
Information and Communication Technologies (ICT)

Programme

Project N
o
: H2020-ICT-2016-1-732105

D4.4: Self-adaptation Manager

Lead Beneficiary: INSA

Workpackage: WP4

Date: March 30 2018

Distribution - Confidentiality: [Public/Confidential]

Abstract: The CERBERO self-adaptation manager is composed of external, CERBERO-

enhanced and CERBERO-developed tools. This document presents the tools integration

activities, conducted for building the CERBERO self-adaptation management.

© 2017 CERBERO Consortium, All Rights Reserved.

Ref. Ares(2018)4047171 - 31/07/2018

H2020-ICT-2016-1-732105 - CERBERO

WP4 – D4.4: Self-adaptation Manager

Page 2 of 35

Disclaimer

This document may contain material that is copyright of certain CERBERO beneficiaries,

and may not be reproduced or copied without permission. All CERBERO consortium

partners have agreed to the full publication of this document. The commercial use of any

information contained in this document may require a license from the proprietor of that

information.

The CERBERO Consortium is the following:

Num. Beneficiary name Acronym Country

1 (Coord.) IBM Israel – Science and Technology LTD IBM IL

2 Università degli Studi di Sassari UniSS IT

3 Thales Alenia Space Espana, SA TASE ES

4 Università degli Studi di Cagliari UniCA IT

5
Institut National des Sciences Appliquees de

Rennes
INSA FR

6 Universidad Politecnica de Madrid UPM ES

7 Università della Svizzera italiana USI CH

8 Abinsula SRL AI IT

9 Ambiesense LTD AS UK

10
Nederlandse Organisatie Voor Toegepast

Natuurwetenschappelijk Ondeerzoek TNO
TNO NL

11 Science and Technology S&T NL

12 Centro Ricerche FIAT CRF IT

For the CERBERO Consortium, please see the http://cerbero-h2020.eu web-site.

Except as otherwise expressly provided, the information in this document is provided by

CERBERO to members "as is" without warranty of any kind, expressed, implied or

statutory, including but not limited to any implied warranties of merchantability, fitness

for a particular purpose and non infringement of third party’s rights.

CERBERO shall not be liable for any direct, indirect, incidental, special or consequential

damages of any kind or nature whatsoever (including, without limitation, any damages

arising from loss of use or lost business, revenue, profits, data or goodwill) arising in

connection with any infringement claims by third parties or the specification, whether in

an action in contract, tort, strict liability, negligence, or any other theory, even if advised

of the possibility of such damages.

The technology disclosed herein may be protected by one or more patents, copyrights,

trademarks and/or trade secrets owned by or licensed to CERBERO Partners. The

partners reserve all rights with respect to such technology and related materials. Any use

of the protected technology and related material beyond the terms of the License without

the prior written consent of CERBERO is prohibited.

http://cerbero-h2020.eu/

H2020-ICT-2016-1-732105 - CERBERO

WP4 – D4.4: Self-adaptation Manager

Page 3 of 35

Document Authors

The following list of authors reflects the major contribution to the writing of the

document.

Name(s) Organization Acronym

Maxime Pelcat INSA

Florian Arrestier INSA

Claudio Rubattu INSA / UNISS

Francesca Palumbo UNISS

Eduardo Juarez UPM

Eduardo de la Torre UPM

Alfonso Rodriguez UPM

Leonardo Suriano UPM

Tiziana Fanni UNICA

Pablo Muñoz S&T

Edo Loenen S&T

Gasser Ayad AI

Carlo Sau UNICA

Hans Myrhaug AS

Stuart Watt AS

Ayse Goker AS

Joost Adriaanse TNO

Evgeny Shindin IBM

Michael Masin IBM

Katiuscia Zedda AI

The list of authors does not imply any claim of ownership on the Intellectual Properties described

in this document. The authors and the publishers make no expressed or implied warranty of any

kind and assume no responsibilities for errors or omissions. No liability is assumed for incidental

or consequential damages in connection with or arising out of the use of the information

contained in this document.

Document Revision History

Date Ver. Contributor (Beneficiary) Summary of main changes

2017/12/22 0.1 INSA TOC

2018/01/10 0.2 INSA TOC Update

H2020-ICT-2016-1-732105 - CERBERO

WP4 – D4.4: Self-adaptation Manager

Page 4 of 35

2018/01/19 0.3 INSA Integrating data from T4.4.2,

T4.4.3 and T4.4.4. Connecting to

D5.6.

2018/01/22 0.4 INSA Added details on P2P integration

section.

2018/01/24 0.5 INSA Added leaders for each section.

2018/02/19 0.6 INSA Written on adaptivity.

2018/02/26 0.7 INSA Written on CERBERO adaptivity

strategy.

2018/02/27 0.7.4 UNICA, UNISS, UPM MDC & ARTICo3.

2018/03/01 0.7.5 INSA, UPM New deliverable name, 4.4, 4.6.

2018/03/02 0.7.6 INSA, S&T, TNO, AI, AS,

USI

4.7, 5.3, 4.2, 5.2, 2.4.

2018/03/02 0.7.7 INSA Linking sections together.

2018/03/26 0.8.1 INSA, AS, USI, IBM, UPM,

TASE

Linking sections together.

2018/03/27 0.8.2 INSA, AI Corrections and integration.

2018/03/29 0.8.5 INSA Added tools table.

2018/03/30 1.0.0 INSA Corrections.

2018/04/04 2.0 UNISS Final Version

2018/05/24 2.1 INSA Inserted corrections from IBM.

H2020-ICT-2016-1-732105 - CERBERO

WP4 – D4.4: Self-adaptation Manager

Page 5 of 35

Table of contents

1. Executive Summary ... 6
1.1. Structure of the Document .. 6
1.2. Main Related Documents ... 6
1.3. Related CERBERO Requirements .. 7

2. Prepared CERBERO Self-Adaptation Support .. 8
2.1. CERBERO Methods for Awareness.. 9
2.2. CERBERO Runtime Levels of Reconfiguration ... 9
2.3. Assessing CERBERO Adaptivity at Design Time through Mathematical
Programming .. 10
2.4. Enhancing CERBERO Adaptive Runtime Security and Reliability.................... 10
2.5. Related Work on Self-Adaptation Tools .. 11

3. Integrated Self-Adaptation Tools .. 15

4. Point-to-Point Tool Integration Activities ... 16
4.1. Overview of the Tool Point-to-Point Integrations ... 16
4.2. DynAA, SCANeR & MECA Integration .. 16
4.3. Papify & SPIDER Integration ... 17
4.4. SPIDER & MDC Integration ... 18
4.5. MDC & CAPH Integration .. 19
4.6. MDC & ARTICo3 Integration .. 21
4.7. Papify Monitors & Hardware Integration ... 22
4.8. System-level Perspectives for Homogenizing Tool Integrations 23

5. Applicability of the CERBERO Self-Adaptation Capabilities to Use Cases . 25
5.1. Planetary Exploration (PE) .. 25
5.2. Ocean Monitoring (OM) ... 25
5.3. Smart Travelling (ST) .. 27

6. Conclusion: Self-Adaptation Manager Integration Agenda and Advances
w.r.t State-of-the-Art ... 29

7. References ... 32

H2020-ICT-2016-1-732105 - CERBERO

WP4 – D4.4: Self-adaptation Manager

Page 6 of 35

1. Executive Summary

The CERBERO self-adaptation manager integration aims at building the first self-

adaptive management support capable of driving heterogeneous and embedded Cyber-

Physical Systems (CPS). From models of the system and its environment, and functional

hardware and software representations, the CERBERO self-adaptation support will

provide features such as:

1. Real-time system and environment monitoring gathering Key Performance

Indicators (KPIs) retrieved from different sensors,

2. KPI analysis through models,

3. Self-scheduled distributed processing,

4. Unified self-adaptation to system, environment, and human triggers,

5. Software and hardware reconfiguration, including Dynamic Partial

Reconfiguration (DPR) and Coarse Grain Reconfiguration (CGR).

This variety of capabilities, augmenting a system with awareness and reconfiguration

features, comes from a set of external, CERBERO-enhanced and CERBERO-developed

tools. This D4.4 document covers the tool integration activities planned within the project

for advancing the field of CPS self-adaptation.

The objective of this document is to provide a plan for the integration of the CERBERO

self-adaptation manager. This integration effort has started on M13 within the tasks T4.4

“Path towards full heterogeneous system self-adaptation” and will be fully demonstrated

on M30 in “D4.2 - CERBERO self-adaptation manager (Final Version)”. As a plan of

integration, this document focuses on tool-to-tool integration activities that aim at

bounding a cross-layer runtime support.

1.1. Structure of the Document

The document is organized as follows. Section 2 explains the CERBERO self-adaptation

strategy that motivates for connecting the different tools, and locates it in state-of-the-art.

