

Information and Communication Technologies (ICT) Programme

Project No: H2020-ICT-2016-1-732105

D5.6: CERBERO Framework

Components
Lead Beneficiary: UniCA

Workpackage: WP5

Date: 05/04/2018

Distribution - Confidentiality: [Public]

Abstract: This deliverable describes all the CERBERO framework components,

identifying all the parts composing the cross-layer model-based structure for design,

optimization, verification and deployment of complex cyber-physical systems and

systems of systems. The document presents separately all the components/tools, starting

from their motivations and already provided features, going to the extensions envisioned

in order to attain CERBERO objectives and to accomplish use case requirements.

© 2017 CERBERO Consortium, All Rights Reserved.

Disclaimer

Ref. Ares(2018)4047127 - 31/07/2018

H2020-ICT-2016-1-732105 - CERBERO

WP1 – D1.1: CERBERO framework components

Page 2 of 54

This document may contain material that is copyright of certain CERBERO beneficiaries,

and may not be reproduced or copied without permission. All CERBERO consortium

partners have agreed to the full publication of this document. The commercial use of any

information contained in this document may require a license from the proprietor of that

information.

The CERBERO Consortium is the following:

Num. Beneficiary name Acronym Country

1

(Coord.)
IBM Israel – Science and Technology LTD IBM IL

2 Università degli Studi di Sassari UniSS IT

3 Thales Alenia Space Espana, SA TASE ES

4 Università degli Studi di Cagliari UniCA IT

5 Institut National des Sciences Appliquees de Rennes INSA FR

6 Universidad Politecnica de Madrid UPM ES

7 Università della Svizzera italiana USI CH

8 Abinsula SRL AI IT

9 Ambiesense LTD AS UK

10
Nederlandse Organisatie Voor Toegepast

Natuurwetenschappelijk Ondeerzoek TNO
TNO NL

11 Science and Technology S&T NL

12 Centro Ricerche FIAT CRF IT

For the CERBERO Consortium, please see the http://cerbero-h2020.eu web-site.

Except as otherwise expressly provided, the information in this document is provided by

CERBERO to members "as is" without warranty of any kind, expressed, implied or

statutory, including but not limited to any implied warranties of merchantability, fitness

for a particular purpose and non-infringement of third party’s rights.

CERBERO shall not be liable for any direct, indirect, incidental, special or consequential

damages of any kind or nature whatsoever (including, without limitation, any damages

arising from loss of use or lost business, revenue, profits, data or goodwill) arising in

connection with any infringement claims by third parties or the specification, whether in

an action in contract, tort, strict liability, negligence, or any other theory, even if advised

of the possibility of such damages.

The technology disclosed herein may be protected by one or more patents, copyrights,

trademarks and/or trade secrets owned by or licensed to CERBERO Partners. The

partners reserve all rights with respect to such technology and related materials. Any use

of the protected technology and related material beyond the terms of the License without

the prior written consent of CERBERO is prohibited.

Document Authors

http://cerbero-h2020.eu/

H2020-ICT-2016-1-732105 - CERBERO

WP1 – D1.1: CERBERO framework components

Page 3 of 54

The following list of authors reflects the major contribution to the writing of the

document.

Name(s) Organization Acronym

Carlo Sau UniCA

Francesca Palumbo UniSS

Karol Desnos INSA

Gasser Ayad AI

Pablo Muñoz S&T

Luca Pulina UniSS

Eduardo Juarez UPM

Ruben Salvador UPM

Alfonso Rodriguez UPM

Julio Oliveira TNO

Michael Masin IBM

Evgeny Shindin IBM

The list of authors does not imply any claim of ownership on the Intellectual Properties described

in this document. The authors and the publishers make no expressed or implied warranty of any

kind and assume no responsibilities for errors or omissions. No liability is assumed for incidental

or consequential damages in connection with or arising out of the use of the information

contained in this document.

Document Revision History

Date Ver. Contributor

(Beneficiary)

Summary of main changes

09/01/2018 0.0 UniCA initial draft

18/01/2018 0.1 UniSS revision of initial draft

05/02/2018 0.2 UniCA revised structure

21/02/2018 0.3 UniCA, INSA populated PREESM, SPIDER, MDC

28/02/2018 0.4 UniCA, AI, S&T updated MDC, CAPH,MECA

05/03/2018 0.5 UniCA, UNISS, UPM

populated VT, PAPIFY, ARTICo³, JIT

HW

general revision

08/03/2018 0.6 UniCA, AI, TNO, UPM populated DynAA

updated ARTICo³, HW JIT

H2020-ICT-2016-1-732105 - CERBERO

WP1 – D1.1: CERBERO framework components

Page 4 of 54

15/03/2018 0.7 UniCA, TNO, UniSS,

MECA, IBM

updated DynAA, VT, MECA

populated AOW

document terms uniformity

added acronyms appendix

04/04/2018 1.0 UniCA, TNO, IBM review and integration of AOW

11/04/2018 1.0 UniSS final review

H2020-ICT-2016-1-732105 - CERBERO

WP1 – D1.1: CERBERO framework components

Page 5 of 54

Table of contents

1. Executive Summary ... 6
1.1. Structure of Document ... 6
1.2. Related Documents .. 6
1.3. Related CERBERO Requirements .. 7
1.4. List of Acronyms ... 8

2. The CERBERO framework components .. 10
2.1. MECA .. 10
2.2. VT .. 15
2.3. DynAA .. 17
2.4. AOW .. 22
2.5. PREESM ... 25
2.6. SPIDER ... 29
2.7. PAPIFY/PAPIFY VIEWER ... 32
2.8. Just-In-Time HW Composition Implementation Tools .. 35
2.9. ARTICo³ ... 38
2.10. MDC .. 41
2.11. Other tools ... 45

3. Conclusions ... 47

4. References ... 49

H2020-ICT-2016-1-732105 - CERBERO

WP1 – D1.1: CERBERO framework components

Page 6 of 54

1. Executive Summary

This document presents the main components/tools of the CERBERO framework, that is

basically a design environment for Cyber-Physical Systems (CPSs) based on a

cross-layer model based approach and on an advanced adaptivity support. Each

framework component/tool will be described separately. In particular, the goal is to

provide for each of them the following information:

• state of the art, context and motivation of the addressed problematic;

• main features: what the component/tool does, what the component/tool needs

(inputs) and provides (outputs), how the component/tool can be used and how it is

available to the users;

• role within CERBERO: what the component/tool brings into the project and how

it can be exploited in different use cases;

• strengths and weaknesses with respect to the state of the art and to the use cases

needs.

By the description of each component/tool it should be clear on which aspects it will be

exploited/modified/extended in order to attain the CERBERO objectives and the use

cases needs. Please note that some components/tools were already available before

CERBERO. In this document the main motivations that led to the components/tools

extensions will be presented before discussing the extension plans.

1.1. Structure of Document

The discussion will focus on the main components/tools that will be part of CERBERO

framework and for which modifications, extensions or integrations have been planned.

Sections from 2.1 to 2.10 describe in detail the characteristics and the

modifications/extensions of each component/tool according to the set of information

presented previously. For all the other components/tools that are simply used or

interfaced with the components/tools of the CERBERO framework (but that will not be

modified or extended within it and that may not formally belong to the partners within

the consortium) a dedicated, final section (Section 2.11) is provided to briefly discuss

their functionalities and how they are connected to the project. Lastly, Section 3

summarises the features and plans of the CERBERO framework components. Please note

that since this document is full of acronyms we have added in this introductory section

the most recurrent ones in Section 1.4, in order to make the content of the document more

readable.

1.2. Related Documents

The CERBERO deliverables related to this document are:

• D2.7 – CERBERO Technical Requirements

o The activities behind D5.6 contribute to satisfy the requirements listed in

D2.7. Details are given in Section 1.3.

• D3.5 – Models of Computation

H2020-ICT-2016-1-732105 - CERBERO

WP1 – D1.1: CERBERO framework components

Page 7 of 54

o D5.6 deals with CERBERO framework components which are often based

on specific models of computations that are described in D3.5, such as

PiSDF for PREESM.

• D3.6 – Cross-layer Modelling Methodology for CPS

o The cross-layer modelling methodology for CPS that has been described

in D3.6 is related to D5.6. Several components/tools apply models on

different levels or abstractions or system layers, which need to be

connected, exchanging models and the related properties by means of the

CERBERO framework integration (see Section Error! Reference source

not found.).

• D4.3 – Multi-layer Runtime Adaptation Strategies

o Lot of the tools/components presented in D5.6 already provide or will be

extended to provide support for the multi-layer adaptation strategies

discussed in D4.3, i.e. hardware reconfiguration offered by ARTICo³, JIT

HW and MDC.

• D4.4 – Self-Adaptation Engine

o As for D4.3, several tools/components presented in D5.6 already provide

or will be extended to provide support for CERBERO self-adaptation

infrastructure described in D4.4, i.e. runtime monitoring offered by

PAPIFY.

• D5.7 – CERBERO Framework Demo

o In D5.7 the integration of the tools/components presented in D5.6 will be

discussed.

1.3. Related CERBERO Requirements

Deliverable D2.7 of the CERBERO project defines a list of CERBERO Technical

Requirements (CTRs) the project should achieve. Each of them is referenced with a

unique identifier ranging from 0001 to 0020. The CERBERO framework components

described in the current document address 11 CTRs, as described in the following table.

CTR

id

CTR Description Link with the D5.6 document on CERBERO

framework components

0001 CERBERO framework

SHOULD increase the level of

abstraction at least by one for

HW/SW co-design and for

System Level Design.

The level of abstraction will be increased by the support of

PREESM for HW/SW partitioning purposes, which is

raising the abstraction for MDC and ARTICo³ users.

0003 CERBERO framework

SHOULD provide incremental

prototyping capabilities for

HW/SW co-design.

Incremental prototyping capabilities are envisioned at the

tools/components level:

• MDC has been enhanced with HLS support;

• Dynamic Partial Reconfiguration features in ARTICo3

are on the way to be improved thanks to JIT HW

implementation and composition tool;

• runtime monitoring of ARTICo³, JIT HW and MDC

reconfigurable hardware accelerators has been enabled

H2020-ICT-2016-1-732105 - CERBERO

WP1 – D1.1: CERBERO framework components

Page 8 of 54

thanks to the integration with PAPIFY;

• the interconnection of PREESM with ARTICo³, JIT

HW and MDC speeds up prototyping by facilitating

HW/SW partitioning and co-design.

0004 CERBERO framework

SHOULD provide software and

system in-the-loop simulation

capabilities for HW/SW co-

design and System Level

Design.

HW/SW co-design will be provided by interconnecting all

the lower level tools (from application down to the lower

level implementation layer). System-in-the-loop capabilities

are a planned extension for DynAA.

0005 CERBERO framework

SHOULD provide multi-

viewpoint multi-objective

correct-by-construction high-

level architecture.

Several tools provide or will contribute to the

multi-viewpoint multi-objective correct-by-construction

high-level architecture: AOW, DynAA, PREESM/SPIDER

and MDC (Structural Profiler).

0006 CERBERO framework

SHOULD ensure energy

efficient and dependable

HW/SW co-design using cross-

layer runtime adaptation of

reconfigurable HW.

Energy efficiency and dependability through cross-layer

runtime adaptation is achieved by the interaction among

tools/components:

• PREESM/SPIDER to perform design time and runtime

HW/SW partitioning;

• PAPI to provide runtime monitoring;

• ARTICo³/JIT HW/MDC to enable HW reconfiguration

of different dependable/energy efficient fabrics.

0013 All CERBERO API and most of

CERBERO tools SHALL have

open source license.

Some CERBERO framework tools/components are already

open source (PREESM, SPIDER, PAPI and partially

MDC), while open source is a planned feature for most of

the remaining ones.

0016 CERBERO tools SHOULD be

tested vs state-of-the-art

State-of-the-art comparison is provided for all the

tools/components.

0019 CERBERO technology

providers SHALL coordinate

technical support for their tools

with use case engineers.

Source repository, tutorials and documentation of the

CERBERO framework components are discussed in D5.6.

Tools to use case mapping is provided in this deliverable.

0020 CERBERO framework SHALL

provide methodology and tools

for development of adaptive

applications.

D5.6 describes also components/tools involved in the

adaptivity support and how they contribute to this latter.

