula SRL AI IT

9 Ambiesense LTD AS UK

10
Nederlandse Organisatie Voor Toegepast

Natuurwetenschappelijk Ondeerzoek TNO
TNO NL

11 Science and Technology S&T NL

12 Centro Ricerche FIAT CRF IT

For the CERBERO Consortium, please see the http://cerbero-h2020.eu web-site.

Except as otherwise expressly provided, the information in this document is provided by

CERBERO to members "as is" without warranty of any kind, expressed, implied or

statutory, including but not limited to any implied warranties of merchantability, fitness for

a particular purpose and non-infringement of third party’s rights.

CERBERO shall not be liable for any direct, indirect, incidental, special or consequential

damages of any kind or nature whatsoever (including, without limitation, any damages

arising from loss of use or lost business, revenue, profits, data or goodwill) arising in

connection with any infringement claims by third parties or the specification, whether in

an action in contract, tort, strict liability, negligence, or any other theory, even if advised

of the possibility of such damages.

The technology disclosed herein may be protected by one or more patents, copyrights,

trademarks and/or trade secrets owned by or licensed to CERBERO Partners. The partners

reserve all rights with respect to such technology and related materials. Any use of the

http://cerbero-h2020.eu/

H2020-ICT-2016-1-732105 - CERBERO

WP5 – D5.7: CERBERO framework demo

Page 3 of 27

protected technology and related material beyond the terms of the License without the prior

written consent of CERBERO is prohibited.

Document Authors

The following list of authors reflects the major contribution to the writing of the document.

Name(s) Organization Acronym

Antonio Solinas AI

Giuseppe Meloni AI

Maria Katiuscia Zedda AI

Tiziana Fanni UniCA

Carlo Sau UniCA

Francesca Palumbo UniSS

Claudio Rubattu UniSS

Alfonso Rodriguez UPM

Daniel Madroñal UPM

Evgeny Shindin IBM

Michael Masin IBM

Karol Desnos INSA

Julio De Oliveira Filho TNO

The list of authors does not imply any claim of ownership on the Intellectual Properties described

in this document. The authors and the publishers make no expressed or implied warranty of any

kind and assume no responsibilities for errors or omissions. No liability is assumed for incidental

or consequential damages in connection with or arising out of the use of the information contained

in this document.

Document Revision History

Date Ver. Contributor

(Beneficiary)

Summary of main changes

06/06/2018 0.0 AI initial draft

22/06/2018 0.0 UNISS, UNICA, UPM description of integration and

demonstration activities related to the

lower part of the CERBERO framework

29/06/2018 0.5 IBM Integration of UNISS, UNICA, UPM,

and IBM contributions

19/07/2018 1.0 AI AI contribution

19/07/2018 1.0 UNISS Review

23/07/2018 1.0 UPM Review

24/07/2018 1.0 UniSS Review

H2020-ICT-2016-1-732105 - CERBERO

WP5 – D5.7: CERBERO framework demo

Page 4 of 27

24/07/2018 2.0 AI Implementation of Review Comments

31/07/2018 3.0 IBM Review of Section 3, Appendix I

H2020-ICT-2016-1-732105 - CERBERO

WP5 – D5.7: CERBERO framework demo

Page 5 of 27

Table of contents

1. Executive Summary ... 6

1.1. Structure of the Document .. 6

1.2. Related Documents .. 6

1.3. Related CERBERO Requirements .. 7

2. The CERBERO Framework Integration .. 8

2.1. Overview of CERBERO tools connections .. 8

2.2. The Integration processes... 9

3. Intermediate Format Connections .. 10

3.1. CERBERO Innovative Approach for Semantic Integration.................................. 10

3.2. Purpose of Integration with CERBERO Intermediate Format 11

3.3. Integration Framework Tool-Flow ... 11

3.4. POCs CIF Connection PREESM – AOW – DynAA ... 13

4. Direct Connections ... 16

4.1. PoC Connection ARTICo3 – MDC – CAPH ... 16

4.2. PoC Connection PREESM-Spider-Papify/Papify-Viewer 19

4.3. Other Direct Connections ... 22

5. References ... 23

Appendix I: CIF Example ... 24

H2020-ICT-2016-1-732105 - CERBERO

WP5 – D5.7: CERBERO framework demo

Page 6 of 27

1. Executive Summary

This document presents a short description of the main Proofs of Concept (PoCs) of the

integrated CERBERO development framework, which is basically a design environment

for Cyber-Physical Systems (CPSs) based on a cross-layer model-based approach and on

an advanced adaptivity support.

To develop the framework an incremental methodology has been followed, and it will be

used for developing the final cross-layer exploration, design and optimisation platform.