Section 3 lists the tools involved in the CERBERO self-adaptation support. Section 4

details each point-to-point tool integration activity. Section 5 discusses the applicability

of the developed self-adaptation strategy and management to the CERBERO use cases.

Finally, Section 6 concludes on the intended advances of the CERBERO self-adaptation

management with respect to the State-of-the-Art and on the plans of integration to be

implemented.

1.2. Main Related Documents

The most related CERBERO Deliverables to D4.4 are:

 D2.7 - CERBERO Technical Requirements

o D4.4 contributes to satisfy D2.7 requirements. Details are given in

Section 1.3.

 D4.2 - CERBERO self-adaptation engine (Final Version)

H2020-ICT-2016-1-732105 - CERBERO

WP4 – D4.4: Self-adaptation Manager

Page 7 of 35

o The D4.4 deliverable (M15) focuses on point-to-point integration

activities while D4.2 (M30) will discuss the capabilities of the constituted

CERBERO runtime management.

 D4.3 - CERBERO Multi-Layer Runtime Adaptation Strategies (Ver 1)

o D4.3 explains the runtime adaptation strategy and its elements while D4.4

integration activities serve in building this strategy.

 D5.6 - CERBERO Framework Components (Ver 1)

o The D4.4 deliverable does not enter into the details of the CERBERO

tools, but rather focuses on the point-to-point integration activities.

o The reader interested to get more details on individual tools will find them

in D5.6.

1.3. Related CERBERO Requirements

Deliverable D2.7 of the CERBERO project defines a list of CERBERO Technical

Requirements (CTRs) the project should achieve. Each of them is referenced with a

unique identifier ranging from 0001 to 0020. The self-adaptation manager integration

activities described in the current document address 6 CTRs, as described in Table 1-1.

Table 1-1: CERBERO Technical Requirements driving self-adaptation manager integration

activities.

CTR

id

CTR Description Link with the D4.4 document on Self-Adaptation

Manager

0001 CERBERO framework SHOULD

increase the level of abstraction at least

by one for HW/SW co-design and for

System Level Design.

The integration of the CERBERO self-adaptation tool

chain increases the design level of abstraction by

automating tasks that, in state-of-the-art systems, are

manually conducted, including e.g. HW/SW co-design,

coordination of environment, system and human, and

reconfigurability.

0003 CERBERO framework SHOULD

provide incremental prototyping

capabilities for HW/SW co-design.

The CERBERO self-adaptation managing framework

aims at helping the designer to build fast HW/SW

hybrid and heterogeneous prototypes with adaptation

capabilities.

0006 CERBERO framework SHOULD ensure

energy efficient and dependable HW/SW

co-design using cross-layer runtime

adaptation of reconfigurable HW.

Through system and environment monitoring, and self-

adaptation, combined with SW and HW

reconfiguration, the CERBERO self-adaptation manager

provides a framework for raising energy efficiency and

dependability.

0016 CERBERO tools SHOULD be tested vs.

state-of-the-art.

The CERBERO integrated tools are constantly tested

vs. state-of-the-art solutions. The built self-adaptation

manager brings unique design automation features, as

explained in Section 2.5.

0019 CERBERO technology providers

SHALL coordinate technical support for

their tools with use case engineers.

As shown in Section 5, use cases are aligned with the

CERBERO proposed technology. Live and online

tutorials are proposed to synchronize partners.

0020 CERBERO framework SHALL provide

methodology and tools for development

of adaptive applications.

This document develops the tooling part of CERBERO

adaptive systems development.

H2020-ICT-2016-1-732105 - CERBERO

WP4 – D4.4: Self-adaptation Manager

Page 8 of 35

2. Prepared CERBERO Self-Adaptation Support

A precise definition of self-adaptation is a necessary starting point to this document.

Within the CERBERO project, self-adaptation is a runtime action that consists in

changing structure, functionality and/or parameters of a system, based on information

from environment, user or self-sensing. This definition is not specific to CPS and is

compatible with the general definitions proposed in [MACIAS 2013]. However, by

entangling physical and cyber constraints, CPS create a new world of challenges,

especially targeting new levels of resource usage efficiency.

System self-adaptation refers to a combination of 1) awareness and 2) system

reconfiguration. For the system to be self-adaptive, a reconfiguration is decided inside

the system itself, which presupposes that the self-adaptation manager has some degrees

of freedom when deciding which modifications to apply.

The objectives for self-adaptations are numerous and include:

- Fault tolerance and recovering after a system fault, as especially required by

the CERBERO Planetary Exploration use case,

- Adapting system resources to timely requirements so as to raise system

efficiency. This objective is particularly important in distributed and networked

systems and the related constraints are among the requirements of the CERBERO

Planetary Exploration and Ocean Monitoring use cases,

- Modifying system functional behavior to match modifications in the

environment. This type of adaptation is common to the three CERBERO Use

Cases.

Self-adaptation necessarily involves a feedback loop from sensors to a decision entity (or

entities). Many publications have focused on defining the loop structure of self-adaptive

systems, decomposing them into phases such as Collect-Analyze-Decide-Act [BRUN

2009] or Monitoring-Analyzing-Planning-Executing [SALEHIE 2012]. These cycles are

at the heart of self-adaptiveness, making systems reacting to sensor information as an

individual or as a group. The self-adaptation activities of the CERBERO project rely on

this type of decomposition, namely:

1. Monitoring: retrieving data from system and environment through sensors, and

model-based pre-analysis. This step is handled by monitors.

2. Management: planning/deciding the execution. This step is handled by

self-adaptation managers.

3. Execution: application functional execution. This step is handled by execution

engines.

This document is named “self-adaptation manager”, but it gathers information on the

integration of tools targeting the three types of elements: {monitor, manager, engine}.

The CERBERO project aims at providing model-based methods and tools to

implement the self-adaptation cycle in a concrete, efficient CPS.

H2020-ICT-2016-1-732105 - CERBERO

WP4 – D4.4: Self-adaptation Manager

Page 9 of 35

In current developments of self-adaptive systems, software is the main element that

introduces self-adaptation [BETTY 2009]. A strong objective of the CERBERO

project is to add to current software-based approaches of self-adaptation the novel

capabilities of System-on-Chip and hardware adaptation, crossing the design layer

boundary between software adaptation and hardware adaptation.

2.1. CERBERO Methods for Awareness

In the CERBERO cyber-physical context, awareness has three main modes: self-, user-

and environment-awareness. The concept of self-awareness covers many ideas in the

domains of control, artificial intelligence, autonomic computing and self-adaptive

systems [CAMARA 2017]. It mostly consists in observing the system state through

sensors and acting automatically upon state modifications. In the cyber-physical context,

self-awareness is broadened to general awareness by extending the information provided

by sensors to environment and user. Awareness can apply at different levels of system

design. In the CERBERO project, awareness is experimented both at the platform level

within the SPIDER, MDC, CAPH, ARTICo3 and Papify tool combinations (potentially

with hardware/software heterogeneous computing) and at the application level within the

DynAA, SCANeR and MECA tool combinations (Section 4).

For the targeted systems to be self-aware, the CERBERO runtime manager voluntarily

monitors a set of KPIs constantly made available by sensors. The sensor information is

either directly sent to the planning/decision manager or it goes through a model that

analyzes and extracts higher level information prior planning.

2.2. CERBERO Runtime Levels of Reconfiguration

On the actuation side, the CERBERO project considers reconfiguration at four different

levels:

1. At the system and system-of-systems processing levels, self-scheduled distributed

software computing is considered where computation, potentially consisting of

several applications, is spread over a heterogeneous set of processing resources

while optimizing selected KPIs.

2. At the applicative level, the Smart Travelling use case considers reconfigurations

of a Cyber Physical System of System (CPSoS) providing drivers with smart

mobility services.

3. At a coarse hardware adaptation granularity, Coarse Grain Reconfigurable

(CGR) substrates are supported. They provide high-speed reconfiguration

between a limited set of pre-computed configurations and make it possible to

exploit the extreme efficiency of FPGA and ASIC custom hardware accelerators.

4. At the finest hardware adaptation granularity, Dynamic Partial Reconfiguration

(DPR) is employed to replace a hardware task by another hardware task on the

same FPGA hardware resources. This reconfiguration costs time and energy when

reconfiguring, but it allows the designer to tune its architecture at runtime, reusing

hardware resources in completely different contexts and protecting hardware

against failures.

H2020-ICT-2016-1-732105 - CERBERO

WP4 – D4.4: Self-adaptation Manager

Page 10 of 35

2.3. Assessing CERBERO Adaptivity at Design Time through

Mathematical Programming

Adaptivity capabilities of CPS should be considered at design time in order to provide

CPS architectures capable to adapt themselves to possible environmental changes. As

CERBERO methodology for design space exploration considers the modeling of system

and environment uncertainty at design time (please see D3.6. for more details), these

models can be used also to provide self-adaptation policies together with CPS

architecture. The basis for this technology is already included in the domain of Robust

and Stochastic optimization methods.