1.4. List of Acronyms

In this section the most recurrent acronyms of the document are remarked:

• API – Application Programming Interface

• CG – Coarse-Grained

• CPS – Cyber-Physical System

• CPSoS – Cyber-Physical System of Systems

• DSE – Design Space Exploration

• DPR – Dynamic and Partial Reconfiguration

• FG – Fine-Grained

• GUI – Graphic User Interface

• HDL – Hardware Description Language

H2020-ICT-2016-1-732105 - CERBERO

WP1 – D1.1: CERBERO framework components

Page 9 of 54

• HLS – High Level Synthesis

• HW – Hardware

• IR – Intermediate Representation

• KPI – Key Performance Indicator

• MoC – Model of Computation

• MPSoC – Multi-Processor System on Chip

• PiSDF – Parameterized and interfaced Synchronous DataFlow

• PMC – Performance Monitoring Counter

• SW – Software

H2020-ICT-2016-1-732105 - CERBERO

WP1 – D1.1: CERBERO framework components

Page 10 of 54

2. The CERBERO framework components

An overview of the CERBERO framework components is depicted in

Figure 2-1. They operate at different levels of abstraction, going from end-user

interaction level, as the Verification Tool (VT) and Mission Execution Crew Assistant

(MECA), to the low level implementation (HardWare (HW) abstraction) one, as the

Arquitectura Reconfigurable para el Tratamento Inteligente de Cómputo, Confiabilidad y

Consumo de energía (ARTICo³) and the Multi-Dataflow Composer (MDC). Some of the

components were already available and are extended within the CERBERO project;

others are developed from scratch. Connections among tools have been already identified

and the integration process, which can be either direct or based on the usage of an

Intermediate Format as it is going to be specified in D5.7, is generally ongoing.

H2020-ICT-2016-1-732105 - CERBERO

WP1 – D1.1: CERBERO framework components

Page 11 of 54

Figure 2-1: Overview of the CERBERO framework components.

2.1. MECA

a) State of the art

The origins of Mission Execution Crew Assistant (MECA) lie in an ESA research project

that aimed to develop agent-based crew support for astronauts on deep space missions

[Neerincx 2008]. MECA aims at a team composed of astronauts and robots that can

perform well without immediate support from ground control, concerning both planned

work and anomaly detection, integrating re-planning schemas to achieve the mission

objectives. This is done based on the concept of ePartner [Neerincx 2010], an agent that

has the objective of enabling decision making support to complete tasks (e.g.

construction, exploration, etc.) based on monitoring of the relevant tasks’ parameters

while including the human in the decision loop. In this direction, the ePartner provides

relevant information to the user, preventing cognitive overload during the task execution.

Systems that follow the ePartner concept can be found in the literature. For instance, the

ABLE toolkit [Bigus 2002] proposes a framework to develop adaptive agents focused on

self-optimization. PExA [Myers 2007] is a system developed to monitor and plan

activities in office environments following a mixed-initiative planning process, which has

slightly different constraints with respect to the scenarios covered by MECA. The work

H2020-ICT-2016-1-732105 - CERBERO

WP1 – D1.1: CERBERO framework components

Page 12 of 54

of Duell [Duell 2008] presents an agent system to monitor user activities based on

DESIRE [Brazier 2002] which is similar to MECA, but without considering interaction

between multiple agents.

b) Features

MECA is an umbrella name for a collection of ideas, techniques and SoftWare (SW)

components that aim to improve the resilience of human-machine teams. Based on these

ideas, a MECA unit can be seen an implementation that takes the form of a smart digital

assistant or ePartner.

Functionally, an ePartner is defined by its application domain, but typically almost every

ePartner provides system, environmental and human monitoring and diagnosis,

coordination with other ePartners and high level decision support in cases of unforeseen

conditions and events. For this last characteristic, the ePartner is an event-driven agent

that can behave autonomously to achieve the desired goals (deciding what to do basing

on the current state) or providing a set of alternative ways to the human, allowing him/her

to take the decisions. This means that a MECA ePartner performs online adaptivity on

three distinct levels: system, environmental and human.

A MECA ePartner is built based on the following three key principles:

• Semantics: a knowledge-centric approach to enable reasoning about the data,

which is stored and shared between ePartners through a shared Knowledge Base.

• Services: a loosely coupled architecture of hierarchical knowledge processing

services, to ensure that the system is modular and extensible, based on a central

toolbox of building blocks with clear interfaces.

• Agents: an ePartner capable of reasoning about the current execution status,

providing goal-driven behaviour support to its users.

Figure 2-2 MECA ePartner architecture

The SW architecture of a MECA unit that supports these functionalities consists on the

following components, depicted in Figure 2-2:

H2020-ICT-2016-1-732105 - CERBERO

WP1 – D1.1: CERBERO framework components

Page 13 of 54

• Knowledge Structures: a shared semantic Knowledge Base, built from ontology to

store structured data.

• Knowledge services broker: an Application Programming Interface (API) and

drivers for data monitoring/triggering and high level read/write with the

Knowledge Base.

• Internal processes: depending on the application, various internal processes can

be deployed. In general, an internal process is a component that extracts

information from the Knowledge Base to perform an information enrichment

operation to include additional information into the Knowledge Base. For

instance, it is possible to perform resource usage prediction, simulation and future

state inferencing.

• External interfaces: generic interface protocols, methodologies and design

patterns for interfacing third party SW and HW systems. This includes Human

Machine Interface (HMI) and interaction with other MECA units.

The last implementation of MECA, called MECA-HEART, has been used to demonstrate

the MECA functionalities in the context of deep space missions with human-robot

cooperation [Bosse 2017]. One of the tested scenarios entails travelling to a remote

location and constructing a cache. In such scenario, an astronaut cooperates with a

Eurobot robot to complete the different tasks in nominal and off-nominal circumstances.

During all the activity, the MECA ePartner monitors the status of all actors and resources.

If a certain resource matches a condition, an alarm raises and the ePartner includes the

crew in the decision making process, proposing resource reallocations or alternative tasks

to solve the current problem. One of the key points of the MECA ePartner is that the

solutions presented to the user are properly explained, which improves the decision

making process. While the demonstration of MECA relies in that domain, many of the

higher level concepts used in MECA are more generally applicable to situations where

humans and machines/SW work together as a team.

H2020-ICT-2016-1-732105 - CERBERO

WP1 – D1.1: CERBERO framework components

Page 14 of 54

Figure 2-3 MECA-HEART application user interface.

Inputs:

The ontology defining the application scenario, the monitoring rules, procedural task

descriptions and the initial data for the monitored parameters.

Outputs:

MECA-HEART is an online tool, so the output is determined by the current execution

context. It consists of the parameters’ values that are relevant to the current task in

execution.

Reference Platform and GUI:

MECA-HEART consists of a server to store the database and an Android user application

running in a tablet. The server is implemented in python and uses the Django REST

framework [DjangoREST 2018], while the Android application is made in Java. The

database information is accessible via web, for both the server and the application. This

latter has an interface that is designed to be usable and friendly (see Figure 2-3).

c) Role in the CERBERO framework

MECA is the interfacing component between CPSs and the user, meaning that MECA

includes the user as another component of the system for system-in-the-loop simulation.

In this direction, the role of MECA in the CERBERO framework is to provide a runtime

adaptation manager in those applications that require user-commanded adaptation,

allowing the system monitoring and interaction the users and system level tools. The

integration with other tools can be done ad-hoc or by means of sharing information

through the framework integration.

H2020-ICT-2016-1-732105 - CERBERO

WP1 – D1.1: CERBERO framework components

Page 15 of 54

d) Relevance with respect to use cases

Smart travelling: the smart travelling use case is a complex scenario involving CPSs of

Systems (CPSoS) and the user and requiring adaptivity due to system (e.g. charging pole

failure), environmental (e.g. weather conditions) and human (e.g. driver is tired)

conditions. In this context, the MECA tool enables monitoring of the various levels,

providing online adaptivity while including the user in the decision making loop when

off-nominal situations occur. MECA will be integrated with other tools belonging to the

CERBERO framework (DynAA and AOW) or not (SCANeR, map and information

providers) in order to: properly predict and monitor the battery consumption during the

trip (DynAA); simulate and monitor the car status (SCANeR); retrieve updated

information on charging poles status and weather conditions for instance (map and

information providers); calculate optimal solutions according to the available information

for route calculation or charging options (AOW).

e) Strengths and gaps

A MECA ePartner serves as a communication intermediary between CPSs at various

levels, from low to high level, with the following benefits:

• simplifies the interaction between the human and other systems;

• supports the human in the decision making loop;

• reduces the human cognitive overload providing only relevant information;

• provides event-driven models of computation;

• an online component that has been integrated with external tools;

• enables cooperation for CPSoS.

The points to be addressed to improve the MECA tool within the CERBERO project are:

• rules are currently hand-coded in Python, which makes the tool less reusable;

• the development methodology for different applications is not completely clear,

increasing the time required to deploy prototypes;

• there are no decision making modules to cover the smart travelling use case.

f) Tool extension within CERBERO

The main tool extensions envisioned within CERBERO are:

• propose a formal definition of the monitoring rules based on a close to natural

language;

• include a general rule monitoring engine for CPSoS;

• implement a route planner that considers the user profile (preferences) for the

electric vehicle use case;

• integrate with other tools belonging to the CERBERO framework or not, i.e.,

DynAA and SCANeR, to provide system-in-the-loop simulation with user

interaction;

• implement fuzzy logic support for the monitoring rules;

H2020-ICT-2016-1-732105 - CERBERO

WP1 – D1.1: CERBERO framework components

Page 16 of 54

• include user profile learning components to enhance user profile based route

planner.

2.2. VT

a) State of the art

Requirements are informal and semi-formal descriptions of the expected behaviour of a

system. They are usually expressed in the form of natural language sentences and

checked for errors manually, e.g. by peer reviews. Manual checks are error prone, time

consuming and not scalable with the increased complexity of modern systems. In the

context of safety- and security-critical CPS, it is therefore essential to automatically or

semi-automatically analyze and check the consistency of requirements. The formalization

of requirements would enable the application of formal methods techniques in assessing

requirements correctness, completeness and consistency. Furthermore, the formalization

of requirements can be employed in the subsequent phases of the design process,

automatically synthesizing models [Fuxman 2004], tests [Clerissi 2017], verification

artifacts, and even whole control algorithms [Liu 2013]. Unfortunately, the formulation

of system properties in a purely mathematical fashion requires a high degree of expertise,

difficult to find in practice, and it can create a barrier to the adoption of these techniques.

To deal with the problem of the requirements formalization, a common solution is the use

of Property Specification Patterns (PSPs), first introduced by [Dwyer 1999]. PSPs are a

collection of parameterizable, high level, formalism-independent specification

abstractions usually based on a restricted English grammar. They provide an easy way to

express properties of a system with an English-like syntax, while preserving a well

defined semantic. Since the original work of Dwyer [Dwyer 1999], a considerable

number of PSP systems have been proposed, grounding on different logics. PSPs have

successfully been applied in many domains, such as automotive [Post 2012], aviation

[Esteve 2012] and banking [Bianculli 2012].

b) Features

The Verification Tool (VT) is being developed by scratch during CERBERO. It aims at

providing automated consistency checking of requirements expressed as PSPs with both

Boolean variables and constrained numerical signals.

Inputs:

Set of requirements in natural (controlled English) language, formulated as PSPs for

Linear Temporal Logic (LTL) extended to constrained numerical signals, as described in

[Narizzano 2017].

Outputs:

Consistency result (yes/no). In the case of inconsistency, the tool returns the minimal set

of requirements that causes the inconsistency.

H2020-ICT-2016-1-732105 - CERBERO

WP1 – D1.1: CERBERO framework components

Page 17 of 54

Reference Platform and GUI:

The VT is being developed in Java and it is at the moment available as a standalone

application from command line and via web. It has been planned to provide VT with a

proper Graphic User Interface (GUI).

c) Role in the CERBERO framework

The VT is placed at the end-user and at the system model levels. It can be exploited for

requirements verification at the early stage of the design process. It can also interact with

other abstraction levels besides end-user and system model ones, such as implementation

layer.

d) Relevance with respect to use cases

Actually the tool can be exploited for requirements and properties verification in all the

three CERBERO use cases.

e) Strengths and gaps

PSPs used in VT have been extended with respect to state of the art LTL PSPs, as shown

in [Narizzano 2017]:

• off the shelf LTL model checkers are used as back-engines, while VT is modular

with respect to the used model checker;

• VT has been designed to be easily extended to PSPs in more expressive logical

languages;

• a Minimum Unsatisfiable Core (MUC) extraction procedure has been

implemented in order to provide the minimal set of inconsistent requirements (if

the initial set is not consistent);

• a GUI allows its usage to a non expert user;

• VT is open source (https://github.com/SAGE-Lab/snl2fl,

https://github.com/SimoV8/ReqV-webapp).