It is important to highlight that this document is the supporting documentation of the

software deliverable D5.7. The main scope of this document is to provide the explanation

and technical details of the 3 main PoCs that have been developed and tested at M18.

In order to cover and test the two connections strategy that will be used in the final

demonstrator, this document provide:

• 1 PoC using CERBERO Intermediate Format (CIF)

• 2 PoCs using the direct connections among couples or series of tools.

Each PoC will be described separately. The main goal of the description is to provide the

following information for each of them:

• Purpose of the integration

• Explanation of the technical features of the connection

• Exchanged data

• Explanation of the example that will be used for testing the PoC

• Link to video or any other material considered relevant for emphasising the

main PoC achievements.

Therefore, the mission of this document is neither to describe the components/tools that

are integrated, nor their standalone use; for that information please refer to D5.6.

1.1. Structure of the Document

In Section 2 a general overview of the CERBERO development framework and its current

state of development is given with a short explanation of the integration process that will

follow to develop its final version. In Section 3 a description of the approach for Semantic

Integration is presented together with a comprehensive explanation of the PoC using CIF.

Finally, Section 4 is dedicated to present two PoCs developing direct connections among

tools.

1.2. Related Documents

The CERBERO deliverables related to this document are:

• D2.7 – CERBERO Technical Requirements

H2020-ICT-2016-1-732105 - CERBERO

WP5 – D5.7: CERBERO framework demo

Page 7 of 27

o The activities behind D5.7 contribute to satisfy the requirements listed in

D2.7. Details are given in Section 1.3.

• D3.6 – Cross-layer Modelling Methodology for CPS

o D3.6 provides methodological foundation for CERBERO Intermediate

Format.

• D5.4 – CERBERO Holistic Methodology and Integration Interfaces

o D5.4 presents the design framework integration approach and the required

Interfaces.

• D5.6 – CERBERO Framework component

o In D5.6 the technical details of the different components/features of the

CERBERO design environment are reported.

1.3. Related CERBERO Requirements

Deliverable D2.7 of the CERBERO project defines a list of CERBERO Technical

Requirements (CTRs) the project should achieve. Each of them is referenced with a unique

identifier ranging from 0001 to 0020. The CERBERO framework Demo described in the

current document address 4 CTRs, as described in the following table. It is important to

note that most of the requirements related to the framework are covered by the tools

integrated in the framework and are not reported in the following table.

CTR

id

CTR Description Link with the D5.7 document on CERBERO

framework components

0002 CERBERO framework

SHOULD provide

interoperability between cross-

layer tools and semantics at the

same level of abstraction.

The semantic integration at the same level of abstraction

and the interoperability between cross-layer tool is

demonstrated and tested with the PoC that connects AOW,

DynAA and PREESM using the CIF.

0004 CERBERO framework

SHOULD provide software and

system in-the-loop simulation

capabilities for HW/SW co-

design and System Level

Design.

System in-the-loop simulation capabilities have been

achieved by the integration of DynAA with MECA with the

SCANeR simulator. Extensive description is provided in

D6.10 since it has already been used in the use case

demonstrator of the Electric Vehicle.

0005 CERBERO framework

SHOULD provide multi-

viewpoint multi-objective

correct-by-construction high-

level architecture.

The possibility of providing a multi-viewpoint, multi-

objective and correct-by-construction high-level

architecture has been guaranteed by the interconnection of

AOW, DynAA, PREESM, demonstrated in the PoC of the

CIF.

0009 CERBERO SHALL develop

integration methodology and

framework.

The three PoCs presented and developed in this deliverable

are the base for the final development of the framework.

H2020-ICT-2016-1-732105 - CERBERO

WP5 – D5.7: CERBERO framework demo

Page 8 of 27

2. The CERBERO Framework Integration

A design environment for CPSs, in general, should be an integrated platform or tool chain

that can be broken down into various interacting components serving the needs of the

different physical and computational elements or subsystems across different layers.

Appropriate software components (a.k.a. the design environment or framework

components) are required to be inter-linked to form a holistic operational framework

following design requirements and seeking a new foundation for CPS design, integration

and operation. One of the goals of CERBERO is to deliver a semantic integration

framework that is customizable per application scenario or use case, yet generalizable

enough to a broad range of application domains.

Integration aims at interconnecting the components together, in a layered fashion, to

facilitate exchange of information and control data between these components or

subsystems and assuring that the integrated system meets performance and behavioural

expectations.

2.1. Overview of CERBERO tools connections

An overview of the CERBERO framework is depicted in Figure 2-1. The infrastructure has

evolved with respect to previous deliverables. Based on current developments, it seems

that the connections among SAGE VS (originally VT tool), PREESM, SPiDER and

PAPIFY to the lower-level components could be similar. To this regard please refer to

D4.4, which provides an example related to PAPIFY, MDC and ARTICo3 (still ongoing

so it will not be part of the present assessment).