Stochastic optimization provides two-stage and multi-stage models that are capable to

model adaptive policies. In two-stage models, variables of first stage are design variables

that are non-adaptive, while variables of the second stage depend on uncertainty

realizations that can be modeled by the set of possible scenarios. Thus, the optimization

result here is two-fold: on one hand, we obtain an optimal CPS architecture described by

variables from first stage and on the other hand we obtain optimal policies for each

modeled scenario. A multi-stage model is even more expressive because it considers

changes in uncertainty realizations, and therefore policies obtained from multi-stage

models can be used in order to adopt CPS for uncertainties that changes over time.

Robust optimization provides Affinely Adjustable Robust Counterpart (AARC) that also

defines two kinds of decision variables: adjustable and non-adjustable. Adjustable

variables here represent affine functions of uncertainty realizations. Unlike policies in

scenario-based optimization, AARC provides policies that are suitable for all possible

uncertainty realizations, modeled by a number of uncertainty sources that defines ranges

of possible values for uncertain parameters. Moreover, robust optimization can combine

scenario-based uncertainties together with AARC in order to provide adaptation policies

that are suitable for many different real-life problems.

Thus, appropriate modeling adaptation at design time within the CERBERO project will

lead to adaptation policies, which will be implemented at runtime, and will provide

optimal CPS adaptation to uncertain and changing environment.

2.4. Enhancing CERBERO Adaptive Runtime Security and

Reliability

Reliability and security are non-functional requirements that are extremely critical for

today CPS. Currently, the level of security and the level of reliability of one system are

statically decided at design time and none or little capability is offered of adapting or

modifying it during the lifetime of a system. However, this is not the best approach,

especially for CPS that are designed based on variables which are uncertain at design

time or evolving during the life of the device.

The problem of adaptive level of security was addressed in the past, especially for sensor

node, where there have been proposals of adapting security parameters to the level of

existing threat [VENKATASUBRAMANIAN 2014] or adapting the functionalities

offered by protocols to the resourced of a device [WEN 2010]. Similarly, the problem of

adaptive reliability was addressed in the past, for instance for sensor nodes

[ALIREZAEYAN 2015] adapting the number of active path, or for multiprocessor

H2020-ICT-2016-1-732105 - CERBERO

WP4 – D4.4: Self-adaptation Manager

Page 11 of 35

system systems modeling and adapting the reliability requirement to the task needs

[ALOUANI 2017]. However, these past works and proposals towards the direction of

adapting security and reliability have not been integrated into a framework capable of

continuous monitoring the evolution of a system in its globality. Furthermore, they are

designed to be extremely specific, for the case of study and they cannot be immediately

applied to other security and reliability problems.

In CERBERO, we will propose a framework that is sufficiently generic to model security

and reliability requirements of the CPS and to dynamically adapt to them, allowing to

globally optimize the behaviors and performance.

Following the CERBERO approach, we will develop a way to model security and

reliability requirements, sufficiently general to capture all possible requirements (thus not

only limited to a specific subset of them, as currently in literature). Similarly, we will

provide a generic way to specify a metric to evaluate security and reliability, allowing the

CERBERO framework to trade security and reliability exactly as other design variables.

Thanks to this, security and reliability will be then adapted at runtime, also considering

other resources available in the system. Run time adaptation for security can be used to

adapt the level of security to the situation or while maintain the level of security reducing

the energy used to provide it (or to increase the performance of the compute algorithm).

An example of the first adaptation is the change of the type and amount of security

checks to the situation. This is for instance the case when several security policies are

required in the system, but not all of them have to be active at the same time. An example

of the second adaptation is the dynamic selection of different implementations of the

same cryptographic algorithm (one having high throughput but high energy consumption,

another being slower but more energy efficient). Preliminary ideas in this direction have

been explored [PALUMBO 2017]. In the following month of the project we will

concentrate in developing a more advance approach to support adaptation of security

algorithms and policies. We will use a similar approach to address reliability. We expect

that the probability of failure of the system evolves and changes with the context (and so

does the eventual consequence of an error). We plan to develop a support for adapt the

level of redundancy to the available resources and to the failure of the system.

2.5. Related Work on Self-Adaptation Tools

This D4.4 deliverable puts the focus on the CERBERO self-adaptation tools and their

integration. In order to overview current work on this subject, Table 2-1 references recent

state-of-the-art related tools that aim at managing system adaptation.

Table 2-1: State-of-the-art of Adaptive Runtime Tools

Adaptivity

Tool/Method

Available

tooling?

Supported

app.s

Supported

arch.s

Supported

adaptivity Main keywords

Adaptive

MapReduce

[ZHANG 2015]

A generic

framework

is available,

but

published

version is

Streaming

scientific

applications

Heterogeneou

s cloud

platforms

Software,

daemon-based,

dynamic work

redistribution

Task-level

adaptivity,

adaptive

mapping

H2020-ICT-2016-1-732105 - CERBERO

WP4 – D4.4: Self-adaptation Manager

Page 12 of 35

proprietary

Flextream

Framework

[HORMATI

2014]

No
Streaming

applications

Heterogeneou

s multicore

systems

Software,

dynamic work

redistribution

Online

adaptation,

partition

refinement,

flexible

compilation

HoneyComb

design flow

[THOMAS

2004]

No

Data flow

based

applications

and control

flow based

applications

HoneyComb

processor

arrays

Adaptive

routing

configuration

(support in

hardware)

Runtime routing

topology,

multigrain

hardware links

Improved

Dellacherie

algorithm

[ASSAYAD

2017]

No

Task

parallel

applications

Homogeneous

network-on-

chip mesh

architectures

Software,

schedule-level,

DVFS-level,

and topology-

level adaptivity

Adaptive

mapping, multi-

objective

optimization

SHARA

[QUAN 2016]
No

Multimedia

applications

(streaming

applications

)

Large-scale

heterogeneous

MPSoC

systems

Software,

scenario-based,

different QoS

requirement,

system fault

adaptivity

Runtime task

mapping,

hierarchical

resource

manager

Models at

RunTime

(M@RT)

[BENNACEUR

2014]

No

Different

application

contexts

It can consist

of

middleware, a

language

runtime

environment,

an operating

system, a

virtualization

system, and

hardware

resources.

Software,

Model-based

Runtime

software

adaptation

Draco

[VANDEWOU

DE 2003]

No

Streaming

static

applications

Not specified.

Theoretical

paper.

Not detailed
Middleware

platform

SEEC: SElf-

awarE

Computing

[HOFFMANN

2011]

No
Streaming

applications
Not specified.

Uses Heartbeat

API to measure

performance

and specify

application

goals. User

specifies

Self-adaptive,

machine

learning

H2020-ICT-2016-1-732105 - CERBERO

WP4 – D4.4: Self-adaptation Manager

Page 13 of 35

tradeoffs at

application /

system-level

Heterogeneity-

Aware Runtime

System

(HARS) [YUN

2015]

No

See

PARSEC

benchmark

Architectures

similar to

ARM

big.LITTLE

(the ODROID

platform is

used for tests)

Metrics based

(uses heartbeat

performance

measurement)

Heterogeneous

multiprocessing,

self-adaptive

computing

Criticality-and

Heterogeneity-

aware Runtime

system for

Task-parallel

(CHRT) [HAN

2017]

No

Task

parallel

applications

Two types of

core cluster

with higher

and lower

performance

(ARM

big.LITTLE)

Software,

dynamically

adjusts core

frequency to

optimize

energy

Task-parallel,

energy

efficiency,

heterogeneous

multiprocessing

SPADE

[SCHNEIDER

2009]

Proprietary

tool

Streaming

applications

Multicore

processors

Software,

dynamic

threads

parallelization

Dynamic

adaptation,

computational

elasticity

Sambamba

[STREIT 2013]

Website but

no link to

download

the

framework

Not

streaming

application

Not clear but

seems to be

homogeneous

CPU-based

platforms

Software,

compile time

analysis with

automatic

parallelization

as well as

runtime

decisions

Program

transformation,

just-in-time

compilation,

adaptation,

automatic

parallelization

Invariant

Refinement

Method for

Self-Adaptation

(IRM-SA)

[GEROSTA

2016]

Yes

Safety-

critical

applications

Software-

intensive

cyber–

physical

systems

(siCPS),

distributed

systems

Software,

sensor-based

Self-adaptivity,

Dependability

XKaapi: local

work-stealing

[GAUTIER

2013]

Yes.

Available

and Open

Source

(Cecill-C

license)

Data-flow

based

streaming

applications

Heterogeneou

s

Architectures

multi-

CPU/multi-

GPU

(Evaluated on

4CPUs + 8

GPUs)

Heterogeneous

platforms,

locality-aware

work-stealing

based on

heuristics,

asynchronous

task repartition

for GPUs

High-

performance

computing,

data-flow,

heterogeneous

architectures,

locality aware

work stealing

H2020-ICT-2016-1-732105 - CERBERO

WP4 – D4.4: Self-adaptation Manager

Page 14 of 35

Charm++ &

AMPI

[ROBSON

2017]

Yes.