PSP-Wizard [Lumpe 2011] is a literature framework for machine-assisted definition of

temporal formulae capturing pattern-based system properties. PSP-Wizard offers a

translation into LTL of the patterns encoded in the tool, but it is meant to aid

specification, rather than support consistency checking, and it cannot deal with numerical

signals.

The work in [Konrad 2005] also provided inspiration to a recent set of works (see, e.g.

[Dokhanchi 2018]) about a tool called VI-Spec, to assist the analyst in the elicitation and

debugging of formal specifications. VI-Spec lets the user specify requirements through a

GUI, translates them to Metric Interval Temporal Logic (MITL) formulae and then

supports debugging of the specification using runtime verification techniques. VI-Spec

embodies an approach similar to the VT one, to deal with numerical signals by translating

inequalities to sets of Boolean variables. However, VI-Spec differs from VT in several

aspects; most notably the fact that it performs debugging rather than consistency, so the

https://github.com/SAGE-Lab/snl2fl
https://github.com/SimoV8/ReqV-webapp

H2020-ICT-2016-1-732105 - CERBERO

WP1 – D1.1: CERBERO framework components

Page 18 of 54

behaviour of each signal over time must be known. Also, VI-Spec handles only

inequalities and does not deal with sets of requirements written using PSPs.

f) Tool extension within CERBERO

The tool is actually at an early stage of development because its design and

implementation began in the context of the Task 5.2 activities. Further extensions will

include more expressive PSPs and properties verification with respect to a formal model.

VT will be interfaced with several other components within the CERBERO framework:

• DynAA:

o dealing with the same input model, VT will be capable of providing a

feedback on possible errors appearing on the model, thus facilitating its

correction within DynAA;

o DynAA simulation features could be provided with monitoring

capabilities through VT, so that design time verified requirements can be

also validated at simulation time;

• AOW, allowing the verification of linear programming models on the bases of the

IBM Cplex solver technology [Cplex];

• lower level tools (ARTICo³ and MDC) for automatic test pattern generation.

2.3. DynAA

a) State of the art

DynAA is a modelling and system level analysis tool, built on the top of a discrete event

simulation engine. The design of this simulation engine follows established approaches

[Banks 2004] [Nutaro 2010], but with special attention for dynamic model

reconfiguration. This means that system models may freely change in their structure,

composition, and behaviour during simulation. Such changes do not necessarily need to

be previously described during the experiment setup phase or simulation design.

H2020-ICT-2016-1-732105 - CERBERO

WP1 – D1.1: CERBERO framework components

Page 19 of 54

Figure 2-4: Interface of DynAA.

In most of the model-based system-oriented simulation tools, such as Matlab Simulink

[Mathworks], and Modelica [Modelica], designers describe their component models,

connect them, and start simulation runs. Within a single simulation run, the models and

the system structure can only change if modification is previously described within

models during experiment setup. The simulation engine in DynAA allows every

component, communication link, or environment model to be included, deleted, and/or

modified during simulation. Such capability makes DynAA specially interesting for the

analysis and simulation of self-adaptive, self-reconfiguring, and self-evolving systems.

DynAA is implemented in Java, supports Matlab and has a graphical modelling interface

realized with the commercial tool MetaEdit+. At the moment, this interface is being

reshaped to get rid of the commercial dependency (and extra licenses) of MetaEdit+.

Figure 2-4 shows a view of the graphical interface and some DynAA code in Matlab.

b) Features

DynAA [Oliveira 2013] [Leeuwen 2014] [Papp 2016] is a modelling and simulation tool

originally conceived for designing large, adaptive, and networked (embedded) systems.

DynAA enables system designers to design and model individual system components by

defining their behaviour, interface, and non functional aspects (as for example energy

consumed during operation and storage capacity). System components include physical

devices, such as processor units or memory modules, and purely behavioural blocks, such

as functions and SW processes (tasks).

Figure 2-5 shows the architecture layers of the tool along with a simplified UML class

diagram that represents its main design concepts. The tool was designed along four

H2020-ICT-2016-1-732105 - CERBERO

WP1 – D1.1: CERBERO framework components

Page 20 of 54

abstraction layers: the simulation engine or core, the meta model layer, the model library

layer, and the user API layer.

Figure 2-5: DynAA tool layers and basic concepts.

DynAA uses three fundamental models, as depicted in Figure 2-6:

• the task model, which captures the parallelism and the event handling;

• the physical model, which describes the HW configuration of the implementation;

• the function to task allocation (F  T mapping).

The task model (with the associated dataflow model) captures the programmatic

properties of the design. Note that no HW and communication related properties are

incorporated in the task model. HW related characteristics start playing a role when the

task graph is mapped to the physical model: the task network is executed on a physical

HW configuration consisting of processing nodes connected by communication links.

The task model, the physical model and the F  T mapping jointly determine the system

level characteristics, such as response time, throughput, energy consumption, reliability,

etc.

Inputs:

DynAA receives as input three models (views) of the system, as depicted in Figure 2-6:

the task model, the physical model, and the function to task allocation (F  T mapping

model).

Outputs:

A system simulated in DynAA produces a simulation log that can be post processed to

extract system Key Performance Indicators (KPIs) and their evolution during the

simulation time. Typical plots that can be extracted from DynAA are energy

consumption profile, communication latency and throughput for each channel, task

activation rate profiles, reliability of the system, etc.

H2020-ICT-2016-1-732105 - CERBERO

WP1 – D1.1: CERBERO framework components

Page 21 of 54

Reference Platform and GUI:

The DynAA simulation environment is a java program that does not have a GUI. Though

it can be programmed by the user or integrated in a visualization environment (such as

GAZEBO). The DynAA modelling environment is at the moment implemented in the

commercial tool MetaEdit++, by MetaCase.

Figure 2-6: Way of modeling in DynAA.

c) Role in the CERBERO framework

Within CERBERO, DynAA is one of the system level design tools. It is used to model,

analyze, and simulate aspects of the CPSs under design in early stages of the

development. DynAA’s added value is the early evaluation (indication) of KPIs, helping

the decision making process at the system level design.

d) Relevance with respect to use cases

Smart Travelling: The use of DynAA for the design of CPSs is demonstrated mainly

within the context of the Smart Travelling use case. The use case develops a routing

planning system tightly coupled with the electric system of the car and with the battery

charging grid infrastructure. In this context, two challenges appear where DynAA is the

key solving technology:

• Runtime solution space exploration: the core of the routing system is a

predictive model that allows estimating the consumption of energy that will be

necessary to complete a route, and planning re-charging moments at appropriate

H2020-ICT-2016-1-732105 - CERBERO

WP1 – D1.1: CERBERO framework components

Page 22 of 54

places and time spots. The design of this prediction module requires modelling

and simulating (1) the physics of the car when driving on different terrains, (2) the

electric power train including battery and electric engine, (3) the driver driving

style, and (4) the conditions of the road. These elements are modelled in DynAA,

which runs simulation to predict energy consumption and battery lifetime KPIs.

• System in the loop simulations: it will be also considered the case of developing

the electric power train of the car. In this case, models of battery and the electric

engine are simulated in DynAA providing a runtime, direct interaction with

signals that come from the car (in the use case represented by the simulation

environment SCANeR and the cockpit simulator in CRF).

Ocean Monitoring: DynAA usefulness for CPSs design will be also proved within the

Ocean Monitoring use case, where it will mainly provide:

• simulation of models for complex cameras/lenses systems in order to optimize,

with the aim of AOW, different system KPIs (such as response time, image

quality or throughput);

• predictive models to estimate how long the battery will last during mission in

order to trigger adaptation accordingly.

e) Strengths and gaps

The major strength of DynAA, as explained in details in the features subsection, is the

complete dynamicity of the components in the model. Components may be created or

deleted during the simulation as part of the behaviour. This feature makes the description

of large, adaptive systems much easier.

As a simulation and analysis tool, DynAA is able to explore a large space of design

solutions and system parameters. Such feature is enabled by choosing among an adequate

heuristics or different optimization algorithms (based on Nelder–Mead, genetic

algorithms, simulated annealing, and Monte Carlo methods) that guide the Design Space

Exploration (DSE). The algorithm choice is made based on the type of the problem to be

solved. Nevertheless, the process of DSE may take considerable time due to the number

of simulations that have to be executed. The DSE under DynAA needs to scale in

performance in order to tackle the design of systems with large number of components,

such as a network of automobile communications, for example.

Moreover, at the beginning of the CERBERO project, DynAA simulations could only be

carried out in isolation, that is, within the environment of DynAA. Such situation is not

always desired during the design of CPSs, where simulations are required to work in tight

coupling with real parts of the system under development.

f) Tool extension within CERBERO

In CERBERO, it will be explored the possibility of parallelizing the DSE used in

DynAA. In this approach, the space to be explored (usually a large set of parameters) is

divided in smaller segments and simulations for each segment are executed in parallel.

That, combined with smart space exploration methods, will boost the DSE capabilities

and allow it to be used also in runtime environments.

H2020-ICT-2016-1-732105 - CERBERO

WP1 – D1.1: CERBERO framework components

Page 23 of 54

In CERBERO, system in the loop capabilities will be developed for DynAA. Such

feature will make DynAA a more valuable tool during the design of CPSs, especially

when simulations of components under development have to be carried out with parts of

the system that already exist.

2.4. AOW

a) State of the art

Architecture Optimization Workbench (AOW) developed by a team from IBM Research

lab in Haifa, Israel in order to bestow the power of optimization onto Systems Engineers

[Broodney 2012]. AOW uses a unique combination of modeling approach, sound SW

engineering and state of the art mixed integer linear optimization technology. Using

AOW, engineers have the ability of evaluating hundreds to millions of potential

architecture configurations in a matter of hours and to be able to support the architectural

decisions with quantifiable benefits in driving cost and performance for the program.

While the rest of the existing engineering optimization tools, being an assortment of

domain specific solvers or search techniques runs in sequence, are best suited for

optimization of design parameters of a known architecture, AOW allows multi-objective

optimization of system’s architecture topology using the strongest existing solvers, such

as Cplex [Cplex].

Currently, AOW is implemented in Java as Rational Rhapsody [Rhapsody] plugin and

integrated with MS Excel [MS Excel] and Pacelab Suite [Pacelab]. In current

implementation, AOW uses Cplex [Cplex] to perform optimization.

b) Features

AOW is described in [Broodney 2012], [Masin 2013], and [Masin 2014]. In AOW, the

system engineer can rapidly create the necessary system architecture, satisfying all

functional and technical constraints needed to achieve the specified goals. AOW models

the composition rules (also known as architectural patterns, or templates) of the required

functional, physical, geometrical, project management and other system structures and

relations both inside (data flow, energy flow, etc.) and between them (e.g. potential

mapping between functions and physical components). AOW workflow is represented in

a Figure 2-7.

For modeling purpose, AOW uses standard SysML with concise profile that builds on top

of it. Concise profile allows defining different AOW concepts, including template

architectures, different viewpoints and mappings, integration capabilities, optimization

goals, constraints parameters and decision variables on top of SysML model, converting

it to the concise model, i.e. template model, suitable for DSE purpose [Broodney 2012].

The potential physical components are imported from a library, along with geometrical

data, if relevant for the use case. In current implementation such libraries can be defined

using Excel and/or and Pacelab Suite. Optimization goals and constraints are specified as

SysML constraints or Parametric Diagrams [Masin 2014], or via pluggable metrics that

H2020-ICT-2016-1-732105 - CERBERO

WP1 – D1.1: CERBERO framework components

Page 24 of 54

are defined using special textual format on top of intermediate model representation

known as SEMI. The tool uses all the inputs above in order to automatically generate

SEMI representation of the concise model that is further automatically translated into a

mathematical optimization program in OPL language [Hentenryck 1999] and solved by

the IBM Cplex solver. Usage of SEMI allows performing modular changes and

extensions of AOW. For example, AOW can be extended to use different tools and

modeling languages for concise model definition or to produce optimization models in

other languages, such as AMPL [AMPL], to be used with other solvers. Since there are

multiple and usually conflicting goals, the optimization finds diverse Pareto optimal

solutions (solutions where no goal can be improved without adversely affecting another

goal) using special diversity maximization algorithm [Masin 2008]. This is the maximum

effort that can be done automatically before the final human decision. Values of

optimization goals from the set of optimal solutions (architectures) found by the

optimization are represented to the decision maker using parallel coordinates diagram

(Figure 2-8).