As it can be noted, the connections among tools have already been identified as the

integration methodology, which can be either direct or based on the usage of the CIF.

Furthermore, in Figure 2-1 the connections and their current state are depicted.

1. In blue: already existing connections.

2. In green: implemented connections already assessed at M18.

3. In yellow: connections currently under development. Please note that among these,

PREESM, AOW and DynAA connection is still indicated. Section 3 describes how

this connection is about to turn green.

4. In red: planned connections.

In the following sections we present a brief explanation of three PoCs that have already

been developed.

H2020-ICT-2016-1-732105 - CERBERO

WP5 – D5.7: CERBERO framework demo

Page 9 of 27

Figure 2-1: Overview of the CERBERO framework components.

2.2. The Integration processes

D5.4 has already fully explained the CERBERO design framework integration approach,

with required interfaces among all the CERBERO tools across all layers of the toolchain

(model, application, runtime, and hardware layers).

For the first phase of the CERBERO project, using a continuous integration methodology

three PoCs have been developed for testing a first version of the CIF and the direct

connection. This way, we succeeded in developing and testing:

• connections among tools at the same layer, such as MDC with Artico3 and AOW

with DynAA

• cross layer connections as MECA with DynAA (described in D6,10), AOW and

DynAA with PREESM (through the semantic integration) and PREESM and

SPiDER with PAPIFY (though a direct connection)

• the connection of the CERBERO framework with external tools, like MDC with

CAPH.

H2020-ICT-2016-1-732105 - CERBERO

WP5 – D5.7: CERBERO framework demo

Page 10 of 27

3. Intermediate Format Connections

3.1. CERBERO Innovative Approach for Semantic Integration

Information modelling underlies representing or formatting information in a certain way to

guarantee its uniformity and consistency. A meta-model defines (i) the concepts or

information that can be present in a model and that can be accessed and manipulated by

different tools, and (ii) the rules that regulate accesses to the information. However,

sticking with a single meta-model for the entire information model does not come without

a problem, such as: multi-view interoperability, multi-tool interoperability, and model

maintenance (information models compliance to the meta-model).

Hence, strict coupling of information model and meta-model poses interoperability and

maintenance concerns. CERBERO consortium attempts to improve the state-of-the-art of

information modelling and semantic integration, particularly when dealing with multi-view

cross-layer designs. In this sense, CERBERO proposes an approach to decouple the model

information from the meta-model by model’s intermediate format (a.k.a. intermediate

representation) meeting the following requirements:

1. Can be used efficiently for sharing information across different levels of abstraction

and different modelling aspects (views). In other words, an intermediate format

should fully exploit the idea of one-model-with-multiple-views representation of

the system.

Rationale: The modelling of CPS is intrinsically multi-disciplinary, multi-aspect,

and involves different abstraction layers. Any unique model representation for the

system that cannot cope with these intrinsic characteristics is doomed to fail. The

model information should be equally adequate and accessible to the different tools

manipulating the model for the representation of several aspects (modelling,

analysis, code-generation, runtime management, validation), and for manipulation

at different abstraction levels.

2. Allows different tools to access information about a system model with minimally

incorporating details of the meta-models used in other tools.

Rationale: Tools should be able to read, understand, and manipulate the model

information without or minimal knowledge on how this information is organized in

other tools since it both can be changed without notice and is irrelevant to modelled

system.

CERBERO consortium considers that such points are not yet covered coherently and well

enough by state-of-the-art work proposed so far in the literature or readily available, see

D3.6 – Cross-layer Modelling Methodology for CPS for more discussion. In the following

sections we describe our proposal and corresponding Proof of Concept (PoC) study.

H2020-ICT-2016-1-732105 - CERBERO

WP5 – D5.7: CERBERO framework demo

Page 11 of 27

3.2. Purpose of Integration with CERBERO Intermediate

Format

Integration with CERBERO Intermediate Format (CIF) allows achieving easy exchange of

relevant information between all connected tools. Unlike tool-to-tool integration, CIF

provides a unified platform for model and data transformation that allows implementing

automatic transformation capabilities. Within the CIF framework, meta-models (or

schemas) of all input and output data are defined in a declarative way allowing to define

transformation process as mapping between corresponding schemas. Such unification

allows achieving easy integration of multiple tools having multiple views and/or providing

multiple functionality. The integration of new tools become a three-step process where in

the first step tool describes its output and input data schemas, in the second step defines

mapping of this schemas onto flat CIF representation, and in the third step data

transformations are made, when needed, using CIF middleware API. Such construction

provides additional benefits for tool developers and integrators: it is not necessary to

describe whole data provided by the tool in a case when this data is too complex and full

description requires big effort; instead, one can define only schema of data that is necessary

for other tools in a scope of an integration goal. Thus, integration with CIF allows achieving

data interchange between connected tools without additional software development

process and without effort of complex ontological description of whole data.