Charm++

and AMPI

libraries

Irregular

and dynamic

applications

Heterogeneou

s with CPU

and GPU

Heterogeneous

platforms,

object

remapping for

load balancing

Accelerator

architectures,

parallel

programming,

high

performance

computing

Most state-of-the-art publications listed in Table 2-1 refer to non-available tools. Among

these, most approaches concentrate on software management and rely on existing

software frameworks. An exception is [THOMAS 2004] that routes data in a specific

HoneyComb processor array hardware.

Compared to all these approaches, the CERBERO framework is the first to provide an

open-source self-adaptive management system, portable over several families of off-the-

shelf heterogeneous embedded hardware and software systems.

Among the three listed self-adaptive management systems for which code is available,

XKaapi and Charm++ are High Performance Computing (HPC) management systems

that place themselves over large-scale facilities composed of multiple CPUs and GPUs.

In contrast, the CERBERO runtime system is targeting Cyber Physical embedded

systems where lightweight, predictable and efficient runtime management is crucial. The

closest work to the CERBERO runtime system is [GEROSTA 2016]. However,

[GEROSTA 2016] does not consider hardware acceleration, which is today compulsory

in most High Performance Embedded Computing (HPEC) systems, such as video

processing, deep learning, telecommunication and computer vision systems [WOLF

2014]. As a consequence, the CERBERO self-adaptation support is a radically new

approach of system management.

H2020-ICT-2016-1-732105 - CERBERO

WP4 – D4.4: Self-adaptation Manager

Page 15 of 35

3. Integrated Self-Adaptation Tools

Table 3-1 overviews the CERBERO tools, as detailed in Deliverable D5.6, adding CAPH

and SCANeR as integrated external tools. Some properties of the tools are recalled, either

currently provided (Supported, S), or to be provided (Extension, E).

Table 3-1: CERBERO Integrated tools for self-adaptation management.

 CERBERO

Internal

Model

ling

Optimi

zation

HW/SW

Design

Runtime

Support

In Loop

Simulation

Open

Source

VT Yes E E

AOW Yes S+E S+E E E

PREESM Yes S+E S+E E S

 DynAA Yes S+E S E

SCANeR No S

MECA Yes S+E S

SPIDER Yes S+E E S+E S

PAPIFY Yes S+E S+E

JIT HW Yes E E E E

ARTICo³ Yes S+E S S+E E

MDC Yes E S S+E E

CAPH No S S

This document concentrates on the last 8 (gray) tools of the table, excluding JIT HW.

These tools have self-adaptation as a strong objective. The document deals with the

integration of supported (S) properties from the different tools. As a consequence, JIT

HW is not evoked because under study (E).

The case of the CAPH
1
compiler, integrated as an external tool, will be detailed in

Section 4.5. It is integrated for its capacity to generate hardware from a high level

description (HLS for High Level Synthesis) and for its complementarity with CERBERO

internal tools.

The SCANeR
2
external tool is a driving simulation software tool integrated specifically

for the Smart Travelling use case. The next section details the on-going CERBERO

integration activities.

1
 http://caph.univ-bpclermont.fr

2
 http://www.oktal.fr/en/automotive/range-of-simulators/software

H2020-ICT-2016-1-732105 - CERBERO

WP4 – D4.4: Self-adaptation Manager

Page 16 of 35

4. Point-to-Point Tool Integration Activities

4.1. Overview of the Tool Point-to-Point Integrations

The next sections detail activities on tool-point-to-point integrations for building the

CERBERO self-adaptive runtime support. Figure 1 overviews the main on-going

point-to-point tool integration activities (which timeline is provided in Section 6) and

refers to their related sections in this document.

Figure 1: Overview of the main on-going point-to-point tool integration activities.

Figure 1 concentrates on runtime tools and roughly categorizes them into {Monitor,

Manager, Engine}, but some tools overlap these categories. The current integration

activities target the application-level approach of SCANeR, DynAA and MECA, and the

HW-SW co-design approach of Papify, SPIDER, ARTICo3, MDC and CAPH. Design

time tools VT, AOW and PREESM are covered in Deliverable D5.6 - CERBERO

Framework Components. They connect to Figure 1 displayed tools to help designing

predictable systems with adaptation management.

4.2. DynAA, SCANeR & MECA Integration

This integration activity brings together two simulation tools, DynAA and SCANeR, and

a decision tool, MECA, to adapt at application level the system to a large set of triggers.

In Figure 2, a schematic overview is given of the DynAA, SCANeR and MECA tools

enhanced within the CERBERO project. As an application-level tool chain, the links

between DynAA, SCANeR and MECA are tailored to the Smart Travelling use case.

Section 4.2 Section 4.3

Section 4.4

Sections 4.6 & 4.7
Section 4.7

Papify SCANeR DynAA

SPIDER MECA

ARTICo3 MDC CAPH

H2020-ICT-2016-1-732105 - CERBERO

WP4 – D4.4: Self-adaptation Manager

Page 17 of 35

MECA will receive monitoring data from a vehicle (via the SCANeR simulator), sensor

data from the system environment (via DynAA) or user input from a driver (indicating

for example a new destination). Based on the data received, MECA will trigger impact

processing functionality which will determine if adaptation is required. MECA will

initiate adaptation based on different types of triggers, such as:

 Environment (environment-awareness);

 System (self-awareness);

 Human (user-commanded).

The adaptation itself can for example be the initiation of an investigation of alternative

routes (in case planned charging poles are found to be out of service (=environment)), the

proposal of advised routes (based on impact analysis performed on DynAA, triggered by

route request from driver (=human)) or advice to user to reduce energy consumption by

reducing or switching off the airco (in case for example battery charge is found to

become critically low (=system)).

Figure 2: Schematic overview of MECA, DynAA and SCANeR interworking.

The adaptivity is controlled by functions developed on the MECA tool, which already

possesses basic functionality for storing knowledge, monitor, and trigger adaptation on

received data, as well as generation or adaptation of travelling plans.

4.3. Papify & SPIDER Integration

This integration activity brings together the monitoring capabilities of Papify with the

software adaptivity management capabilities of SPIDER.

The SPIDER runtime manager focuses on executing reconfigurable dataflow graphs. This

reconfiguration capability is mostly based on timing information and on an amount of

used hardware resources.

As depicted in Figure 3 (left), SPIDER feedback loop provides timing and resource

utilization information to a Global Runtime (GRT) with global knowledge of the system.

As can be seen in Figure 3 (right), in case Papify is included within the SPIDER Local

Runtime (LRT), managing one sub-system, and the jobs store their own instrumentation

configuration, KPI information is conveyed to the GRT through additional feedback

connections.

H2020-ICT-2016-1-732105 - CERBERO

WP4 – D4.4: Self-adaptation Manager

Page 18 of 35

The PAPI library is commonly employed as a middleware for HPC tools that are focused

on profiling, sampling and tracing but not on real-time reconfiguration [ADHIANTO

2010] [KNÜPFER 2008] [SCHLÜTTER 2014]. Papify-SPIDER integration will support

these capabilities together with a real-time reconfiguration based on KPI values, e.g.

energy consumption data. These KPI values can be either measured or estimated from the

performance event occurrences provided by Papify. In this context, the combination of

both tools will extend the reconfiguration criteria of SPIDER. Specifically, this

combination of tools will be able to optimize system execution based on one or several

KPIs at runtime.

To integrate both tools, a library to (1) monitor each actor and to (2) extract hardware

usage information is being developed. The library (eventLib) is built on top of the PAPI

interface. Specifically, energy consumption estimation models will be developed based

on performance events. These estimation models are employed when the instrumentation

circuitry is not present within the platform setup.

Three main steps can be distinguished in the SPIDER-Papify plan: (1) the integration of

Papify with PREESM to automatically insert eventLib function calls within the generated

code; (2) the study of KPI (initially, energy) estimation models based on performance

events for the targeted CPS architectures; (3) the inclusion of KPI estimated values as

inputs to the GRT Self-Adaptation Manager.

Figure 3: Original SPIDER workflow (left) vs Papify-SPIDER workflow (right)

4.4. SPIDER & MDC Integration

This integration activity combines SPIDER SW reconfigurability management with

MDC HW reconfigurability management.

SPIDER and MDC show complementary characteristics that motivate for their

integration. SPIDER provides software scheduling and memory management at runtime

for general-purpose multi-core architectures. In this context, several processors and

memory units are reprogrammed in order to exploit instantaneous parallelism. However,

SPIDER supported processing elements do not include reconfigurable hardware blocks

and adaptivity is based on an a priori knowledge of several metrics (latency, throughput

and memory utilization) evaluated on changes in software parameters. Moreover, no

strategy is considered that takes into account the computational energy consumption KPI.