Figure 2-7: AOW workflow.

From this diagram, the system engineer could pick a subset of optimal solutions that will

be automatically translated (back annotated) into the regular SysML model in order to be

reviewed by the engineer. AOW interface enables: importing and editing data, adding

constraints and objectives, and managing the optimization runs, including viewing the

results and exporting them to the follow-on processes.

H2020-ICT-2016-1-732105 - CERBERO

WP1 – D1.1: CERBERO framework components

Page 25 of 54

Inputs:

SysML concise modelling of the architecture problem including Rhapsody, Excel models

and KPI metrics (algebra) templates.

Outputs:

Pareto frontier of optimal architectures.

Reference Platform and GUI:

AOW is developed in Java as an add-on to Rhapsody. It will be open source at the end of

the CERBERO project.

Figure 2-8: Parallel coordinates diagram adopted by AOW to show the optimization

results.

c) Role in the CERBERO framework

AOW provides exploration of huge decision/design spaces, both as a standalone system

level tool and as an internal optimization engine for HW/SW co-design, in collaboration

with tools like PREESM or MDC.

d) Relevance with respect to use cases

Space Exploration: as an internal optimization engine for HW/SW co-design.

Smart Travelling: as an offline optimization engine for optimal routes used during fast

online decision making later on.

Ocean Monitoring: as an optimization engine for the application architecture or as an

internal optimization engine for HW/SW co-design.

e) Strengths and gaps

H2020-ICT-2016-1-732105 - CERBERO

WP1 – D1.1: CERBERO framework components

Page 26 of 54

The main strength of AOW is in its ability to utilize concise modelling and pluggable

viewpoints, making them available to domain specialists with minimal assistance from

operations research experts. The main gap is to extend it to optimization of hybrid

systems (see D3.6) without discretization.

f) Tool extension within CERBERO

In CERBERO AOW will be extended as follows:

• implementation of Simplex-based algorithm for Separable Continuous-time

Linear Programming (SCLP);

• development of HW/SW co-design algebra using SCLP;

• development of Smart Travelling route optimization using SCLP.

• development of theory and proof of concept for Mixed Integer SCLP;

• development of theory and proof of concept for Robust SCLP.

2.5. PREESM

a) State of the art

The ever-increasing performance of embedded systems is driven by the introduction of

low-power massively parallel architectures. At the same time, more than 80% of

embedded SW is still written using procedural languages such as C/C++. Procedural

languages are based on control-dependent sequences of imperative instructions. These

characteristics make procedural languages inherently ill-suited for programming

heterogeneous Multi-Processor System on Chip (MPSoC) architectures, where hundreds

of heterogeneous processing elements communicate through complex on-chip

interconnects and distributed memory architectures. Hence, a widening SW gap exists

between the developer productivity and the increasing code complexity required to fully

exploit parallel computing resources [Ecker 2009].

The main challenges to overcome in order to bridge the SW productivity gap are:

• to exploit enough algorithm parallelism (task, data and pipeline parallelisms) to

minimize latency in general;

• to choose the right core for each application subtask;

• to provide data where and when needed so as to avoid stalling cores and under

using.

Related tools and techniques used to address the problematic are:

• Parallel Programming APIs: Pthread, OpenMP, MPI, OpenCL, CUDA, GoLang,

etc.

• Some Model-Based Design-space exploration tools: SynDEx [Grandpierre 1999],

SDF3 [Stuijk 2006], Ptolemy II [Davis 1999], Silexica Studio [Leupers 2017],

SpearDE [Torquati 2012].

H2020-ICT-2016-1-732105 - CERBERO

WP1 – D1.1: CERBERO framework components

Page 27 of 54

b) Features

Figure 2-9 - Overview of the PREESM Workflow.

The Parallel and Real-time Embedded Executives Scheduling Method (PREESM) is a

rapid prototyping framework that provides methods to study the deployment of dataflow

applications onto heterogeneous MPSoCs [Pelcat 2014]. Figure 2-9 shows an overview of

the development flow.

Inputs:

The specification of an application in PREESM is based on the following elements:

• PiSDF Graph: The behaviour of the application to deploy is specified using the

Parameterized & interfaced Synchronous DataFlow (PiSDF) Model of

Computation (MoC) [Desnos 2013]. This model fosters parallelism,

compositionality and parameterization of the specified application behaviours.

Only applications with a statically defined (i.e. not dynamically reconfigurable)

behaviour are supported by PREESM. Application graphs are

architecture-independent.

• S-LAM Archi.: The System-Level Architecture Model (S-LAM) provides a high

level description of the platform on which the application has to be deployed

[Pelcat 2009]. The objective of S-LAM is to model the characteristics (e.g.

communication throughput, computation speed) of the elements composing the

architecture with a low complexity and to enable fast simulation in order to reveal

the bottlenecks of the system. Architecture graphs are application-independent.

• Scenario: The purpose of the scenario is to specify the deployment constraints for

a pair of application and architecture.

• Graph annotations and Scripts: These optional inputs, specified by the

developer, are used by PREESM to optimize the memory allocation of the

application during its development on the multi-core target. Graphs annotations

specify how dataflow actors read/write data from their input and output buffers,

H2020-ICT-2016-1-732105 - CERBERO

WP1 – D1.1: CERBERO framework components

Page 28 of 54

and scripts give hints on how to minimize the memory footprint of dataflow

actors.

• Actor C code: Each actor of the PiSDF graph is associated to a C file specifying

the function that should be executed when this actor is fired. This input is not used

by the PREESM workflow, but it is needed to run the application on the selected

target.

The PREESM workflow consists of several modules, each responsible for a specific task

or optimization in order to map the application graph on the targeted architecture:

• Graph transformations: The hierarchy flattening and single-rate directed

acyclic graph (DAG) transformation are two successive transformations used to

customize the granularity of actors and the degree of the application before the

mapping and scheduling process.

• Memory optimizations: The build MEG, memory allocation, and compute

memory bound modules are responsible for the modelling, the minimization and

the optimality evaluation of the memory allocation problem, respectively.

• Mapping/Scheduling: The static scheduling and display Gantt and metrics

modules are responsible for performing and assessing the distribution of the

computations among the different heterogeneous cores of the architecture.

Outputs:

When executed for a given pair of architecture and PiSDF graph, specified in a scenario,

the PREESM framework generates the following elements:

• Log info: The log info gives valuable information on the different optimization

performed by the workflow. It notably informs the developer on the degree of

parallelism of the application or on the efficiency of the memory optimization

algorithms.

• Code generation: The purpose of this module is to translate the prototyping

decisions made by PREESM into executable code for the targeted architecture, or

into inputs for a Fine-Grained (FG) simulator.

Reference Platform and GUI:

PREESM is developed at the as a set of open source plugins for the Eclipse IDE.

c) Role in the CERBERO framework

As depicted in Figure 2-1, because of its rapid prototyping nature for component level

applications (i.e. applications running on a single heterogeneous MPSoCs), PREESM

acts as a natural interface between the system level tools and the lower level runtime and

implementation tools. As such, PREESM will receive deployment scenarios of

applications from the upper level tools, specifying the application graph to deploy, the

targeted architecture, and a set of KPIs to optimize or constraints to respect. As a

feedback, PREESM will provide an evaluation of the KPIs to the upper level tools, as a

contribution to the CPS DSE at the system level. Depending on the deployment decisions

made by PREESM, different back-ends will be used to implement and further optimize

different parts of an application with different lower level implementation and runtime

H2020-ICT-2016-1-732105 - CERBERO

WP1 – D1.1: CERBERO framework components

Page 29 of 54

tools. To better drive the optimization algorithm of PREESM, lower level tools (like

PAPIFY) will also be used to feedback profiling information into PREESM optimization

algorithms.

d) Relevance with respect to use cases

Planetary exploration: PREESM can be used to create an implementation of the

computational part of the use case. By providing a parallel dataflow description of the

robotic arm control algorithm, it will be possible to use PREESM to optimize several key

KPIs of the application (time, memory, energy). Leveraging on the new connections of

PREESM with PAPIFY, ARTICo³ and MDC, will also make it possible to use PREESM

to drive and assess key steps of the DSE for this use case (e.g. HW/SW partitioning,

automated profiling of applications).

e) Strengths and gaps

The features that differentiate PREESM from the related works and similar tools are:

• the tool is open source and accessible online;

• the algorithm description is based on a single well known and predictable MoC;

• the scheduling is totally automatic;

• the functional code for heterogeneous multi-core embedded systems is generated

automatically;

• rapid prototyping metrics are generated to help the system designer to take

decisions;

• the PiSDF algorithm model provides a helpful hierarchical encapsulation and

parameterization, thus simplifying the scheduling;

• the S-LAM provides a high level architecture description to study system

bottlenecks.

f) Tool extension within CERBERO

The main tool extensions envisioned within CERBERO are:

• direct connections with lower level tools: MDC, PAPIFY, SDSoC [SDSoC],

ARTICo³ to provide heterogeneous adaptivity support for CPSs;

• connection with upper level tools through the CERBERO integration framework

to provide higher-level of abstraction views of the addressed CPSs;

• implementation of CERBERO modelling contributions on PiSDF model (see

D3.5 for more information);

• connection with AOW for the multi-objective optimization of multiple application

deployments.

H2020-ICT-2016-1-732105 - CERBERO

WP1 – D1.1: CERBERO framework components

Page 30 of 54

2.6. SPIDER

a) State of the art

The most commonly used runtime management systems found in embedded and CPS are

OpenMP [OpenMP 2015], LLVM Runtime [LLVM], OpenCL [Khronos 2017]. The role

of these runtime managers is to deploy applications on the fly on the available

computational, communication and storage resources, by using greedy strategies.

Information given to the runtime is mostly functional, and often transmitted as an IR

heavily based on imperative MoCs. As shown in D3.5, imperative MoCs have a poor

analyzability, and does not foster application predictability, which makes it very difficult

for runtime systems to perform runtime optimization.

There exist very few runtime management systems dealing with applications specified

through a well defined MoC and exploiting the analyzability of this MoC to make

runtime decisions. SPIDER [Heulot 2014], leveraging on a specific MoC predictability

and analyzability, has been able to outperform OpenMP for certain applications.

Figure 2-10 - Overview of SPIDER.

b) Features

The Synchronous Parameterized and Interfaced Dataflow Embedded Runtime (SPIDER)

was originally introduced in [Heulot 2014] as a runtime manager for the execution of

reconfigurable dataflow graphs on heterogeneous MPSoCs. Figure 2-10 illustrates the

simplified workflow of SPIDER.

Inputs:

The inputs used by SPIDER to manage the execution of an application on a multicore

target are:

• PiSDF Graph: The PiSDF MoC [Desnos 2013] is used to specify the

dynamically reconfigurable behaviour of the applications managed by SPIDER.

This graph is designed using the PREESM editor, and transmitted to SPIDER as a

H2020-ICT-2016-1-732105 - CERBERO

WP1 – D1.1: CERBERO framework components

Page 31 of 54

set of C++ files generated by PREESM. As in PREESM, PiSDF graphs are

architecture-independent.

• Actor Code: Each actor of the PiSDF graph is associated to a C file specifying

the function that should be executed when this actor is fired.

• Architecture Model: As in PREESM, the S-LAM model is used to give SPIDER

information on the targeted architecture.

To deploy PiSDF application graphs on multi-core architectures, SPIDER relies on a

master/slave structure and a set of communication queues:

• Global Runtime (GRT): This master processing element acts as the brain of the

runtime. The GRT manages the PiSDF graph topology, performs graph

transformations depending on dynamically defined values of parameters, and

takes mapping and scheduling decisions. It is usually implemented over a general

purpose core.

• Local Runtimes (LRTs): These lightweight slave processes are responsible for

executing actors assigned to them by the GRT. LRTs can be implemented over

heterogeneous types of processing elements: general purpose or specialized

processors, accelerators.

• Queues: A set of communication First-In, First-Out queues are used to implement

communications between the GRT and the LRTs. One job queue per LRT is used

by the GRT to transmit actor execution commands. A set of data queues are used

by LRTs to exchange data tokens produced and consumed by dataflow actors. A

parameter queue is used by LRTs to feedback dynamically resolved parameter

values to the GRT. A timing queue is used by LRTs to feedback actor profiling

information to the GRT. Queues can be implemented in HW or in SW depending

on the targeted platform.

Outputs: The SPIDER runtime produces the following output when executing an

application on a given architecture:

• Trace: SPIDER gives information on the mapping and scheduling decisions it

makes when running, and also keeps tracks of the amount of resources (memory,

queues, etc.) it uses.