3.3. Integration Framework Tool-Flow

As CERBERO consortium components/tools and technologies undergo continuous

development, CERBERO adopts an iterative integration approach, i.e., continuous and

constantly evolving rather than static or fixed. To facilitate components/tools

interconnection, interfaces are defined and created as points of interaction between

communicating components. Interfacing means using a common message format or

intermediate representation to provide a unified communication paradigm across the

system, entirely or partially. Translation is required from the interface of one component

to the intermediate format and vice versa for bilateral or duplex communication.

CERBERO integration approach considers underlying systems as black boxes, thus

creating a middleware to facilitate communication between the integrated components.

This CERBERO integration middleware itself is considered a component. The main

building blocks of CERBERO framework integration are:

• Semantic Interface: as opposed to a programming interface, a semantic interface

is a middleware customized for integration of tools across two layers, such as

user/model layer and the application/runtime layer. Semantic interfaces are defined

using SEMI approach [D3.6], for which the implementation will be provided in

Python for the framework demonstrator.

• IR: the intermediate representation, also known as intermediate format or

middleware, is the semantic format that serves the purpose of structuring system

data or information to facilitate its storage and exchange (sharing) for tool

H2020-ICT-2016-1-732105 - CERBERO

WP5 – D5.7: CERBERO framework demo

Page 12 of 27

interoperability across two or more layers of the tool chain. Tools span user and

modelling, application and runtime, implementation and validation layers.

CERBERO consortium has agreed to use IBM SEMI as IR of choice as discussed

in D3.6.

• CIF Models: high-level models are most naturally represented by graphs. For this

purpose, [JanusGraph] or [ThinkerPop/ThinkerGraph] technology will be

evaluated, but relational high-performance databases could be used as well. It

allows distributed processing of big graphs as well as real-time graph traversal and

analytics through efficient queries.

• Persistence Format: relates to information storage on disk or database where a

model graph or intermediate format of functional model is saved, e.g., as a file

representation, such as JSON, wide column or regular relational database. Parsing

the persistence format file directly yields the model graph (in intermediate format).

CERBERO consortium evaluates Apache [Cassandra] as the data store of choice

for its performance and scalability in addition to JSON support.

Figure 3-1: Semantic Integration Tool-Flow

Figure 3-1 demonstrations the current CIF architecture within CERBERO tool chain.

AOW DynAA

SEMI

Interface Prototypes (Python)

JanusGraph

Interface Implementation (Python)

Cassandra/ElasticSearch

Storage and Indexing Back-end

Connection in planning

Semantic Interfaces

Processed Schemas

(e.g., JSON)

Connection planned

CERBERO tools

Integration Framework

PREESM

H2020-ICT-2016-1-732105 - CERBERO

WP5 – D5.7: CERBERO framework demo

Page 13 of 27

3.4. POCs CIF Connection PREESM – AOW – DynAA

Figure 3-2: CIF PoC

The purpose of the PoC is to calculate optimized scheduling of a software, provided as an

SDF graph, on a hardware, provided as a hardware architecture description. The

optimization can be performed with respect of several goals, such as minimal latency,

maximum throughput, and minimum energy and subject to different constraints, such as

computation and memory capacity. In this scenario PREESM takes a role of the service

requester while AOW and DynAA take a role of the service providers: (i) software and

hardware models described in PREESM passing to AOW, (ii) AOW performs optimization

in order to obtain optimized scheduling, which is passed to DynAA, (iii) DynAA performs

simulation of the proposed scheduling, updates run-times of software components on the

hardware architecture according to the simulation results and pass them back to AOW (in

order to perform another optimization run) or back to PREESM (if maximum numbers of

iterations achieved or if there are no further updates required).

In order to achieve desired integration PREESM provides following types of data:

• SDF graph in XML format representing software architecture, that also includes

additional parameter indicating maximal number of iterations between AOW and

DynAA

• Hardware architecture description in XML format

• Possible mapping scenario between software and hardware including estimated

execution times of different software actors in different processing units in XML

format.

PREESM also defines schemas of each kind of data in agreed JSON format. Once defined,

these schemas allow the CIF service to import all these data and convert it to CIF. Finally,

PREESM also defines schema of its input data, i.e. format in which resulting scheduling

should be provided to PREESM.

H2020-ICT-2016-1-732105 - CERBERO

WP5 – D5.7: CERBERO framework demo

Page 14 of 27

From the second integration endpoint AOW provide two different schemas:

• Scheduling analytic schema, i.e. schema of data required to perform calculation of

optimal scheduling

• Output format schema, i.e. schema of scheduling data produced by optimization,

including current optimization run number and maximal number of iterations

obtained from PREESM.