On the contrary, MDC provides a model-to-model compiler capable of merging several

H2020-ICT-2016-1-732105 - CERBERO

WP4 – D4.4: Self-adaptation Manager

Page 19 of 35

dataflow applications, as well as a dataflow-to-hardware synthesizer that implements

coarse-grained reconfigurable (CGR) systems. MDC profiles CGR system

configurations, providing different metrics (area, power, frequency) and includes a power

manager that enables clock- and power-gating techniques. The SPIDER and MDC tool

combination will support energy and time adaptivity in heterogeneous multicore + CGR

hardware. The proposed approach is to use CGR blocks as slave processing elements in

the target system, and reschedule these processing elements from a host processor at

runtime based on models of the instantaneous hardware behavior. At the moment, the

SPIDER and MDC integration is focused on predicting the CERBERO computational

KPIs latency, throughput and energy. The adaptation architecture is illustrated in Figure

4. An application graph, conforming to a dataflow Model of Computation, is dynamically

scheduled by SPIDER. Depending on the scheduling, a hardware system composed of

ARM cores and CGR architectures performs the computation. Software and hardware

monitoring provides feedback to SPIDER with respect to the correct execution of the

tasks. With regards to hardware monitoring, this feature will be provided through the

integration of MDC and Papify (Section 4.7). In addition, rescheduling will also be

triggered by sensors in order to adapt the computing layer to the environment changes or

system needs.

4.5. MDC & CAPH Integration

This integration activity combines the high-level hardware synthesis capabilities of

CAPH with the hardware adaptation capabilities of MDC.

In order to provide a fully automated flow going from dataflow representations (high

level models describing the applications to be accelerated) to coarse-grained (CG)

reconfigurable architectures (hardware accelerators able to execute the different

applications on a common substrate), the Multi-Dataflow Composer (MDC) tool (by

UNISS and UNICA), that is basically a composition and optimization tool, requires the

Register Transfer Level (RTL) hardware descriptions of the dataflow actors. One

possibility is to derive such RTL descriptions directly from the dataflow models by

Figure 4: Integration of SPIDER – MDC Self-Adaptation Architecture

H2020-ICT-2016-1-732105 - CERBERO

WP4 – D4.4: Self-adaptation Manager

Page 20 of 35

means of High-Level Synthesis (HLS) engines. In literature, HLS is a hot topic and

several HLS engines have been proposed either from academy (e.g. Xronos [BEZATI

2013], CAPH [CAPH 2017], Bambu [BAMBU 2017]) and industry (e.g. Vivado HLS

[XILINX 2018], Altera HLS Compiler [ALTERA 2018], Cadence Stratus [CADENCE

2018]). In the past, MDC was interfaced with the Xronos HLS engine and shared the

same dataflow models of Computation to derive the RTL representation of the actors

[SAU 2016]. In spite of benefits in terms of design time, Xronos adoption lead to a strong

limitation: the target platforms were limited to platforms from one vendor, Xilinx

FPGAs. The CERBERO toolchain having for objective to support a wide range of

systems, this limitation led to the CAPH-MDC integration activities.

Generally speaking, there is no perfect HLS engine; the efficiency of the obtained

systems is linked to the context of applications, and highly depends on the target

device/technology, as well as on the initial specification format. A novel choice in this

sense is CAPH, an open source HLS engine supporting dataflow models as specification

format (close to the MDC ones) and target independent (CAPH generates generic RTL

descriptions for any kind of FPGA vendor or even for ASIC flows)
3
. During the first year

of CERBERO, MDC has been integrated with CAPH to provide a generic fully

automated CG reconfigurable flow. The aim of this process is not to add another HLS

engine, besides Xronos, among the MDC supported ones, but to allow the designer to

choose any kind of HLS engine. This goal required two main actions:

 a CAPH-to-XDF parser has been defined in cooperation with Prof. Jocelyn Serot

from the Blaise Pascal University of Clermont-Ferrand (creator of CAPH) to

implement model-to-model transformations from CAPH dataflow [SEROT 2014]

to MDC compliant dataflow (MPEG-RVC [BHATTACHARYYA 2011]).

 a generalization of the supported actor-to-actor communication protocol (so far

fixed and compliant with MPEG-RVC actors only) to support in hardware any

user-defined actor-to-actor communication handshake. Besides customizing the

communication handshake, users have now additional features: they can link

model parameters to the RTL, put additional modules between actors (such as

FIFOs and fanouts) and specify system level signals (e.g. clock and reset).

With the MDC & CAPH integration it will be possible to automatically generate generic

CG reconfigurable accelerators for the CERBERO adaptivity support. Such kind of

reconfigurability can be also reached by means of imperative (non dataflow oriented)

HLS engines, such as Vivado HLS or Altera HLS Compiler. A comparison between these

design choices is being performed and a research article (with the joint effort of UNISS,

UNICA, INSA and UPM) is to be submitted soon. To anticipate some of the achieved

results, with respect to imperative HLS, MDC & CAPH integration provides

unprecedented predictability for KPIs such as latency and throughput, before the

synthesis stage. By contrast, Vivado HLS and Altera HLS Compiler tools provide latency

only after synthesis and only for simple designs: if reconfiguration is implemented on the

top of the imperative language, latency estimation may not be accurate or even available.

3
 Further details on the CAPH tool are provided in deliverable D5.6 - CERBERO Framework Components

(Ver 1).

H2020-ICT-2016-1-732105 - CERBERO

WP4 – D4.4: Self-adaptation Manager

Page 21 of 35

4.6. MDC & ARTICo3 Integration

This integration activity brings together the coarse grain HW adaptation of MDC and the

fine grain HW adaptation of ARTICo3
3
.

The ARTICo
3
 design flow, as described

in D5.6, makes it possible to

automatically integrate a Custom

Hardware Accelerator (described in

HDL or in C/C++) in a standard

wrapper that provides a common

interface with the rest of the processing

architecture.

On the other hand, MDC provides N:1

composition/synthesis, as also defined

in D5.6. Starting from a set of input

dataflow specifications, MDC

automatically generates a Coarse Grain

Reconfigurable (CGR) HDL

accelerator.

Figure 5 depicts the integrated

ARTICo
3
 – MDC Design Flow, where

the generated CGR HDL accelerator

acts as an additional entry point for the

ARTICo
3
 toolchain.

ARTICo
3
-based hardware accelerators are connected to the communication infrastructure

in the system using a custom gateway, called Data Shuffler, which is able to dynamically

alter its internal datapath to meet specific requirements of computing performance,

energy consumption and fault tolerance. The gateway hides custom point-to-point

interfaces (reconfigurable partitions) behind a standard AXI4 interface (static partition).

Plug-and-play capabilities are enabled in user-defined custom accelerators by

instantiating them in a wrapper module that provides:

 Local memory banks: configurable number of parallel access ports

 Configuration register bank

 Address translation logic: uniform memory map for the microprocessor;

independent memory maps for user-defined logic

One of the MDC extensions generates processor-coprocessor systems, where the CGR

accelerator is automatically wrapped with the logic necessary to communicate with the

processor. This logic includes:

 Local memory

 Configuration registers bank

 Front-end and back-end that manage communication between the CGR

accelerator and previous listed logic.

 AXI4 standard interface

Figure 5: Integration of ARTICo3 – MDC

Design Flow

H2020-ICT-2016-1-732105 - CERBERO

WP4 – D4.4: Self-adaptation Manager

Page 22 of 35

As depicted in Figure 6, integrating an MDC CGR accelerator in ARTICo
3
 requires that

both front-end and back-end logic in the MDC accelerator have access to the memory

banks and configuration registers of the ARTICo
3
 wrapper. This is achieved by extending

the MDC code that takes care of the processor-coprocessor system generation to be

compliant with the ARTICo
3
 register/memory structure (i.e. embedding the custom logic

in the ARTICo
3
 wrapper instead of doing it in a standard AXI4 template). This

modification will be developed and demonstrated within the CERBERO project.

Figure 6: Integration of a MDC coarse grain reconfigurable accelerator in ARTICo

3
.

4.7. Papify Monitors & Hardware Integration

This integration activity combines Papify monitoring and ARTICo3 HW reconfiguration.

As evoked in Section 4.4, Papify is a tool based on the Performance Application

Programming Interface (PAPI). PAPI aims at providing event information directly

extracted from a set of Performance Monitor Counters (PMC) existing in current modern

processors. On heterogeneous platforms, a global overview of the platform performance

is needed for driving self-adaptation, relying on a simultaneous access to key event

occurrences of Hw and Sw components.

Hw-Papify is based on the access to a set of Hw-mapped registers that monitor events

such as

 the Number of Errors, to increase reliability while monitoring multiple

accelerators taking charge of the same functionality;

 the Number of Clock-cycles, to obtain the accelerator latency; and

 the FIFO occupancy, to detect communication bottlenecks within the accelerator

to decide whether or not a specific kernel is parallelized.