• Gantt diagram: On completion of the graph execution, SPIDER can output a

multi-core Gantt diagram of the measured start and end execution times of actors.

Reference Platform and GUI:

SPIDER is developed as an open source project and is currently compatible with any

architecture supporting the pthreads API. Additionally, HW-specific implementations of

SPIDER have been developed for Kalray MPPA many-core architectures, and for Texas

Instruments Keystone II heterogeneous digital signal processing chips.

c) Role in the CERBERO framework

SPIDER is a key element of the CERBERO adaptive runtime layer. As such, SPIDER

will receive deployment scenarios of applications from the upper level tools, mainly via

PREESM and the CERBERO framework integration, specifying the application graph

H2020-ICT-2016-1-732105 - CERBERO

WP1 – D1.1: CERBERO framework components

Page 32 of 54

and code to deploy, the targeted architecture, and a set of KPIs to optimize or constraints

to respect. The reconfiguration engine of SPIDER will be used to support the dynamic

adaptations of the application, notably by managing its deployment on available HW

resources (heterogeneous processing elements, memory, etc.).

d) Relevance with respect to use cases

Space exploration & ocean monitoring: SPIDER can be used to support adaptive

behaviour of algorithms depending on data captured by the sensors of the system. An

example of use case occurs in systems where it can be detected that sensed data is not

exploitable by the system (e.g. too noisy), and thus requires low/no computations for its

processing. In such a case, if this adaptivity is properly exposed at the dataflow graph

level, SPIDER can redeploy the application to minimize its resource overhead, thus

lowering the energy footprint of the system and freeing resources for other services

executed by the system. Adaptivity can also be used to trigger reconfiguration of the

system in cases when faulty HW is detected, thus providing self-healing capacity to the

system.

e) Strengths and gaps

The features that differentiate SPIDER from the related works and similar tools are:

• the tool is open source and accessible online;

• the expressiveness of the model supported by the tool is limited, giving its

strength to the runtime, but also preventing the representation of some

applications;

• optimizations performed at runtime by the tool have an overhead on the

application performance, which must be compensated by performance

optimization;

• the tool currently support general purpose and embedded heterogeneous targets.

f) Tool extension within CERBERO

The main tool extensions envisioned within CERBERO are:

• support for real-time extension of dataflow MoCs from CERBERO;

• connection with PAPIFY to take energy monitoring information into account for

runtime decisions;

• connection with MDC and ARTICo³ for supporting CPU-FPGA heterogeneous

targets;

• runtime optimization to reduce the runtime overhead in cases of infrequent system

reconfigurations, e.g. for self-healing purposes;

• connection with the CERBERO integration framework for KPI exchanges.

H2020-ICT-2016-1-732105 - CERBERO

WP1 – D1.1: CERBERO framework components

Page 33 of 54

2.7. PAPIFY/PAPIFY VIEWER

a) State of the art

In literature, several tools have been proposed to perform performance monitoring in

running systems. They are used to analyze the execution of applications on target

platforms, which requires a deep understanding on the underlying architecture.

Abstracting away these details and offering a standard API that helps accessing and

gathering this HW monitoring information coming from Performance Monitoring

Counters (PMCs) [Terpstra 2009] is the objective of the Performance API, PAPI, on

which PAPIFY is based and built upon. Even though PAPI can be used as a standalone

tool for system and application analysis, it has been widely employed as a middleware

component in profiling, tracing and sampling toolkits such as HPCToolkit [Adhianto

2010], Vampir [Knüpfer 2008] and Score-P [Schlütter 2014]. Using PAPI, the PMCs can

be transparently accessed to analyze profiling information such as memory usage, code

parallelization, workload associated to each PE, I/O utilization, etc... Additionally, some

other parameters, such as power or energy [Ren 2013, 2014], can be estimated combining

this information. Having these performance indicators transparently extracted would

contribute not only to improve designers' productivity, but also to achieve an iterative

design flow that can be more easily integrated with tools for rapid prototyping like

PREESM and runtime managers like SPIDER.

b) Features

PAPIFY is a tool that implements an event-based performance monitoring in RVC-CAL

dataflow applications [Bhattacharyya 2011]. PAPIFY integrates the PAPI into the

Open-source RVC-CAL Compiler (ORCC [ORCC]). PAPIFY analyses in detail the

performance of an implementation in a processor-based platform. PAPIFY Viewer is a

visualization tool to monitor the actions of actors in RVC-CAL specifications. Fired

actions can be analysed chronologically from either an actor or a partition point of view.

In addition, PAPIFY Viewer can also generate event histograms. PAPIFY employs the

annotation syntax defined in ISO/IEC 23001-4 to signal the instrumented actors and

actions. Annotations are a common mechanism in the RVC-CAL language to drive the

compiler behaviour. In order to profile an actor, annotations of the form

@papify(ListOfEvents) are employed, where the ListOfEvents is a non empty,

comma-separated sequence that comprises any of the preset events of the PAPI.

PAPIFY Viewer is a tool written in Processing, a programming language for visual

applications, that helps in the analysis of the activity file created with PAPIFY. Due to

the enormous amount of information typically generated in the activity file, the use of

visual tools is recommended to get an insight of the action traces obtained during the

execution of an RVC-CAL specification. PAPIFY Viewer can additionally generate

per-actor, per-action and per-partition histograms of events.

Inputs:

H2020-ICT-2016-1-732105 - CERBERO

WP1 – D1.1: CERBERO framework components

Page 34 of 54

PAPIFY employs as input a network of RVC-CAL actors. To assess all actions of an

actor, an annotation should be included before the actor interface declaration. The format

of the annotation is the following:

@papify([event1], [event2], …, [eventn])

where each:

[eventi]

is a PAPI preset event. At least one event should always be included. With PAPIFY, it is

possible to assess specific actions of an actor and remove the rest of them from the

evaluation. To do so, the following annotation shall be included above the actions whose

performance is required to measure:

@papify

Furthermore, to add the events to measure, the same annotation employed for the actor

assessment shall also be included:

@papify([event1], [event2], …, [eventn])

In this way, the annotated actions can be instrumented with the events indicated at the

actor level.

For PAPIFY viewer the input is the activity file created with PAPIFY.

Outputs:

Once the execution of a specification instrumented with PAPIFY has finished, a folder

with the name papi-output is created. This folder is located in the folder /bin of the

ORCC generated folders. Within the papi-output folder, the output files of each of the

instrumented actors are written. These files are the input to the PAPIFY Viewer tool.

PAPIFY viewer generates a chronological view per actor of the activity of a

specification. In addition, PAPIFY Viewer can generate per-actor, per-action and

per-partition histograms of events.

Reference Platform and GUI:

PAPIFY is integrated within the C back-end of ORCC, that is a set of open source

plugins for the Eclipse IDE. It can be used targeting those platforms in which the PAPI

can be installed. PAPIFY Viewer is a standalone program that runs independently from

PAPI.

c) Role in the CERBERO framework

The main role of PAPIFY within the CERBERO framework is serving as the

performance monitoring tool. As such, by a seamless access to the underlying HW and

SW computational resources, it will allow developers/users to gather performance

information. This is to be provided through a new abstraction layer added to PAPI within

CERBERO, a library called eventLib, enabling this way a transparent access to standard

PMCs in processor cores and specific HW monitoring infrastructure (specifically added

in the HW accelerators coming from MDC and ARTICo³). By having access to this

information, PAPIFY can be leveraged both at design and at runtime. At design time, it

H2020-ICT-2016-1-732105 - CERBERO

WP1 – D1.1: CERBERO framework components

Page 35 of 54

will assist in rapid prototyping by gathering runtime information that can assist in the

DSE done by PREESM. Besides, at runtime, it is a key element to drive system

self-adaptation through its combination with the runtime manager SPIDER. The

information provided by the PMCs in processor cores and their HW accelerators

counterparts, is fed back to the embedded system models, so this way the produced KPIs

can be used by the Adaptation Manager to drive the change through the different

Adaptation Engines (for more details see D4.3).

d) Relevance with respect to use cases

Space exploration: being the access point to the runtime performance information

produced by the different computational elements of the system, PAPIFY is a key

element in its adaptivity. Through the embedded system models and the Adaptation

Manager, the information obtained by PAPIFY can be used to predict the power

consumption (using the prediction models included in the Manager) for the given

configuration of the system (itself and the sensed environment). This way it might help in

leading the system towards operation points that reduce its energy footprint by deploying

a new graph as commanded by SPIDER. This can vary from changing the degree of

parallelism, to switching the computational element actually executing the graph (or a

part thereof) or even discarding the completion of lower priority tasks in order to extend

system lifetime. Very important also, as the data obtained by PAPIFY contains

information on faults occurring in the cyber part, it is the first step in the chain that

triggers system self-healing. Hence, combined with the HW/SW self-reconfiguration

capabilities of the system, together with the intelligence included in the Adaptation

Manager, PAPIFY provides the self-awareness infrastructure required to fulfill a fully

autonomous CPSs self-adaptation.

e) Strengths and gaps

The weaknesses of PAPIFY and PAPIFY Viewer from the related works and similar

tools are:

• depending on the granularity of the monitored actor, the introduced overhead can

slash the original performance;

• monitoring accuracy depends on the number of monitored events when this

number is greater than the number of available PMCs, multiplexing techniques

are employed and, consequently, some inaccuracies are incurred);

while the strengths are:

• high level abstraction of the monitoring process in heterogeneous systems;

• graphical selection of KPIs or events to be monitored at the actor level

independently from the actual type of resource allocated, HW or SW.

f) Tool extension within CERBERO

The main tool extensions envisioned within CERBERO are:

H2020-ICT-2016-1-732105 - CERBERO

WP1 – D1.1: CERBERO framework components

Page 36 of 54

• PAPIFY integration into PREESM to instrument with selected events the

automatically generated SW implementation;

• PAPIFY integration into MDC and ARTICo³ to instrument with selected events

the automatically generated HW implementation;

• PAPIFY integration into SPIDER to provide at runtime monitoring information to

be used as input of its adaptivity core functionality;

• inclusion of KPI estimators in PAPIFY to directly provide the estimated values

from event occurrences when the infrastructure to measure KPIs is not available

at the CPS platform;

• Real-time plotting of event occurrences and KPI estimations on heterogeneous

platforms with PAPIFY Viewer.

2.8. Just-In-Time HW Composition Implementation Tools

a) State of the art

Dynamic Partial Reconfiguration (DPR) increases the flexibility of FPGAs design

enabling the change of the instantiated accelerators in real time. This design flow is based

on the definition of a static system that cannot be changed at runtime and one or multiple

reconfigurable partitions (RPs), where different accelerators can be allocated in real time.

For each reconfigurable accelerator it is necessary to generate a Partial BitStream (PBS),

defining the configuration of the region of the FPGA where the accelerator was initially

generated. However, it would be desirable to enable the reallocation of each accelerator

in different RPs of the device. Commercial tools, like Vivado from Xilinx, need to create

one PBS for each RP, thus if an accelerator must be allocated in three different partitions

it is necessary to implement the circuit 3 times and so 3 different PBS will be generated.

This affects both the implementation time and the in-system memory requirements.

Another constraint imposed by the commercial tools is that it is not possible to have

multiple vertical partitions in the same clock region. Here, the main disadvantage is that it

constraints the type of virtual architecture that can be used (understanding that a virtual

architecture is mainly the division of the FPGA resources in different RPs)

There are some tools that have been developed from academia to tackle these problems.

Most of these tools have been implemented for older FPGAs and design environments

[Otero 2012] or they do not allow sub-clock region reconfiguration and waste some

resources [Rettkowski 2016]. Apart from the generation of the PBS compatible with

module relocation and sub-clock region reconfiguration, it is necessary to count on a

reconfiguration engine compatible with these features. For this reason, new tools will be

developed within the CERBERO framework.

b) Features

There will be two different tools:

• an implementation tool;

H2020-ICT-2016-1-732105 - CERBERO

WP1 – D1.1: CERBERO framework components

Page 37 of 54

• a runtime reconfiguration engine.

Implementation tool

Inputs:

• VHDL/Verilog files that define the static system;

• VHDL/Verilog files that define the reconfigurable modules;

• information about the virtual architecture;

• interface of the RPs.

Outputs:

• static and reconfigurable bitstreams.

Reference Platform and GUI:

• TCL scripts.