Finally, DynAA endpoint provides:

• Input schema for scheduling

• Output schema of simulation results.

In scope of the PoC, communication between different tools, as well as communication

between tools and CIF service, are performed in a straightforward way where results

(output) produced by one tool serve as input for another tool. To reduce network

communication overhead all tools considered to run on a single Windows machine. The

orchestration of execution of overall toolchain performed by Windows batch script

allowing verification and demonstration of the integration capabilities without big

development/adaptation overhead of corresponding tools. More complex communication

procedures requiring adaptation of tools invocation methods are postponed to final stages

of the project.

The proposed execution scenario includes the following steps (more details are provided

in Appendix I: CIF Example and the PoC data flow is shown in Figure 3-3).

1. Orchestration script receives three parameters: PiSDF graph folder, target HW

architecture file in XML format and possible mapping scenario between software

actors from PiSDF graph to processing elements in HW architecture file in XML

format.

2. Orchestration script invoke PREESM execution that generates a flattened SDF

graph from the PiSDF input.

3. When the flattened SDF graph is ready, the orchestration script invokes XML-to-

JSON transformation of all input data files.

4. Resulting data in JSON format is sent to the CIF service endpoint invocating data

transformation according to corresponding schemas. Each data asset receives

unique namespace ID to allow addressing.

5. When data storage completed orchestration script, the script invokes data

transformation to AOW format performing call of corresponding transformation

procedures. This produce JSON files required for AOW.

6. The orchestration script invokes AOW optimization start providing JSON files of

software architecture model, hardware architecture model and possible mappings

data in AOW format.

7. AOW performs optimization process and store resulting data as JSON in AOW

format.

8. Orchestration script send data to CIF service. Resulting data is converted to CIF

and receiving unique namespace ID.

H2020-ICT-2016-1-732105 - CERBERO

WP5 – D5.7: CERBERO framework demo

Page 15 of 27

9. When data storage completed orchestration script, the script invokes data

transformation to DynAA format performing call of corresponding transformation

procedures. This produce JSON files that required for DynAA.

10. Orchestration script invokes DynAA execution providing optimal scheduling

results obtained from AOW in DynAA format.

11. DynAA performs simulation of obtained scheduling results and stores resulting

data in its JSON format.

12. Orchestration script send resulting data to CIF service. Resulting data asset

converted to CIF and receiving unique namespace ID.

13. Orchestration script checks difference between simulation results and optimization

results. If this difference is below provided threshold, or maximum number of

iterations achieved, the Orchestration script invokes data transformation to

PREESM format and executes PREESM passing as parameters both simulation

results and optimization results. Otherwise, the orchestration script invokes

transformation of simulation results to AOW format and calls AOW providing

these results as well as converted PREESM data obtained at Step 5.

14. If the orchestration script executes AOW in the previous step, go to Steps 7. If

the orchestration script executes PREESM, PREESM generates runtime code and

Stop.

Figure 3-3. CIF PoC data flow

H2020-ICT-2016-1-732105 - CERBERO

WP5 – D5.7: CERBERO framework demo

Page 16 of 27

4. Direct Connections

This section is dedicated to direct tool-to-tool connections.

4.1. PoC Connection ARTICo3 – MDC – CAPH

Figure 4-1: MDC-ARTICo3 PoC

Purpose of the Integration: CPS need to meet several functional and non-functional

requirements imposed by the environment, the user and their internal status. The presence

of different, concurrent requirements influencing the system during operation introduces

the need for an advanced adaptivity support. FPGA-based reconfigurable systems provide

a valuable solution to this problem: lying in the middle between general purpose computing

platforms and application specific circuits, they offer a trade-off between software-like

flexibility and hardware-based execution performance. The point is that there are many

kind of reconfigurable systems and that their design is not straightforward. It requires

detailed knowledge of both the application and the hardware infrastructure and the flow is

highly variable, depending on the chosen reconfigurability strategy. As explained in D4.3,

reconfigurable systems can be divided, according to their granularity, in: Fine-Grain

Reconfigurable (FGR, changes at bit level) and Coarse-Grain reconfigurable (CGR,

changes at word level) systems.

H2020-ICT-2016-1-732105 - CERBERO

WP5 – D5.7: CERBERO framework demo

Page 17 of 27

In CERBERO two tools offer support for hardware reconfiguration: (1) The ARTICo3

framework provides adaptive and scalable hardware acceleration, actively altering the

computing substrate to change the available functionality using DPR (see D5.6), while (2)

the MDC tool delivers automatic generation and management of CGR systems based on

the dataflow model of computation (see D5.6). Their integration brings together all the

benefits from both DPR and CGR, leading to more flexible solutions that can cope with

the changing of functional and non-functional requirements affecting CPS operating

contexts. The integration of ARTICo3 and the MDC Tool offers a unique toolchain capable

of automatically implementing and managing multi-grain reconfigurable systems, offering

support for advanced adaptivity.

