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Abstract: 

As stated in the amended DoW, this deliverable is the first version (it will be followed by 

an updated version in M28, D4.1) and “contains detailed technical information on the 

different strategies to support adaptivity in CERBERO compliant systems. Different 

chapters for HW, SW and sensor-driven adaptation strategies/algorithms/components are 

envisioned. Along with the reports, also the HW monitors, SW agents and specific 

algorithms are going to be delivered. Please note that all the technical providers, 

cooperating to the above listed tasks, will be responsible of their own physical 

components”. 

© 2017 CERBERO Consortium, All Rights Reserved.  
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for a particular purpose and non infringement of third party’s rights. 
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The technology disclosed herein may be protected by one or more patents, copyrights, 
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1. Executive Summary 

This deliverable document presents the overall adaptation scenario foreseen in the 

CERBERO project, and presents its main components. The CERBERO adaptation 

approach identifies three basic parts that benefit from adaptation: Hardware (HW), 

Software (SW), and Sensors. The three main sections (3 to 5) provide an insight to these 

three main parts. 

Adaptation requires a series of actions (sense, derive measures, take decisions, and 

perform the required changes), which must be tailored according to the nature of the 

fabric being adapted: the SW subsystem, the HW subsystem, and the sensors layer. The 

components of the framework that make up the CERBERO adaptation framework have 

been identified and categorized. Heterogeneity is one of the challenges of CERBERO, 

given the fact that an adaptation decision (i.e., a trigger for adaptation) might affect to 

more than one component at a time and, also, being motivated from different reasons, and 

with different functional and non-functional objectives. 

The document presents also the specific adaptation strategies and components that will be 

used in the different CERBERO use cases. 

1.1. Structure of the Document 

Section 2 provides an overall view of the runtime adaptation environment, identifying its 

different components. Next three sections are the core of the document, namely, Section 

3 and 4 deal with HW and SW  adaptation techniques, respectively, while Section 5 

concerns sensor adaptation. Finally, Section 6 states, among the previously mentioned 

techniques, which ones will be employed in the different use cases.  

1.2. Relation with CERBERO Requirements 

Deliverable D2.7 of the CERBERO project defines a list of CERBERO Technical 

Requirements (CTRs) the project should achieve. The CERBERO adaptation strategy, 

and its related components and techniques, described in this document contribute to the 

fulfilment of the mentioned requirements in the following aspects: 

 

CTR 

id 

CTR Description Link with the D5.6  document on CERBERO 

framework components 

0001 CERBERO framework 

SHOULD increase the level 

of abstraction at least by one 

for HW/SW co-design and 

for System Level Design. 

The support provided by PREESM for the abstraction of SW 

and HW tasks, the capability of SPIDER to decide, at 

runtime, task migration between fabrics, the unified PAPI 

access scheme to monitors for HW and SW are the key 

contributions to this requirement. 

0003 CERBERO framework 

SHOULD provide 

incremental prototyping 

capabilities for HW/SW co-

design. 

Incremental prototyping capabilities are envisioned at the 

tools/components level: 

• MDC will be provided with an enhanced HLS support; 

• DPR features will be improved thanks to JIT HW 

implementation and composition tool; 

• the runtime monitoring of ARTICo³, JIT HW and MDC 
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reconfigurable hardware accelerators will be enabled 

thanks to PAPIFY integration; 

• PREESM, SPIDER and PAPI will be used to drive 

ARTICo³, JIT HW and MDC prototyping features. 

0006 CERBERO framework 

SHOULD ensure energy 

efficient and dependable 

HW/SW co-design using 

cross-layer runtime 

adaptation of reconfigurable 

HW. 

Energy is a main KPI, and it is addressed in most of the 

techniques described in this deliverable, including all HW 

fabric types, SW agents and sensor infrastructure. 

Monitors and adaptation techniques for energy efficiency 

and dependability are foreseen in the three kinds of 

components, also. 

0009 CERBERO SHALL develop 

integration methodology and 

framework. 

The adaptation infrastructure and the associated tools are 

part of the CERBERO framework.  

0014 CERBERO WP and task 

leaders SHALL organize 

scheduled face to face and 

remote meetings. 

WP4 periodic management meetings have been organised in 

order to track progress, deviations and risks. 

0016 CERBERO tools SHOULD 

be tested vs state-of-the-art  

Section 6 in this deliverable contains information about the 

use of the various components and technologies in the three 

use cases. 

0018 CERBERO technology 

providers SHALL prepare 

face to face or online 

tutorials / education for use 

case engineers. 

Tutorials on HW and SW adaptation have been prepared for 

the Summer School 2017 and CPS Week 2018. Academic 

engineers have received these courses in order to have 

feedback. 

0019 CERBERO technology 

providers SHALL coordinate 

technical support for their 

tools with use case engineers. 