The implementation tool consists of a set of TCL scripts that automatically carry out the

process of synthesis and implementation in Vivado in order to obtain re-locatable PBS. In

contrast to Vivado reconfiguration flow it is possible to define RPs without knowing in

advance the static system and also to define the static system without knowing the

content of the RPs. The only thing that is needed is the information of the partition

coordinates and the interface that it will have with other partition or the static module.

This tool ensures that circuit from the static system are perfectly isolated from RP in such

a way that the only connection between them is made through the specified interfaces.

This is the main characteristic needed to get re-locatable bitstreams. It will also allow the

communication of a reconfigurable module to another reconfigurable module, something

that is not allowed with commercial tools.

Runtime Reconfiguration engine

Inputs:

• bitstreams prepared to be reconfigured and coordinates of the region where the

bitstreams will be allocated.

Outputs:

• reconfigured FPGA.

Reference Platform and GUI:

• not applicable.

Once we have the PBS generated and stored in a non volatile memory (e.g. SD card), it is

necessary to have a reconfiguration engine that, given some coordinates, is able to

allocate the bitstreams in the desired position.

H2020-ICT-2016-1-732105 - CERBERO

WP1 – D1.1: CERBERO framework components

Page 38 of 54

In order to achieve sub-clock region reconfiguration, it is necessary firstly to read the

configuration memory, and then combine this information with the new PBS. This is

necessary because bitstreams need to be allocated for an entire clock region column at a

time, thus if the PBS does not occupy the complete column it is necessary to compose the

bitstreams to only modify the configuration bytes that need to be changed.

The reconfiguration engine will be defined in two different ways:

• as a C library;

• as a HW peripheral.

c) Role in the CERBERO framework

These tools will be used in conjunction with ARTICo³ to reduce memory usage and

implementation times. In addition, they will allow the possibility of creating new tools

for Just-In-Time (JIT) HW composition. The goal is to implement 2D mesh type layouts,

which have proved their efficacy in dataflow computing algorithms, and to use these

layouts to compose HW in real time. At this regard, two possibilities are envisaged:

• Deterministic HW composition from IR: the idea is to be able to design HW from

high level programming languages. High level descriptions will be transformed to

an IR where it is possible then, on one hand, to compile it to a specific SW core

or, on the other hand, to map and route predefined processing elements in the

layout to obtain the HW accelerator. In this way, an Adaptation Manager will be

able to seamlessly switch tasks between SW and HW (see D4.3 for more details).

• HW composition based on iterative algorithms: this composition is based on the

autonomous evolution of HW accelerators (by changing the basic modules in the

2D mesh) to imitate a given functionality. Reinforcement algorithms will be

explored in order to solve problems that affect CPSs, for example adaptive

controllers.

d) Relevance with respect to use cases

Planetary Exploration: These tools will be used in conjunction with ARTICo³,

improving the implementation and memory requirements as it has been explained before.

JIT HW composition tools that can be developed from them would improve further

adaptability and fault tolerance of this use case application scenario.

e) Strengths and gaps

The main strengths of these tools are:

• reduced implementation time: there is no need to implement an accelerator for

compatible RPs every time;

• reduced memory footprint.

The main weakness of these tools is:

• as routing is more constrained, it is more difficult to route the design and it is

possible that bigger partitions are needed.

H2020-ICT-2016-1-732105 - CERBERO

WP1 – D1.1: CERBERO framework components

Page 39 of 54

f) Tool extension within CERBERO

These tools will be designed from scratch in CERBERO.

2.9. ARTICo³

a) State of the art

CPSs face increasingly complex and demanding application scenarios where, in some

cases, computing performance requirements cannot be met by low-end microprocessors.

However, while processing requirements have increased, power/energy consumption is

still highly constrained and limited. In this regard, FPGAs can prove beneficial thanks to

their runtime reconfiguration capabilities, making it possible to have time multiplexed,

high-performance application-specific computing platforms. Nevertheless, DPR

techniques need to be coupled with intelligent power-management strategies in order to

still meet low-power goals.

Some alternatives to the solutions provided by the Arquitectura Reconfigurable para el

Tratamento Inteligente de Cómputo, Confiabilidad y Consumo de energía (ARTICo³) can

be found in the literature:

• architecture level: Recobus [Koch 2008], HWThreads [Wang 2012], GUARD

[Zhang 2014];

• design/implementation level: Go Ahead [Beckhoff 2012], Dreams [Otero 2012];

• runtime level: ReconOS [Agne 2014].

These solutions make use of DPR to offer reconfigurability as an added value to

electronic systems with HW acceleration. Differently, ARTICo³ aims at also providing

flexibility in order to trade off three factors: scalability in performance, its associated

energy consumption and fault tolerance. The runtime support for this is a solution beyond

the state of the art.

b) Features

The ARTICo³ framework provides three components: a HW-based processing

architecture, an automated tool chain to build mixed HW/SW systems based on that

architecture, and a runtime library to manage their execution.

The mentioned runtime tradeoff between computing performance, energy consumption

and fault tolerance is achieved by a combination of module replication using DPR (i.e.

HW copy and paste) and an optimized, dynamic datapath (called Data Shuffler) that

changes to meet application requirements at runtime. A Direct Memory Access (DMA)

enabled communication infrastructure includes dedicated HW modules to extend the

functionality of the architecture (e.g. voter unit to support module redundancy for

enhanced fault tolerance). Figure 2-11 shows the block diagram of the architecture, which

is further described in D4.3.

H2020-ICT-2016-1-732105 - CERBERO

WP1 – D1.1: CERBERO framework components

Page 40 of 54

Figure 2-11 - The ARTICo³ architecture.

Dynamically reconfigurable HW designs are usually not accessible to most embedded

system designers. The ARTICo³ tool chain provides an automated way to build custom

accelerator-based computing systems starting from C/C++ (useful for designers with no

prior expertise in low level HW design) or Hardware Description Language (HDL) kernel

descriptions. In this regard, a kernel is defined as any program section with both

computing-intensive and data-parallel behaviour. Hence, applications are a combination

of sequential host code (SW) and a set of computing kernels (HW accelerators).

Moreover, the ARTICo³ runtime library acts as an interface between these last

components, providing standard function calls to modify the computing fabric (load HW

accelerators), allocate shared memory buffers, or start the execution of a given kernel.

In addition, the ARTICo³ framework provides a full self-monitoring stack, from PMCs to

SW API calls to read them. Current measurements include execution times per

accelerator, accumulated errors and, whenever the dedicated measuring infrastructure is

available, device power consumption. Moreover, it includes lightweight estimation

models that, when combined with execution profiling using the PMCs, enable dynamic

solution space (i.e. all possible combinations of computing performance, energy

consumption and fault tolerance) exploration at runtime.

Inputs:

• Host Application Code: C/C++ code describing the SW application that runs in a

host processor. Requires specific API function calls (included in the framework)

to use the HW-based coprocessor infrastructure.

• Kernel Code: C/C++ code when using High Level Synthesis (HLS), HDL code

otherwise, that describes the computing-intensive, data-parallel functionality to be

accelerated using dedicated reconfigurable HW resources.

H2020-ICT-2016-1-732105 - CERBERO

WP1 – D1.1: CERBERO framework components

Page 41 of 54

• (Optional) Reference Design Template: system developers can provide the

required files to generate systems with a different set of HW IP cores, targeting a

new FPGA device, or with a modified FPGA resource floorplan.

• (Optional) Reference Application Template: system developers can provide the

required files to build SW applications with additional libraries, or for a different

OS.

Outputs:

• FPGA Configuration Files: binary files containing the information required to

program the implemented digital circuits in the target device. The tool chain

generates configuration files for both static region (i.e. does not change during

circuit operation) and RPs (i.e. each slot, which can be modified at runtime).

• Application Executable: binary file that runs in the host processor, offloading

the computing-intensive and data-parallel operations to the HW accelerators

available in the FPGA.

Reference Platform and GUI:

• Design Time: currently, the ARTICo³ tool chain relies on a set of scripts that run

in command line mode in a Linux-based operating system. Output products are

generated using vendor-specific tools (Xilinx Vivado).

• Runtime: currently, ARTICo³-based systems require an embedded Linux-based

operating system in the target platform, which is also vendor-specific (Xilinx

Zynq-7000).

c) Role in the CERBERO framework

ARTICo³ is located, together with MDC and FG reconfiguration for JIT HW

composition, at the lowest level of abstraction in the CERBERO framework. These three

elements are the three target fabrics that offer adaptivity at HW level. ARTICo³ provides

adaptive and scalable HW acceleration but using a different approach than MDC to HW

reconfiguration. In ARTICo³, the computing substrate, i.e. the FPGA, is actively altered

to change the available functionality using DPR. As a result, target implementations

benefit from both the high performance that HW-based computing provides and a

SW-like flexibility that comes from multiplexing the FPGA fabric in time (the same

silicon hosts different digital circuits over time). This not only provides higher execution

performance in computing-intensive scenarios, but also enables runtime adaptivity in

uncertain environments. ARTICo³ can be also conceptualized as a container for MDC or

FG fabrics, and hence, these mixed-grained approaches may benefit from the scalability

and fault-tolerant support provided by ARTICo³ with the fast switching support provided

by MDC or the functional adaptivity provided by JIT HW composition.

d) Relevance with respect to use cases

Planetary Exploration: ARTICo³ can prove beneficial in this scenario for two main

reasons. On the one hand, it enables (self-)adaptation when facing changing requirements

(e.g. low battery level, faster processing when having better communication link). On the

H2020-ICT-2016-1-732105 - CERBERO

WP1 – D1.1: CERBERO framework components

Page 42 of 54

other hand, the built-in features for enhanced fault tolerance are necessary in aerospace

applications, where parts of a chip can malfunction and cause mission-critical errors.

ARTICo³ ensures fault-tolerant execution of the functionality in the reconfigurable areas.

e) Strengths and gaps

Strengths of ARTICo³ with respect to the state of the art:

• provides adaptive and scalable HW acceleration at a FG level (individual copies

of a HW accelerator can be changed while the rest of the system is still working,

even in different accelerators);

• runtime self-characterization, based on a self-monitoring infrastructure and

lightweight estimation models;

• runtime tradeoffs between computing performance, energy consumption and fault

tolerance.

Weaknesses of ARTICo³ with respect to the state of the art and CERBERO:

• so far, there is no system level entry point (e.g. dataflow graphs) for

ARTICo³-based designs, only C/C++ descriptions;

• manual HW/SW partitioning is required;

• This is a target-dependent tool (requires Xilinx FPGAs and development tools).

f) Tool extension within CERBERO

The envisaged extensions of ARTICo³ in CERBERO are:

• support for cross-layer, stream-based dataflow models of computation: high level

dataflow descriptions as entry point (PREESM), and low level actor-based

processing kernels (MDC).

• unified HW/SW (self-)monitoring approach (the current monitors and models are

not generalizable or applicable to heterogeneous processing systems) using a

PAPI-compatible infrastructure;

• support for intra-accelerator reconfiguration to enable faster dynamic changes in

the datapath inside an ARTICo³ accelerator.

2.10. MDC

a) State of the art

Coarse-Grained (CG) reconfiguration is an interesting solution to face the challenges of

modern embedded systems such as flexibility and high performance, without paying the

overhead in terms of time and energy of FG approaches (for more details see D4.3).

However, mainstream adoption of heterogeneous CG reconfigurable substrates is limited

by intrinsic development issues: design and debug of optimal low level processing

elements and mapping [Ansaloni 2012]. Automated development flows to speed up the

H2020-ICT-2016-1-732105 - CERBERO

WP1 – D1.1: CERBERO framework components

Page 43 of 54

process and avoid long design and optimization phases have been proposed at the state of

the art. In literature, usually, the common approaches are to adopt generic components

[Oh 2017] or to select them from a predefined library [Yuan 2017] [Wildermann 2013].

The Multi-Dataflow Composer (MDC), on the contrary, derives components shaped

exactly around the requested functionalities by exploiting the modularity of the dataflows

adopted as specification format for the input applications. From each actor of the

dataflow a different HW component is provided and the combination of the input

applications is performed at the same dataflow actors’ level.

b) Features

Inputs:

• Dataflow Specifications: at the moment RVC-CAL (XDF graph and CAL actors

[Bhattacharyya 2011]) dataflow models describing the applications to be

combined together;

• HW Communication Protocol: defining the handshake between actors in HW;

• HDL Components Library: the HDL descriptions corresponding to the involved

CAL actors.

Outputs:

• Multi-Dataflow HDL: HDL description of the input dataflows combination

(multi-dataflow);

• (optional) Multi-Dataflow model: RVC-CAL dataflow description of the

multi-dataflow;

• (optional) Xilinx IP Wrapper and Drivers: HDL descriptions and C drivers

providing a ready-to-use Xilinx IP around the multi-dataflow HDL description.