To raise the level of abstraction and make hardware reconfigurable platforms usable by

programmers with little to none hardware design skills, we also integrated in this flow the

CAPH tool, an open source HLS engine external to the CERBERO partnership (see D4.4).

With the MDC & CAPH integration it is possible to automatically generate generic CGR

accelerators for the CERBERO adaptivity support (see D4.4).

Figure 4-2: CAPH-MDC-ARTICo3 direct tool-to-tool integration

Exchanged Data: Figure 4-2 shows the integrated design flow and the runtime setup. The

hardware generation flow (on the left hand side) starts from high-level dataflow

descriptions of the behaviours to be implemented in the configurable logic. Such

descriptions are compliant with CAPH dataflow specifications. CAPH is an open source

HLS engine supporting dataflow models as specification format (similar to the MDC one)

that generates target independent code (it generates generic RTL descriptions for any kind

of FPGA vendor or for ASIC flows) (see D4.4). CAPH forwards to MDC the SDF models

of the networks to be accelerated and the HDL descriptions of the actors composing them.

MDC merges the SDF models to create the HDL description of the CGR accelerator, which

is post-processed by an ad-hoc MDC back end that derives the corresponding CGR HDL

(Verilog) computational kernel, making it ARTICo3-compliant (properly wrapping it with

the glue logic necessary to serve as an ARTICo3 DPR reconfigurable partition). Finally,

H2020-ICT-2016-1-732105 - CERBERO

WP5 – D5.7: CERBERO framework demo

Page 18 of 27

the toolchain generates the bitstreams related to the system (static part) and to the hardware

accelerators (reconfigurable partitions). On the software side, the toolchain keeps the

capability, inherited from the ARTICo3 framework, of generating the application

executable that manages operation execution and computation offloading to the hardware

accelerators also when these latter are MDC-generated CGR accelerators. Both (DPR and

CGR) reconfiguration mechanisms are transparently managed from the user code running

in the host processor.

PoC: The multi-grain reconfiguration capabilities of the combined CAPH-MDC-ARTICo3

reconfiguration support are currently shown in an image-processing application scenario.

The setup features ARTICo3 on a Zynq board running Linux and a camera that acquires

live video. The input images are sent to a configurable number of hardware accelerators

where two edge detection kernels have been implemented (Sobel and Roberts). In order to

switch from one kernel to another, the user can decide to use the FGR approach of

ARTICo3 to completely change the logic instantiated in each slot, or to use the CGR

approach of the MDC-generated accelerators to multiplex the internal datapath of the

accelerators. As a result, it is possible to see, in real time, the runtime overheads of each

type of reconfiguration mechanism. Additional adaptivity evaluation can be performed by

changing the working point of the application, which is based on several parameters: input

image size, number of hardware accelerators used to exploit data-level parallelism, and

hardware redundancy level (simplex, DMR, TMR) for fault-tolerant execution.

Useful material/links:

CAPH-MDC integration, presented at SIE 2018: link

ARTICo3-MDC integration, presented at UPM-CEI: link

http://www.cerbero-h2020.eu/wp-content/uploads/2018/06/Sau_SIE2018.pdf
http://www.cerbero-h2020.eu/wp-content/uploads/2018/06/Fanni_UPMSeminar.pdf

H2020-ICT-2016-1-732105 - CERBERO

WP5 – D5.7: CERBERO framework demo

Page 19 of 27

4.2. PoC Connection PREESM-Spider-Papify/Papify-Viewer

Figure 4-3: PREESM-SPIDER-Papify PoC

Purpose of the Integration: In the context of CPS, the productivity gap between platform

complexity and application productivity is widening. To cope with this aspect, current Y-

chart design flows isolate the platform and the algorithm development and, automatically,

generate a generic solution for the problem. However, these solutions are usually generated

following a predefined methodology for any application and, in consequence, they can be

easily improved by a trained developer.

In order to improve the quality of these automatic deployments, Design Space Exploration

(DSE) techniques need to be included within the generation procedure and, additionally,

to assess execution performance can be used to refine the work distribution and improve

the final system performance.

In CERBERO three tools can be combined to fulfil this requirement: (1) The PREESM

rapid prototyping framework provides a Y-chart design flow tool; (2) SPiDER is able to

manage the information of the system execution and make changes on the system workload

distribution; (3) finally, Papify tool retrieves the system performance information by

accessing Perfomance Monitoring Counters through the open-source PAPI library. The

integration of PREESM, SPiDER and Papify offers the capability of refining the design

time proposed solutions, while increasing the decision criteria managed by SPiDER.