H2020-ICT-2016-1-732105 - CERBERO

WP4 – D4.4: Self-adaptation Manager

Page 23 of 35

To achieve this goal with Papify, user-defined PAPI components
4
 are developed to access

a Hw register file. Figure 7 (left) depicts a block diagram explaining the procedure to

access these components. Specifically, the steps to connect Hw components in Papify are:

1. direct mapping of user-space virtual addresses to Hw accelerators 5 physical

addresses using mmap(…);

2. command/data writing into Hw accelerators using virtual addresses;

3. inclusion of Hw register file write/read actions in the Hw PAPI component.

Additionally, in order to unify the access to performance events of any processing

element (PE), a new abstraction layer is included to automatically access the specific

PAPI component through a new library called eventLib. The behavior of this library is

shown in Figure 7 (right), where PE monitoring is managed with three functions:

1. a configuration call to set the PE and PMC;

2. a start call to begin monitoring;

3. a stop function to end monitoring and retrieve performance information.

KPI estimation models based on events provided by Papify will be developed to replace

actual measurements in those setups where the required instrumentation circuitry is not

present.

A first integration of Papify with ARTICo³ has been achieved. Specifically, an ARTICo³

PAPI component and the eventLib library to unify the access methodology for both Sw

and Hw PAPI components have been developed. In the planned integration activities, the

eventLib library will be enhanced to support the access to any kind of user-defined PAPI

component, hence generalizing the Papify-instrumentation of Hw accelerators, e.g. the

coarse-grain reconfigurable accelerators generated by MDC.

Figure 7: HW PAPI component diagram (left); eventLib abstraction layer diagram (right)

4.8. System-level Perspectives for Homogenizing Tool Integrations

From the previously presented integration activities, one of the key goals of CERBERO

is to produce an integration framework capable of combining and interlinking consortium

tools semantically across different tooling layers, in such a way that allows for self-

adaptivity of the highly-heterogeneous CPS. The anticipated outcome of such point-to-

point integration efforts is a fully-integrated toolchain that, beyond point-to-point

4
PAPI Component Manual: http://icl.cs.utk.edu/projects/papi/wiki/PAPIC:Component_Developers_Manual

5
 The Hw accelerator has to be generated with a standard AXI4 interface.

http://icl.cs.utk.edu/projects/papi/wiki/PAPIC:Component_Developers_Manual

H2020-ICT-2016-1-732105 - CERBERO

WP4 – D4.4: Self-adaptation Manager

Page 24 of 35

integrations, features a high degree of self-adaptivity at system level. CERBERO

semantic interfaces are being envisaged in such a way that fulfills this critical

requirement of system-level adaptivity taking into account the overall system to

autonomously handle the dynamic changes in its operational environment, thus making

the system as transparent as possible to the application and enhancing overall system

flexibility and self-maintainability.

In that sense, a group involving AI, INSA, UNISS, IBM, and TNO is preparing the

system-level perspective by shaping system-level adaptation strategies considering

current progress in CERBERO integration framework development. The following

ongoing integration activities contribute to the realization of an adaptive framework at

system level:

- Developing different technologies for implementing the CERBERO semantic

interfaces for cross-layer data flow and tool-to-tool communication. These

interfaces represent - or rather abstract - each layer of the CERBERO toolchain.

- Designing the architecture for cross-layer analysis, optimization, verification,

rapid prototyping and continuous deployment.

- Building the framework demonstrator and verify the system-level integration

results (first iteration) by means of both simulation and mathematical analysis

(Section 2.3) of TNO and IBM, respectively, as well as by system prototyping

with the CERBERO self-adaptation toolchain (built from Section 4 activities).

These activities complement the point-to-point tool integration activities in building a

rich and consolidated CERBERO self-adaptation runtime manager.

H2020-ICT-2016-1-732105 - CERBERO

WP4 – D4.4: Self-adaptation Manager

Page 25 of 35

5. Applicability of the CERBERO Self-Adaptation

Capabilities to Use Cases

The objective of this section is to explain the intended effects of CERBERO

self-adaptation in the context of the use cases. As shown in Deliverable D2.6 “Technical

Specification”, adaptation within the CERBERO project applies to all three use cases.

5.1. Planetary Exploration (PE)

The Planetary Exploration demonstrator has unique requirements such as a strong need of

self-* properties, including self-adaptation, self-healing and self-awareness. For this

reason, the use case will foster the capabilities of CERBERO runtime adaptation at

different layers:

 Triggers: the developed technology will adapt the system starting from

information acquired from sensors in the physical part (current sensors of the

motors of the robotic arm), as well as information coming from monitors of the

computing platform.

 Adaptation fabrics: CERBERO HW and SW adaptation fabrics, including

managers and engines, will be used to solve the trajectory planning problem. In

principle, SPIDER, ARTICo
3
, ARTICo

3
+MDC and ARTICo

3
 + JIT HW

composition will be tested.

 Adaptation monitors: execution will be monitored via using PAPI compatible

functions through Papify.

 Embedded models: KPIs will be drawn from lightweight models, embedded in

the system so they can operate autonomously.

 Adaptation manager: It will respond to specific situations, such as performance

and energy utilization improvement or fault mitigation techniques. Design

diversity, fault detection and HW accelerator migration within the FPGA fabric

will be used to extend reliability, which will be demonstrated by a fault injection

mechanism to measure fault detection and fault recovery times.

5.2. Ocean Monitoring (OM)

The Ocean Monitoring use case is based on a platform with strong real-time and energy

constraints, and which delivers a computer vision processing and image evaluation

pipeline within that platform. Adaptation against these constraints is a cross-cutting

concern, and the case requires adaptation monitors, managers, and engine aspects at

different levels of granularity to implement that adaptation.

The primary models of adaptation are planned, addressing the three primary sources of

adaptation:

 System: The primary system adaptation involves tracking power levels and

remaining data storage capacity, and ensuring that both usage levels are

optimized, and that navigation is modified when safe levels require returning to

an access point.

H2020-ICT-2016-1-732105 - CERBERO

WP4 – D4.4: Self-adaptation Manager

Page 26 of 35

 Environmental: These range from location adaptation (using GPS sensors and

navigation planning, with a world model to represent travel in the 3D medium), to

light adaptation (using broad histogram data from camera outputs to detect colour

and illumination and adjust light accordingly).

 Human: Adapting to human requirements focuses more on the informational

systems and the image processing pipeline. Because the image processing will be

implemented using existing Java platforms (likely either FastCV or

VisionWorks), the initial Ocean Monitoring case will only adapt externally for

image processing, to user image quality and relevance requirements as well as

overall environmental and system monitors.

Because these components of adaptation vary in authority and source, the Ocean

Monitoring case will adopt an established architecture for autonomous underwater

vehicles, NIST’s reference model architecture [ALBUS 1994]. In this model, there are

adaptation monitors, managers, and engines within each component node within the

hierarchical architecture, each of which can also relay to monitors above and to managers

below, as shown in Figure 8 below.

Figure 8. Overview of the RCS-4 model, from [ALBUS 1994]

In the Ocean Monitoring instantiation of this architecture, DynAA will form the primary

adaptation model components. Value judgment will principally be implemented through

custom logic, as well as behavior generation; however, in most cases the complexity of

the aspects will be low.

The Ocean Monitoring vision processing pipeline has strong real-time and energy

constraints, which allow CERBERO technologies to be tested on a cross-cutting test bed

even beyond CERBERO direct usage within OM. The self-adaptive CERBERO toolchain

constituted by SPIDER, MDC, CAPH, ARTICo3 and Papify offers a versatile solution to

support such a stream processing pipeline over heterogeneous architectures. Subsets of

the toolchain can be employed to target fully software pipelines (SPIDER + Papify),

software /CGRA hardware pipelines (SPIDER + MDC + Papify) or software /DPR

H2020-ICT-2016-1-732105 - CERBERO

WP4 – D4.4: Self-adaptation Manager

Page 27 of 35

hardware pipelines (SPIDER + ARTICo3 + Papify) on any type of image processing

pipeline. Proofs of Concept will be developed to demonstrate the performance of the self-

adaptive CERBERO toolchain on image processing pipelines.

5.3. Smart Travelling (ST)

In the Smart Travelling use case, the targeted self-adaptivity is at the application level.

New driver support functionalities are developed, relying on the self-adaptive DynAA,

SCANeR & MECA toolchain (Section 4.2), which will provide advice to the driver,

based on predictions for possible routes and knowledge on the status of the car. As the

driver support functionality needs to adapt its advice based on changes in the vehicle and

the environment, the vehicle and environment will need to be monitored continuously

and actions will need to be triggered in case situation has changed.

MECA will need to pose knowledge on the preferences of the driver and the actual

situation (e.g. speed of the car) to determine the most appropriate advice on each given

moment. In case of heavy or fast traffic, the driver support functionality should for

example reduce the number of alternatives given to the driver to select from, and thus

reduce distraction in the given moment.