Reference Platform and GUI:

MDC at the moment is a plug-in of the Eclipse IDE and it is provided with a GUI in such

an environment.

The MDC design suite is a SW framework for the automatic generation and management

of CG reconfigurable systems based on the dataflow MoC.

Figure 2-12 Overview of the Baseline MDC Tool.

H2020-ICT-2016-1-732105 - CERBERO

WP1 – D1.1: CERBERO framework components

Page 44 of 54

The main features of the MDC design suite are:

• Baseline MDC Tool: the baseline feature of MDC is depicted in Figure 2-12.

Basically, MDC combines together different input dataflows, each one describing

a different application, into a unique reconfigurable multi-dataflow model that

shares the common actors/resources (by means of switching boxes, SBs) and that

is able to implement all the initial applications, one at a time. The dataflows

combination corresponds to an NP-complete problem known as Datapath

Merging Problem (DMP) that is solved with a heuristic method proposed by

[Moreano 2002]. MDC generates the top Register Transfer Level (RTL) HDL

specification of the reconfigurable multi-dataflow, while the RTL description of

the dataflow actors (HDL components library, manually or automatically derived

from dataflow actors), together with their communication protocol in HW, have to

be provided by the user. MDC handle system configuration (how to set each SB

selector to implement all the different applications) and encapsulates it into

dedicated Look-Up Tables (LUTs) in HW, thus simplifying the configuration

phase (performed by simply changing the application ID ideally in a single clock

cycle). Figure 2-12 presents a simple example: three different dataflow

applications, α, β and γ feed the MDC front-end, that combines them into a multi-

dataflow by inserting three different SBs and by sharing two actors, A and D, and

three dataflow edges (sharing is highlighted in black). Then, the MDC back-end,

from the multi-dataflow, the HDL components library and the corresponding

communication protocol, generates the RTL description of the system.

• Structural Profiler: it performs a design space topological exploration of all the

implementable multi-dataflow systems derivable from the initial dataflow

specifications set. This is necessary for two main reasons: (1) combining together

all the dataflows is not always the best solution (SBs introduction may lead to

higher costs with respect to the decision of non sharing an actor); (2) the feeding

order plays a role in the combination process (the underlying algorithm combines

two dataflows at a time in an iterative way) and may lead to different SBs chains

in the multi-dataflow. This feature relies on an a priori characterization of the

initial (non combined) dataflows in terms of area, static power and maximum

frequency, which are the KPIs used to explore the design space and identify the

optimal topological solution.

• Dynamic Power Manager: resource redundancy in reconfigurable architectures

can lead to useless consumption due to resources that are not used in the current

computation. At this purpose, MDC performs dataflow level logic partitioning of

the substrate, to enable the implementation of clock- and power-gating strategies

at the HW level. The Dynamic Power Manager keeps trace of which applications

involve each actor of the multi-dataflow, so that it can identify common Logic

Regions (LRs), which are sets of actors always active/inactive together. Then,

when the RTL description is generated, clock- and power-gating strategies are

applied by gating together all the actors belonging to the same LR.

• Co-Processor Generator: the Baseline MDC tool provides the RTL description

of a CG reconfigurable substrate. However, to be effectively adopted in the

practice as HW accelerator, its output requires the development of wrappers able

to communicate with the external world, primarily with a host processor. To

H2020-ICT-2016-1-732105 - CERBERO

WP1 – D1.1: CERBERO framework components

Page 45 of 54

facilitate this phase and speed up the prototyping, the Co-Processor Generator

provides dataflow-to-HW customization of a Xilinx compliant accelerator on the

top of the CG reconfigurable substrate generated with the Baseline MDC tool.

Loosely coupled (memory-mapped) or tightly coupled (stream-based) accelerators

can be provided along with their SW drivers, serving as APIs for a seamless

integration into the host code.

c) Role in the CERBERO framework

MDC is able to provide support for CG reconfiguration on heterogeneous platforms.

Only MDC in the CERBERO framework offers this kind of support. The other tool

operating at the HW level is ARTICo³, which supports a different kind of

reconfiguration, where predetermined CG slots are dynamically reconfigured at runtime

using partial reconfiguration. Key features and benefits of both kinds of HW

reconfiguration supports are clearer in D4.3: partial reconfiguration produces bigger

changes in the architecture at the price of bigger overheads in terms of configuration

time, power and memory footprint. A lightweight CG reconfiguration, such as the MDC

one, will provide the CERBERO framework with a way to refine the system behaviour

when small adjustments (i.e. surfing among working points to achieve different quality

vs. energy trade-offs) are required to achieve a controlled flexibility with no (or limited)

performance penalties.

MDC features also rapid prototyping capabilities, by means of the Co-Processor

Generator extension. This feature is particularly useful for continuous deployment

purposes and to enable faster time to deployment of custom HW accelerators.

d) Relevance with respect to use cases

Space Exploration: MDC will be exploited within ARTICo³ slots to accelerate and

implement self-healing and self-adaptive behaviours in the heterogeneous computing

infrastructure that is going to be used in the space use case, by means of a mixed-grained

reconfigurable approach.

Ocean Monitoring: Proof of concepts of the benefits of using MDC-compliant

computing infrastructure to provide adaptivity support for runtime trade-off management

is going to be provided. The idea is proving the concrete usability of custom HW

accelerators to accomplish relevant tasks that may run on future (beyond CERBERO)

marine robot implementations, i.e. variable encoding/decoding precision to save energy.

Adaptivity in this case can be system triggered (the robot is running out of battery) or

user triggered (the user remotely changes the encoding quality).

e) Strengths and gaps

Strengths of MDC with respect to the state of the art:

• design/debug and mapping of CG reconfigurable architectures is automated and

made it simple by the adoption of dataflow models of computation.

H2020-ICT-2016-1-732105 - CERBERO

WP1 – D1.1: CERBERO framework components

Page 46 of 54

Gaps of MDC with respect to the state of the art:

• a fully automated flow (including the generation of the HDL components library)

is not provided or is provided with limitations (target-dependent) [Sau 2016];

• the HW/SW partitioning of the applications has to be manually accomplished and

the designer has to specify which type of coupling has to be implemented to

connect the CG reconfigurable accelerator with the host processor(s);

• internal state runtime monitoring capabilities (to detect internal activity, faults,

energy consumption) are not provided.

f) Tool extension within CERBERO

The extensions planned within the CERBERO project for MDC are:

• Providing a powerful and generic fully automated flow by means of the

integration with the dataflow-oriented CAPH HLS engine [CAPH 2017]. This

activity is already ongoing, as described in D4.4.

• Including MDC in a HW/SW partitioning flow. To this purpose we intend to

leverage on PREESM (see Section 2.5), which requires to extend MDC to support

PiSDF models and to create a model of architecture for MDC-compliant CG

reconfigurable accelerators.

• Instrumenting the MDC generated CG reconfigurable accelerators with runtime

monitors according to the PAPI approach (see Section 2.7). This activity is

already ongoing, as described in D4.4.

2.11. Other tools

Besides the components that are actively involved in the CERBERO framework, other

tools will be adopted or interfaced with the systems. These other tools will not be

extended or modified during the project lifetime, and may not belong to companies or

institutions within the CERBERO consortium, but it is useful to briefly describe them to

better understand the role and the functionalities of the CERBERO components and of

the framework as a whole.

CAPH

H2020-ICT-2016-1-732105 - CERBERO

WP1 – D1.1: CERBERO framework components

Page 47 of 54

CAPH [CAPH] refers either to a domain

specific language for streaming

applications based on the dataflow MoC

(among which Dataflow Process

Network, discussed in D3.5) and the

related toolset. Figure 2-14 shows an

overview of the CAPH toolset. A front-

end capable of parsing and checking the

typing of CAPH source code (dataflow

specifications) is the starting block. The

output of such block is an abstract

syntax tree, which is processed by the

graph visualizer, the reference

interpreter and the compiler. These

provide respectively a graphical

visualization of the dataflows, the

golden references to check the final

outputs, and SystemC/VHDL code

derived from a target-independent IR.

With the SystemC back-end, a

cycle-accurate source code for

simulation and profiling purposes is

generated. The VHDL back-end

provides generic code for HW synthesis.

The SystemC simulation is useful to

refine the VHDL design and to predict

latency and execution time before

synthesis. -

The CAPH toolset will be connected to the CERBERO framework dealing with the HW

adaptation support. In particular, CAPH is meant to be integrated with MDC (as

described in D4.4) to speed-up the design of CG reconfigurable accelerators, making the

whole flow, from high level specification to RTL description, fully automated.

SCANeR

SCANeR studio [SCANeR] is a SW tool in charge of providing driving simulation.

SCANeR is used by CRF to implement and run different test scenarios for the Smart

Travelling for Electric Vehicle use case. It is mainly based on models of the simulation

environment components (vehicle, traffic, pedestrians, etc.), on acquisitions (driver,

tracking systems, etc.) and on restitutors (audio, visual, etc.) from/to the same

environment. In CERBERO, SCANeR, DynAA and the end-user will be interfaced

through the mediation of MECA in order to provide dynamic adaptation to the user,

environment and system itself changing functional and non functional requirements (for

more details please refer to D4.4).

Figure 2-13 CAPH toolset overview.

H2020-ICT-2016-1-732105 - CERBERO

WP1 – D1.1: CERBERO framework components

Page 48 of 54

3. Conclusions

In this document the main components/tools of the CERBERO framework have been

described in details. For each component/tool different aspects have been analyzed in

order to highlight the already supported features and the modification/extensions that will

be performed (or, in some cases, are being performed) on them aiming at the

accomplishment of the CERBERO project objectives and use cases needs.

Table 1 Relevant features already provided (Supported, S) or to be provided

(Extension, E) by the CERBERO framework components/tools.

Model

ling

Optimi

zation

HW/SW

Design

Runtime

Support

Incremental/

Fast

Prototyping

In Loop

Simulation

Open

Source

MECA S+E S S+E

VT E E

DynAA S+E S E

AOW S+E E

PREESM S+E S+E E S+E S

SPIDER S+E E S+E S

PAPIFY S+E S+E

JIT HW E E E E

ARTICo³ S+E S S+E E E

MDC E S S+E S+E E

To summarize the analysis done in the document two different resuming tables are

provided. In Table 1 the CERBERO framework components/tools are cross-mapped with

the most important features for the CERBERO project objectives (modeling,

optimization, HW/SW design, runtime support, rapid prototyping, in loop simulation and

open source). Here, already supported features and extensions/modifications to be

performed during the project are differentiated. Please note that the VT tool and JIT HW

definitions started from scratch within CERBERO.

Table 2 classifies the CERBERO components/tools per layer (end-user interaction,

system model, application architecture, runtime support and low level implementation),

and cross-link them to the CERBERO use cases (Smart Travelling, Space Exploration

and Ocean Monitoring).

From the two resuming tables is possible to appreciate how the CERBERO framework

components are going to cover (already or during the CERBERO project lifetime) most

of the features related to modelling and implementation aspects, coming from the

CERBERO project objectives. Moreover, it is shown how the ensemble of the

H2020-ICT-2016-1-732105 - CERBERO

WP1 – D1.1: CERBERO framework components

Page 49 of 54

CERBERO framework components/tools is able to cover several different system layer,

going from user down to implementation. The CERBERO use cases are faced by

adopting different framework features: Smart Travelling is more on the high level layers

(mostly end-user interaction and system model), Space Exploration spans more on the

lower level layers (application architecture, runtime support and low level

implementation), while Ocean Monitoring is somehow in the middle involving features

provided by both high and low level layers.

Table 2 Level of abstraction on which each tool/component works and related

relevance with respect to the CERBERO use cases.

 Level of Abstraction

Use Case

Smart

Travelling

Space

Exploration

Ocean

Monitoring

MECA end-user interaction X

VT

end-user interaction

system model

implementation

X X X

DynAA system model X X

AOW
system model

application architecture
X X X

PREESM application architecture X

SPIDER runtime support X

PAPIFY

application architecture

runtime support

low level implementation

 X

JIT HW low level implementation X

ARTICo³ low level implementation X

MDC low level implementation X

H2020-ICT-2016-1-732105 - CERBERO

WP1 – D1.1: CERBERO framework components

Page 50 of 54

4. References

[Adhianto 2010] L. Adhianto et al., HPCToolkit: Tools for performance analysis of

optimized parallel programs, Concurrency and Computation:

Practice and Experience, 2010.