Finally, the platform independencee supported by every tool increases the level of

abstraction reachable by the developer, who can easily obtain real-time system

H2020-ICT-2016-1-732105 - CERBERO

WP5 – D5.7: CERBERO framework demo

Page 20 of 27

performance information and visualize in real-time the behaviour of the system thanks to

Papify-Viewer.

Exchanged Data: Figure 4-4 and Figure 4-5 show the resulting integration of (1) Papify

into PREESM framework and the (2) SPiDER execution block diagram with Papify and

Papify-Viewer tools included, respectively. Additionally, Figure 4-6 shows an example of

Papify-Viewer displaying execution time information. In Figure 4-4, the monitoring

configuration of the application is set up employing a new user interface. After that,

PREESM automatically generates instrumented code that is compliant with either

PREESM backend or the SPiDER run-time manager. Secondly, as can be seen in Figure

4-5, Papify performance monitoring has been included within the Local Run-Time (LRT)

of SPiDER, which means that the monitoring happens in each Processing Element (PE)

independently. Additionally, this information is sent to the Global Run-Time (GRT), which

can analyse this information so as to make changes in the system behaviour to increase the

application performance. Finally, Papify-Viewer, which is an independent application, can

display the information in real-time providing the user with a graphical representation of

the current system behaviour, as shown in Figure 4-6.

Figure 4-4: PREESM-Papify tool-to-tool integration

H2020-ICT-2016-1-732105 - CERBERO

WP5 – D5.7: CERBERO framework demo

Page 21 of 27

Figure 4-5: SPiDER-Papify/Papify-Viewer tool-to-tool integration

Figure 4-6: Papify-Viewer display example

PoC: The system performance monitoring capabilities of the combined PREESM-

SPiDER-Papify/Papify-Viewer is currently shown using an image-processing application

scenario, a sobel-morpho image filter. The application monitoring is configured using the

PREESM framework and generationcode compliant with the SPiDER run-time manager.

In this case, the user is able to decide how many CPU cores the system will use. Likewise,

during the system execution, Papify-Viewer displays the workload distribution, the timing

and the events that the user has selected to be monitored. As a result, it is possible to see

how the system is affected by the redistribution of the workload together with a real-time

application profiling.

Useful material/links:

PREESM-Papify integration, presented at CF 2018: link

Spider-Papify integration, presented at COWOMO 2018: link

https://www.researchgate.net/publication/325217267_Automatic_Instrumentation_of_Dataflow_Applications_using_PAPI
https://hackmd.io/7k7jF-JjR1e4jzXCTITvnA#COWOMO%E2%80%9918-Abstracts

H2020-ICT-2016-1-732105 - CERBERO

WP5 – D5.7: CERBERO framework demo

Page 22 of 27

4.3. Other Direct Connections

The direct connection between DynAA and MECA is not discussed in this deliverable since

it has been deeply addressed in D6.10. Other connections like PAPIFY, SPiDER and

PREESM with the low-level tools are not mature enough yet to be presented in this

deliverable. The same applies for the connection of SAGE VS (originally VT tool) with

DynAA.

H2020-ICT-2016-1-732105 - CERBERO

WP5 – D5.7: CERBERO framework demo

Page 23 of 27

5. References

[SEMI] E. Shindin et al., SEmantic Middleware presentation, IBM Research - Haifa,

Israel, 2018.

[JanusGraph] janusgraph.org

[ThinkerPop/ThinkerGr

aph]

http://tinkerpop.apache.org/javadocs/3.2.2/full/org/apache/tinkerpop/gremlin/

tinkergraph/structure/TinkerGraph.html

[Cassandra] cassandra.apache.org

[ElasticSearch] www.elastic.co

file:///C:/Users/cassa/Desktop/unica/progetti/CERBERO/deliverable/D5.6/0.7/janusgraph.org
file:///C:/Users/cassa/Desktop/unica/progetti/CERBERO/deliverable/D5.6/0.7/cassandra.apache.org
file:///C:/Users/cassa/Desktop/unica/progetti/CERBERO/deliverable/D5.6/0.7/www.elastic.co

H2020-ICT-2016-1-732105 - CERBERO

WP5 – D5.7: CERBERO framework demo

Page 24 of 27

Appendix I: CIF Example

CIF meta-meta model

Initial CIF meta-meta model defines schema of tool’s input and output files. The following

schema syntax provides an example in JSON format:

{

 "view" : {

 "name": "str",

 "classes": [

 "class_def"

]

 },

 "class_def" : {

 "name": "str",

 "representation" : "repr_def",

 "schema": "class_schema"