The adaptivity in the smart travelling use case must consider CPSoS interactions and the

driver actions to provide reconfiguration of the current execution status. Particularly, the

system cannot perform self-adaptation without the authorization of the driver (except for

critical failures or dangerous situations such as a battery short circuit), so the use case

demonstrator will enable a decision-making process in which the driver is another layer

of the system. Then, the adaptivity will take place in the three following levels:

 System: Based on the information provided by the different CPSs (e.g., the car

status, charging poles, battery consumption prediction, etc.) the system can adjust

different parameters for holding the required safety constraints.

 Environmental: The interaction with the environment has a fundamental role as

the driving activities are influenced by the environment (e.g., traffic jams, weather

conditions, etc.). The system shall monitor the environment to adapt the current

route based on the current and predicted conditions.

 Human: The driver has the final decision about the proposed routes given by the

demonstrator. Such routes could take into consideration driver’s history and/or

agenda to provide personalized routes adapted to him/her profile. Moreover, the

demonstrator could monitor the driver health to adapt the route if the driver is

tired or want to stop at an unplanned location for instance.

To achieve this adaptivity, the smart travelling use case will exploit the MECA tool to

perform monitoring of the various levels and trigger the adaptive behaviors. To obtain

information from the driver and from the system (car), MECA will be integrated with

SCANeR for the demonstration. In the case of the environmental status, interfacing with

map providers and weather forecast services will be done. For performing the route

planning, a specific decision module will be implemented for this study case, which will

obtain information from map providers, obtaining a set of potential routes. These routes,

including information of in-route charging poles, will be supplied to the DynAA tool.

Using that information, DynAA performs a simulation based on the battery model,

H2020-ICT-2016-1-732105 - CERBERO

WP4 – D4.4: Self-adaptation Manager

Page 28 of 35

discarding those routes that cannot be completed and providing a set of itineraries which

include charging stops (if required). MECA will filter and rank (based on user

preferences) these itineraries, enabling the user to choose one. Then, during driving,

MECA sets up route monitoring regarding the user and car status, meanwhile DynAA

performs battery monitoring and simulation in the loop to ensure that the battery

performs according to the predictions.

H2020-ICT-2016-1-732105 - CERBERO

WP4 – D4.4: Self-adaptation Manager

Page 29 of 35

6. Conclusion: Self-Adaptation Manager Integration Agenda

and Advances w.r.t State-of-the-Art

The point-to-point tool integration activities, described in Section 4, will follow the

agenda of Figure 9. Vertical bars depict demonstration setups.

M
1

3

M
1

4

M
1

5

M
1

6

M
1

7

M
1

8

M
1

9

M
2

0

M
2

1

M
2

2

M
2

3

M
2

4

M
2

5

M
2

6

M
2

7

M
2

8

M
2

9

M
3

0

4.2. DynAA, SCANeR & MECA Phase 1 Phase 2

4.3. Papify & SPIDER Phase 1 Phase 2 Phase 3

4.4. SPIDER & MDC Phase 1 Phase 2 Phase 3

4.5. MDC & CAPH Phase 1 Phase 2 Phase 3

4.6/4.7. MDC & Papify & ARTICo3 Phase 1 Phase 2 Phase 3

Figure 9: Self-Adaptation Manager Plan for integration

Some details follow on the self-adaptation manager integration activities:

 4.2 – “DynAA, SCANeR & MECA Integration”

o Phase 1

 Detail one reference scenario, set up test environment with

SCANeR, MECA and DyNAA, data fusion and synchronization,

 Define and implement tool interfaces, integration verification.

o Phase 2

 Detail all scenarios, develop and integrate CERBERO intermediate

format, add AOW for optimization of route planning

 use additional CERBERO tools (like Preesm/Spider and

Verification tool) to optimize / validate solution

 4.3 - Papify & SPIDER Integration

o Phase 1

 automatically insert Papify eventLib function calls within SPIDER

jobs and Local Runtimes (LRT),

o Phase 2

 derive generalized models to translate LRT (Papify Parameters)

measurements into relevant CERBERO KPIs,

o Phase 3

 enable system self-adaptation, including KPI estimated values as

inputs to the Global Runtime Self-Adaptation manager.

H2020-ICT-2016-1-732105 - CERBERO

WP4 – D4.4: Self-adaptation Manager

Page 30 of 35

 4.4 - SPIDER & MDC Integration

o Phase 1

 Integrate MDC & SPIDER by combining software and hardware

adaptation based on varying application parameters,

o Phase 2

 verify this approach with respect to relevant CERBERO KPIs,

o Phase 3

 derive a proof of concept of the proposed approach in the context

of CERBERO use case scenarios.

 4.5 - MDC & CAPH Integration

o Phase 1

 complete, debug and assess the MDC & CAPH integration for

coarse grain adaptive HW,

o Phase 2

 verify this approach with respect to relevant CERBERO KPIs

o Phase 3

 derive a proof of concept of the proposed approach in the context

of the CERBERO use case scenarios

 4.6/4.7 - MDC & ARTICo3 Integration, Papify Monitors & Hardware Integration

o Phase 1

 provide a unified hardware/software monitoring interface using

Papify,

 extend MDC generation code, to generate ARTICo3 compliant

CGR accelerators,

o Phase 2

 provide an automated instrumentation methodology for

heterogeneous hardware/software setups

 experiment with multi-grain adaptivity, proposing different

reconfiguration strategies according to relevant CERBERO KPIs

o Phase 3

 derive generalized models to translate heterogeneous

hardware/software measurements into relevant CERBERO KPIs

and enable system self-adaptation, providing KPIs to the

CERBERO Self-Adaptation Manager.

 derive a proof of concept of the proposed approaches in the context

of the CERBERO use case scenarios

The previous sections have covered the on-going activities and plan for building the

CERBERO self-adaptive management. The [MACIAS 2013] survey on self-adaptive

systems gives insights on the main challenges of such management. The survey states

that “commonly used software modeling notations (e.g., UML) provide no means of

describing and analyzing control and procedure to deal with uncertainty”. The model-

based, unified self-adaptation approach of CERBERO tackles this challenge by

developing methods and tools to represent and exploit adaptation opportunities.

Moreover, the models fostered by the CERBERO consortium are tailored to the parallel

H2020-ICT-2016-1-732105 - CERBERO

WP4 – D4.4: Self-adaptation Manager

Page 31 of 35

and heterogeneous systems that constitute the state-of-the-art of cyber physical

hardware platforms.

The same survey also claims that “one of the shortcomings of software engineering for

self-adaptive applications is the lack of actual case studies.” The CERBERO project

overcomes this problem by applying the proposed self-adaptation methods to real-life

use cases of significant size.

H2020-ICT-2016-1-732105 - CERBERO

WP4 – D4.4: Self-adaptation Manager

Page 32 of 35

7. References

[ADHIANTO 2010]

Adhianto, L., Banerjee, S., Fagan, M., Krentel, M., Marin, G.,

Mellor-Crummey, J. and Tallent, N. R. (2010), HPCTOOLKIT: tools

for performance analysis of optimized parallel programs.

Concurrency Computat: Pract. Exper, 22: (pp, 685–701).

doi:10.1002/cpe.1553.

[ALBUS 1994]

Albus, J. S., & Rippey, W. G. (1994, September). RCS: A reference

model architecture for intelligent control. In From Perception to

Action Conference, 1994, Proceedings (pp. 218-229). IEEE.

[ALIREZAEYAN 2015]

Alirezaeyan, J., Yousefi, S., & Doniavi, A. (2015). Adaptive

reliability satisfaction in wireless sensor networks through controlling

the number of active routing paths. Microelectronics Reliability,

55(11), 2412-2422.

[ALOUANI 2017]

Alouani, I., Wild, T., Herkersdorf, A., & Niar, S. (2017, August).

Adaptive Reliability for Fault Tolerant Multicore Systems. In Digital

System Design (DSD), 2017 Euromicro Conference on (pp. 538-

542). IEEE.

[ALTERA 2018]
www.altera.com/products/design-software/high-level-design/intel-

hls-compiler/overview

[ASSAYAD 2017]

Ismail Assayad, Alain Girault. Adaptive Mapping for Multiple

Applications on Parallel Architectures. Third International

Symposium on Ubiquitous Networking, UNET’17, May 2017,

Casablanca, Morocco. <hal-01672463>

[BAMBU 2017] https://panda.dei.polimi.it/?page_id=31

[BENNACEUR 2014]

Bennaceur, A., France, R., Tamburrelli, G., Vogel, T., Mosterman, P.

J., Cazzola, W., ... & Emmanuelson, P. (2014). Mechanisms for

leveraging models at runtime in self-adaptive software. In Models@

run. time (pp. 19-46). Springer, Cham.