[Agne 2014] A. Agne et al., ReconOS: An Operating System Approach for

Reconfigurable Computing, IEEE Micro, 2014.

[AMPL] www.ampl.com/

[Ansaloni 2012] G. Ansaloni et al., Integrated Kernel Partitioning and Scheduling

for Coarse-Grained Reconfigurable Arrays, IEEE Transactions on

Computer-Aided Design of Integrated Circuits and Systems,

2012.

[Banks 2004] J. Banks, et al., Discrete-Event System Simulation, Prentice Hall,

2004.

[Beckhoff 2012] C. Beckhoff et al., Go ahead: A partial reconfiguration

framework, International Symposium on Field-Programmable

Custom Computing, 2012.

[Bianculli 2012] D. Bianculli et al., Specification patterns from research to

industry: a case study in service-based applications, International

Conference on Software Engineering, 2012.

[Bigus 2002] J.P. Biguset al., ABLE: a toolkit for building multiagent

autonomic systems., IBM Systems Journal, 2002.

[Bosse 2017] T. Bosse et al., Developing ePartners for human-robot teams in

space based on ontologies and formal abstraction hierarchies,

International Journal on Agent-Oriented Software Engineering,

2017.

[Brazier 2002] F.M.T. Brazier et al., Principles of Component-Based Design of

Intelligent Agents, Data and Knowledge Engineering, 2002.

[Broodney 2012] H. Broodney et al. Generic Approach for Systems Design

Optimization in MBSE, International Council in Systems

Engineering, 2012.

[CAPH] caph.univ-bpclermont.fr/CAPH/CAPH.html

[Clerissi 2017] D. Clerissi et al., Towards the Generation of End-to-End Web Test

Scripts from Requirements Specifications, International

Requirements Engineering Conference Workshops, 2017.

[Cplex] www.ibm.com/software/commerce/optimization/cplex-optimizer/

[Davis 1999] J. Davis II et al., Overview of the Ptolemy project, ERL Technical

Report UCB/ERL No.M99/37, 1999.

[Desnos 2013] K. Desnos et al., PiMM: Parameterized and Interfaced Dataflow

http://caph.univ-bpclermont.fr/CAPH/CAPH.html

H2020-ICT-2016-1-732105 - CERBERO

WP1 – D1.1: CERBERO framework components

Page 51 of 54

Meta-Model for MPSoCs Runtime Reconfiguration, International

Conference on Embedded Computer Systems: Architectures,

Modeling, and Simulation, 2013.

[DjangoREST 2018] www.django-rest-framework.org

[Dokhanchi 2018] A. Dokhanchi et al., Formal requirement debugging for testing

and verification of cyber-physical systems, ACM Transactions on

Embedded Computing Systems, 2018.

[Duell 2008] R. Duell et al., An Ambient Intelligent Agent Model Using

Controlled Model-Based Reasoning to Determine Causes and

Remedies for Monitored Problems, IEEE/WIC/ACM International

Conference on Web Intelligence, 2008.

[Dwyer 1999] M.B. Dwyer et al., Patterns in property specifications for

finite-state verification, International Conference on Software

Engineering, 1999.

[Ecker 2009] W. Ecker et al., Hardware-dependent Software, Springer, 2009.

[Esteve 2012] M.A. Esteve et al., Formal correctness, safety, dependability, and

performance analysis of a satellite, International Conference on

Software Engineering, 2012.

[Fuxman 2004] A. Fuxman et al., Specifying and analyzing early requirements in

Tropos, Requirements Engineering, 2004.

[Grandpierre 1999] T. Grandpierre et al., Optimized rapid prototyping for real-time

embedded heterogeneous multiprocessors. International

Workshop on Hardware/Software Codesign, 1999.

[Gurobi] www.gurobi.com

[Heulot 2014] J. Heulot et al., Spider: A Synchronous Parameterized and

Interfaced Dataflow-based RTOS for multicore DSPS, Embedded

Design in Education and Research Conference, 2014.

[Hentenryck 1999] P. Van Hentenryck, The OPL optimization programming

language, MIT Press, 1999.

[Khronos 2017] OpenCL Specification Version 2.2 , online:

www.khronos.org/registry/OpenCL/specs/opencl-2.2.pdf

[Knüpfer 2008] A. Knüpfer et al,. The vampire performance analysis tool-set,

International Conference: Tools for High Performance

Computing, 2008.

[Koch 2008] D. Koch et al., Recobus-builder—a novel tool and technique to

build statically and dynamically reconfigurable systems for

FPGAs, IEEE International Conference on Field Programmable

Logic and Applications, 2008

[Konard 2005] S. Konrad et al., Real-time specification patterns, International

conference on Software Engineering, 2005.

file:///C:/Users/cassa/Desktop/unica/progetti/CERBERO/deliverable/D5.6/0.7/www.django-rest-framework.org
file:///C:/Users/evgensh/Downloads/www.gurobi.com
file:///C:/Users/cassa/Desktop/unica/progetti/CERBERO/deliverable/D5.6/0.7/www.khronos.org/registry/OpenCL/specs/opencl-2.2.pdf

H2020-ICT-2016-1-732105 - CERBERO

WP1 – D1.1: CERBERO framework components

Page 52 of 54

[Leeuwen 2014] C. van Leeuwen et al., Model-based Architecture Optimization for

Self-adaptive networked signal processing systems, International

Conference on Self-Adaptive and Self-Organizing systems

conference, 2014.

[Leupers 2017] R. Leupers et al., MAPS: A Software Development Environment

for Embedded Multicore Applications, Handbook of

Hardware/Software Codesign, 2017.

[Liu 2013] J. Liu et al., Synthesis of reactive switching protocols from

temporal logic specifications, IEEE Transactions on Automatic

Control, 2013.

[LLVM] compiler-rt.llvm.org

[Lumpe 2011] M. Lumpe et al., PSPWizard: machine-assisted definition of

temporal logical properties with specification patterns. European

conference on Foundations of software engineering, 2011.

[Mathworks] www.mathworks.com

[Masin 2008] Masin, M., and Bukchin, Y., 2008, “Diversity Maximization

Approach for Multi-Objective Optimization”, Operations

Research, 56, 411-424.

[Masin 2014] M. Masin et al., Reusable derivation of operational metrics for

architectural optimization, Conference on System Engineering

Research, 2014.

[Masin 2013] M. Masin et al., Pluggable Analysis Viewpoints for Design Space

Exploration, Conference on System Engineering Research, 2013.

[Modelica] www.modelica.org

[Moreano 2002] N. Moreano et al., Datapath Merging and Interconnection

Sharing for Reconfigurable Architectures, International

Symposium on System Synthesis, 2002.

[MS Excel] products.office.com/en-us/excel

[Myers 2007] K. Myers et al., An Intelligent Personal Assistant for Task and

Time Management, AI Magazine, 2007.

[Narizzano 2017] M. Narizzano et al., Consistency of Property Specification

Patterns with Boolean and Constrained Numerical Signals. arXiv

preprint arXiv:1712.04162, 2017.

[Neerincx 2008] M.A. Neerincx et al., The mission execution crew assistant:

Improving human- machine team resilience for long duration

missions, International Astronautical Congress, 2008.

[Neerincx 2010] M.A. Neerincx et al., Evolution of electronic partners: human-

automation operations and ePartners during planetary missions,

Journal of Cosmology, 2010.

[Nutaro 2010] J.J. Nutaro, Building Software for Simulation: Theory and

Algorithms with applications in C++, Wiley Publishing, 2010.

file:///C:/Users/cassa/Desktop/unica/progetti/CERBERO/deliverable/D5.6/0.7/compiler-rt.llvm.org
http://www.mathworks.com/
http://www.modelica.org/
file:///C:/Users/evgensh/Downloads/products.office.com/en-us/excel

H2020-ICT-2016-1-732105 - CERBERO

WP1 – D1.1: CERBERO framework components

Page 53 of 54

[Oh 2017] S. Oh et al., Efficient Execution of Stream Graphs on

Coarse-Grained Reconfigurable Architectures, IEEE Transactions

on Computer-Aided Design of Integrated Circuits and Systems,

2017.

[Oliveira 2013] J. Oliveira et al., Model-based design of self-adapting networked

signal processing systems, International Conference on

Self-Adaptive and Self-Organizing systems, 2013.

[OpenMP 2015] OpenMP 4.5 Specification, Nov. 2015, www.openmp.org/wp-

content/uploads/openmp-4.5.pdf

[ORCC] orcc.sourceforge.net/

[Otero 2012] A. Otero et al., Dreams: A tool for the design of dynamically

reconfigurable embedded and modular systems, International

Conference on Reconfigurable Computing and FPGAs, 2012.

[Pacelab] www.pace.de/products/preliminary-design/pacelab-suite.html

[Papp 2016] Z. Papp et al., Runtime Reconfiguration in Networked Embedded

Systems – Design and Testing principles, Springer, 2016.

[Pelcat 2009] M. Pelcat et al., A System-Level Architecture Model for Rapid

Prototyping of Heterogeneous Multicore Embedded Systems,

Conference on Desing and Architectures for Signal and Image

Processing, 2009.

[Pelcat 2014] M. Pelcat et al. PREESM: A Dataflow-Based Rapid Prototyping

Framework for Simplifying Multicore DSP Programming,

European DSP Education and Research Conference, 2014.

[Post 2012] A. Post et al., Automotive behavioral requirements expressed in a

specification pattern system: a case study at BOSCH,

Requirements Engineering, 2012.

[Ren 2014] R. Ren et al., Energy estimation models for video decoders:

reconfigurable video coding-CAL case-study, IET Computers &

Digital Techniques, 2014.

[Ren 2013] R. Ren et al., A PMC-driven methodology for energy estimation in

RVC-CAL video codec specifications, Signal Processing: Image

Communication, 2013.

[Rettkowski 2016] J. Rettkowski et al., RePaBit: Automated generation of

relocatable partial bitstreams for Xilinx Zynq FPGAs,

International Conference on ReConFigurable Computing and

FPGAs, 2016.

[Rhapsody] www-01.ibm.com/software/awdtools/rhapsody/

[Bhattacharyya

2011]

S.S. Bhattacharyya et al., Overview of the MPEG Reconfigurable

Video Coding Framework, Journal of Signal Processing Systems,

2011.

[Sau 2016] C. Sau et al., Automated Design Flow for Multi-Functional

http://www.openmp.org/wp-content/uploads/openmp-4.5.pdf
http://www.openmp.org/wp-content/uploads/openmp-4.5.pdf
file:///C:/Users/evgensh/Downloads/orcc.sourceforge.net/
file:///C:/Users/evgensh/Downloads/www-01.ibm.com/software/awdtools/rhapsody/

H2020-ICT-2016-1-732105 - CERBERO

WP1 – D1.1: CERBERO framework components

Page 54 of 54

Dataflow-Based Platforms, Journal of Signal Processing Systems,

2016.

[SCANeR] http://www.oktal.fr//en//automotive//range-of-

simulators//software

[SDSoC] www.xilinx.com/products/design-tools/software-zone/sdsoc.html

[Schlütter 2014] M. Schlütter et al., Profiling Hybrid HMPP Applications with

Score-P on Heterogeneous Hardware, International Conference

on Parallel Computing, 2014.

[Stuijk 2006] S. Stuijk et al., SDF3: SDF For Free, International Conference on

Application of Concurrency to System Design, 2006.

[Terpstra 2009] D. Terpstra et al., Collecting performance data with PAPI-C,

Tools for High Performance Computing, 2009.

[Torquati 2012] M. Torquati et al., An innovative compilation tool-chain for

embedded multi-core architectures, Embedded World Conference,

2012.

[Wang 2012] Y. Wang et al., A partially reconfigurable architecture supporting

hardware threads, IEEE International Conference on

Field-Programmable Technology, 2012.

[Wildermann 2013] S. Wildermann et al., Symbolic system-level design methodology

for multi-mode reconfigurable systems, Design Automation for

Embedded Systems, 2013.

[Yuan 2017] Z. Youan et al., CORAL: Coarse-grained reconfigurable

architecture for Convolutional Neural Networks. International

Symposium on Low Power Electronics and Design, 2017.

[Zhang 2014] H. Zhang et al., GUARD: Guaranteed reliability in dynamically

reconfigurable systems, Design Automation Conference 2014.

http://www.oktal.fr/en/automotive/range-of-simulators/software
http://www.oktal.fr/en/automotive/range-of-simulators/software
file:///C:/Users/evgensh/Downloads/www.xilinx.com/products/design-tools/software-zone/sdsoc.html