 },

 "repr_def" : {

 "type": "repr_type_def", //one of repr_type_defs

 "property_base" : "property_base_def",

 "key_value_base": "key_value_base_def"

 },

 "repr_type_def" : ["mixed", "key_value_base", "property_base"],

 //key_value_base representation: key: value - key property name value property value

 //property_base representation main_key: [{name_key: name_value, value_key: value_value}]

 "property_base_def" : {

 "base_key": "str", //key under which we have list of property base representation

 "property_name_key": "str", //key of property name

 "property_value_key": "str" //key of property value

 },

 "key_value_base_def": {

 "key_prefix": "str" //prefix of keys in key value represebtation

 },

 "class_schema" : {

 "extensible" : "bool",

H2020-ICT-2016-1-732105 - CERBERO

WP5 – D5.7: CERBERO framework demo

Page 25 of 27

 "properties" : ["property_schema"],

 "keys": {"key_name": "key"},

 "id": "str" //property name (property that gives unique id of objects of this class)

 },

 "property_schema": {

 "name": "str",

 "type": "type_def", // one of type defs

 "value": "value_schema",

 "optional": "bool",

 "set": "bool"

 },

 "key": [

 "str" //names of properties that form unique key

],

 "type_defs": [

 "bool","float","int","str","object"

],

 "value_schema": {

 "optional": "bool",

 "default": null,

 "constraints": [],

 "object": "object_schema" // in case if value is object, otherwise null

 },

 "object_schema" : {

 "domain": "str",

 "class": "str",

 "extensible": "bool",

 "id_type": "id_type_def" // one of id type defs

 },

 "id_type_defs": [

 "object_id", {"key":"key_name"}, "object"]

}

H2020-ICT-2016-1-732105 - CERBERO

WP5 – D5.7: CERBERO framework demo

Page 26 of 27

CIF example for PREESM-AOW semantic integration

The example starts from three files native in PREESM:

• 03-parallel_sobel.graphml – flattened sdf graph (XML),

• 4CoreX86.slam – architecture (XML),

• sobel_scenario.xml – timing (XML) [not presents in the example].

XML files converted to JSON using an XML-2-JSON converter.

After conversion, three JSON files are consequently produced:

• sobel_sdf.json,

• 4CoreX86.json,

• sobel_timing.json [directly defined].

PREESM meta models of the files are given according to CIF meta-meta model in directory

“schemas”. All files converted to CIF according to corresponding schemas. Schemas are

processed recursively. Top-level schema for flattened sdf graph represented in sdf.json file,

top-level schema for architecture represented in slam.json file, top-level schema for

architecture represented in timing.json file. Intermediate representation after conversion

described by following JSON files:

• sobel_sdf_cif.json

• slam_cif.json

• sobel_timing_cif.json

• preesm_classes_cif.json

Note, that representation divided to several JSON files for convenience only. Actually,

there is a single database containing connected objects.

From CIF, data transformation to AOW format is performed. There are various property

name transformations as well as more complex architecture transformation. In the PoC all

these transformations are performed by a script containing sequence of CIF API calls.

Transformation add to CIF representation additional set of objects that are represented in

sobel_aow_cif.json and aow_classes.json files.

Flattened sdf graph represented by object of “sdf” class in “preesm” namespace converted

to object of “scheduling_application” class in “aow” namespace. The transformation

mainly converts objects from classes defined in “preesm” namespace to objects from

classes defined in “aow” namespace by renaming various property names.

Architecture represented by object of “slam” class in “preesm” namespace converted to

object of “scheduling_architecture” class in “aow” namespace. The transformation

converts objects from classes defined in “preesm” namespace to objects from classes

defined in “aow” namespace by renaming various property names and perform more

complex aggregative transformations (for example objects of “componentInstance” class

are aggregated by “componentRef” property values and if "componentDescription" object

having property “componentRef” with same value have also “componentType” property

with value “Operator” it is transformed to “processingElement” object)

H2020-ICT-2016-1-732105 - CERBERO

WP5 – D5.7: CERBERO framework demo

Page 27 of 27

Timing data represented by object of “timing” class in “preesm” namespace converted to

aggregation of objects of "scheduling_execution" class in “aow” namespace, where each

object transformed from corresponding “timingEntry” object in “preesm” namespace, by

changing property names.

Then data to JSON file according to AOW input data schema (top-level schema represented

in aow.json file) are converted. After these steps, a single JSON file in AOW format

(sobel_aow.json) is obtained.

AOW performs optimization and store optimal scheduling result in JSON file in AOW

format (aow_result.json). Next, JSON is converted to CIF and then transformed to

PREESM format using CIF middleware API, enriching existing PREESM SDF

representation by scheduling results. Finally, SDF together with scheduling results

converted to JSON according to PREESM schema (sobel_sdf_result.json).