[BETTY 2009]

Betty, H. C., Rogério, D. E., Holger, G., Inverardi, P., & Magee, J.

(2009). Software engineering for self-adaptive systems. Lecture

Notes in Computer Science, 5525.

[BEZATI 2013]

E. Bezati, S. Casale-Brunet, M. Mattavelli & J. Janneck, Synthesis

and optimization of high-level stream programs. In Proceedigns of

the Electronic System Level Synthesis Conference, 2013.

[BHATTACHARYYA 2011]

S.S. Bhattacharyya, J. Eker, J.W. Janneck, C. Lucarz, M. Mattavelli,

and Mickaël Raulet, Overview of the MPEG Reconfigurable Video

Coding Framework. In Journal of Signal Processing Systems,

Volume 63, Issue 2, pp.251-263, 2011.

[BRUN 2009]

Brun, Y., Serugendo, G. D. M., Gacek, C., Giese, H., Kienle, H.,

Litoiu, M., ... & Shaw, M. (2009). Engineering self-adaptive systems

through feedback loops. In Software engineering for self-adaptive

systems (pp. 48-70). Springer, Berlin, Heidelberg.

[CADENCE 2018]

https://www.cadence.com/content/cadence-

www/global/en_US/home/tools/digital-design-and-

signoff/synthesis/stratus-high-level-synthesis.html

H2020-ICT-2016-1-732105 - CERBERO

WP4 – D4.4: Self-adaptation Manager

Page 33 of 35

[CAMARA 2017]

Cámara, J., Bellman, K. L., Kephart, J. O., Autili, M., Bencomo, N.,

Diaconescu, A., ... & Tivoli, M. (2017). Self-aware Computing

Systems: Related Concepts and Research Areas. In Self-Aware

Computing Systems (pp. 17-49). Springer International Publishing.

[CAPH 2017] http://caph.univ-bpclermont.fr/CAPH/CAPH.html

[CERBERO 2017] http://www.cerbero-h2020.eu

[GAUTIER 2013]

Gautier, T., Lima, J. V., Maillard, N., & Raffin, B. (2013, May).

Xkaapi: A runtime system for data-flow task programming on

heterogeneous architectures. In Parallel & Distributed Processing

(IPDPS), 2013 IEEE 27th International Symposium on (pp. 1299-

1308). IEEE.

[GEROSTA 2016]

Gerostathopoulos, I., Bures, T., Hnetynka, P., Keznikl, J., Kit, M.,

Plasil, F., & Plouzeau, N. (2016). Self-adaptation in software-

intensive cyber–physical systems: From system goals to architecture

configurations. Journal of Systems and Software, 122, 378-397.

[HAN 2017]

Han, M., Park, J., & Baek, W. (2017, March). CHRT: a criticality-

and heterogeneity-aware runtime system for task-parallel

applications. In Proceedings of the Conference on Design,

Automation & Test in Europe (pp. 942-945). European Design and

Automation Association.

[HOFFMANN 2011]

Hoffmann, H., Maggio, M., Santambrogio, M. D., Leva, A., &

Agarwal, A. (2011). SEEC: a general and extensible framework for

self-aware computing. MIT-CSAIL-TR-2011-046 Technical Report,

MIT.

[HORMATI 2014]

Hormati, A. H., Choi, Y., Kudlur, M., Rabbah, R., Mudge, T., &

Mahlke, S. (2009, September). Flextream: Adaptive compilation of

streaming applications for heterogeneous architectures. In Parallel

Architectures and Compilation Techniques, 2009. PACT'09. 18th

International Conference on (pp. 214-223). IEEE.

[KNÜPFER 2008]

Knüpfer, A., Brunst, H., Doleschal, J., Jurenz, M., Lieber, M.,

Mickler, H., ... & Nagel, W. E. (2008). The vampir performance

analysis tool-set. In Tools for High Performance Computing (pp.

139-155). Springer, Berlin, Heidelberg.

[MACIAS 2013]

Macías-Escrivá, F. D., Haber, R., Del Toro, R., & Hernandez, V.

(2013). Self-adaptive systems: A survey of current approaches,

research challenges and applications. Expert Systems with

Applications, 40(18), 7267-7279.

[PALUMBO 2017]

Palumbo, F., Sau, C., Fanni, T., Raffo, L. (2017) Challenging CPS

Trade-Off Adaptivity with Coarse-Grained Reconfiguration.

[Proceedings to be published]Applications in Electronics Pervading

Industry, Environment and Society Conference (ApplePies).

[QUAN 2016]

Quan, W., & Pimentel, A. D. (2016). A hierarchical run-time

adaptive resource allocation framework for large-scale MPSoC

systems. Design Automation for Embedded Systems, 20(4), 311-339.

[ROBSON 2017]
Robson, M. P., Buch, R., & Kale, L. V. (2016, November). Runtime

coordinated heterogeneous tasks in charm++. In Proceedings of the

Second Internationsl Workshop on Extreme Scale Programming

http://www.cerbero-h2020.eu/

H2020-ICT-2016-1-732105 - CERBERO

WP4 – D4.4: Self-adaptation Manager

Page 34 of 35

Models and Middleware (pp. 40-43). IEEE Press.

[SALEHIE 2012]

Salehie, M., & Tahvildari, L. (2012). Towards a goal‐driven

approach to action selection in self‐adaptive software. Software:

Practice and Experience, 42(2), 211-233.

[SAU 2016]

C. Sau, P. Meloni, L. Raffo, F. Palumbo, E. Bezati, S. Casale-Brunet

& M. Mattavelli, Automated Design Flow for Multi-Functional

Dataflow-Based Platforms. In Journal of Signal Processing Systems,

Vol. 85, Issue 1, pp. 143-165, 2016.

[SCHLÜTTER 2014]

Schlütter, M., Mohr, B., Morin, L., Philippen, P., & Geimer, M.

(2014). Profiling Hybrid HMPP Applications with Score-P on

Heterogeneous Hardware. In International Conference on Parallel

Computing (No. FZJ-2014-01861). Jülich Supercomputing Center.

[SCHNEIDER 2009]

Schneider, S., Andrade, H., Gedik, B., Biem, A., & Wu, K. L. (2009,

May). Elastic scaling of data parallel operators in stream processing.

In Parallel & Distributed Processing, 2009. IPDPS 2009. IEEE

International Symposium on (pp. 1-12). IEEE.

[SEROT 2014]

J. Serot & F. Berry, High-Level Dataflow Programming for

Reconfigurable Computing. In Proceedings of the IEEE 26th

International Symposium on Computer Architecture and High

Performance Computing Workshops, 2014.

[STREIT 2013]

Streit, K., Hammacher, C., Zeller, A., & Hack, S. (2013, January).

Sambamba: runtime adaptive parallel execution. In Proceedings of

the 3rd International Workshop on Adaptive Self-Tuning Computing

Systems (p. 7). ACM.

[THOMAS 2004]

Thomas A., Becker J. (2004) Dynamic Adaptive Runtime Routing

Techniques in Multigrain Reconfigurable Hardware Architectures.

In: Becker J., Platzner M., Vernalde S. (eds) Field Programmable

Logic and Application. FPL 2004. Lecture Notes in Computer

Science, vol 3203. Springer, Berlin, Heidelberg

[VANDEWOUDE 2003]

Vandewoude, Y., Rigole, P., Urting, D., & Berbers, Y. (2003).

Draco: An adaptive runtime environment for components. Appendix

of the EMPRESS deliverable for Run-time Evolution and Dynamic

(Re) configuration of Components.

[WOLF 2014]

Wolf, M. (2014). High-performance embedded computing:

applications in cyber-physical systems and mobile computing.

Newnes.

[XILINX 2018] www.xilinx.com/products/design-tools/vivado/integration/esl-design

[VENKATASUBRAMANIAN

2014]

K.K. Venkatasubramanian, C. Shue. “Adaptive Information Security

in Body Sensor-Actuator Networks.” In Proc. of 2014 Usenix

Summit on Health Information Technologies Aug 2014.

[WEN 2010]

Wen, M., Yin, Z., Long, Y., & Wang, Y. (2010). An adaptive key

management framework for the wireless mesh and sensor networks.

Wireless Sensor Network, 2(09), 689.

H2020-ICT-2016-1-732105 - CERBERO

WP4 – D4.4: Self-adaptation Manager

Page 35 of 35

[YUN 2015]

Yun, J., Park, J., & Baek, W. (2015, June). HARS: A heterogeneity-

aware runtime system for self-adaptive multithreaded applications. In

Design Automation Conference (DAC), 2015 52nd

ACM/EDAC/IEEE (pp. 1-6). IEEE.

[ZHANG 2015]

Zhang, F., Cao, J., Khan, S. U., Li, K., & Hwang, K. (2015). A task-

level adaptive MapReduce framework for real-time streaming data in

healthcare applications. Future Generation Computer Systems, 43,

149-160.