A preliminary version of some of WP4-related tools 

(PREESM, ARTICo3, MDC) has been delivered for the 

Summer School 2017. 

0020 CERBERO framework 

SHALL provide 

methodology and tools for 

development of adaptive 

applications. 

This deliverable provides information about the components 

(mainly) and tools (partially) involved in the adaptivity 

support. 

1.3. Related Documents 

• D2.7. – CERBERO Technical Requirements: The activities behind D4.3 are 

driven by the CERBERO Technical Requirements that have been described in the 

previous subsection. 

• D4.4. – CERBERO Self-adaptation Manager: D4.3 represents an input for D4.4. 

The CERBERO Self-adaptation Manager is meant to orchestrate the ensemble of 

strategies presented here. 

• D5.6. – CERBERO Framework Components: Adaptivity, to be successfully and 

easily mastered, has to be supported by the design framework. Techniques and 

components described in D4.3 are bounded (as pointed out in the text where 

necessary) by specific Framework components detailed in D5.6. 
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2. Overall Adaptation Strategies 

The need for adaptation in complex CPS and CPSoS is easy to justify, given the fact that 

this type of systems must be set to operate under changing conditions and fulfill changing 

requirements along their lifetime.   

2.1. Types of adaptation 

There are three types of adaptations [Rohr06] which are differentiated by the moment in 

which the adaptation is initiated: 

• Reactive: adaptation is consequence of external events or internal changes. This 

happens when the performance of the system is degraded, or a safety constraint is 

not satisfied, which are analysed by a monitor that triggers the adaptation. 

• Predictive: adaptation is internally triggered to avoid future off-nominal states 

based on predictive models of the system. The adaptation engine can have 

prediction algorithms of how the execution will behave based on the context, 

anticipating off-nominal states and correcting them before a monitor triggers a 

reactive behaviour. 

• Proactive: adaptation happens during the nominal operations. In this case, 

adaptation is related to optimization; while previous types attempt to hold 

nominal states and safety constraints, proactive adaptation is related to self-

optimization and improvements of the system’s performance while it is operating 

in nominal conditions.  

2.2. Type of adaptation triggers 

The triggers that could initiate adaptation behaviours can be divided in three main 

categories: 

• System (self-awareness): the system must monitor its internal status to keep the 

application safety constraints. If a constraint is not satisfied, the system will 

trigger an adaptive behaviour to correct the situation. In the literature this is also 

called self-healing. 

• Environment (environment-awareness): the system can be influenced by the 

environment; for such reason, changes in the environment could trigger 

adaptation behaviours to avoid potential risks. For this kind of adaptation trigger 

it is required sensory capabilities, for instance hardware sensors or internet data 

gathering. 

• Human (user-commanded): the interaction with the user is another way to trigger 

adaptive behaviours to cope with the user desires or actions. In this direction, the 

user can be seen as another layer of the system, so a proper interface with the user 

is required. 
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2.3. The adaptation loop 

Most adaptive systems follow a loop process to achieve adaptation, no matter the type or 

the trigger for adaptation. There is always, someway, a continuous sequence of the 

following steps: 

• Sense/monitor the environment (physical part) or the system itself (cyber part), 

making the system context aware and self-aware, respectively. 

• From the above measurements, derive the key parameters that will facilitate the 

decision to adapt or reconfigure. This can be done via models of both the physical 

and cyber part. 

• Make a decision to change the configuration by means of some criteria. For 

instance, if performance goes under a certain threshold, perform modifications to 

increase performance. These criteria may be application specific. 

• Provide the means to perform system adaptation. 

• To have one or more computing fabrics with sufficient flexibility to hold the 

commanded adaptation. 

All these functions in the adaptation loop must be done by the adaptation components. 

Offline adaptation does not require all components to be embedded in the system, but 

self-adaptation does. 

The identification of the components that perform the adaptation tasks is not always 

straightforward. However, in the case of CERBERO, where one of the goals is to 

generalise the concept of CPS adaptation, an effort has been made to provide a coherent 

adaptation infrastructure, and to provide common means to interact between these 

adaptation components.  

It is important to highlight that, in the CERBERO approach, computing fabrics of 

different nature and a variety of sensors require this effort of generalization, given the 

fact that, for instance, every fabric might require different means for adapting, and the 

way the key performance metrics are provided can be different, also. 

In the following subsection, the overall adaptation infrastructure and its components is 

described.  

2.4. The CERBERO adaptation components 

The main components of the CERBERO (Self-)Adaptation Infrastructure, which is 

shown in Figure 1, are: 

• Adaptation Fabrics: computing/sensing resources. 

• Adaptation Monitors: hardware/software components to track the state of the 

Adaptation Fabrics. 

• Adaptation Engines: hardware/software components to change the configuration 

of the Adaptation Fabrics. 

• Adaptation Manager: high-level (i.e., system layer) entity with runtime 

decision-making capabilities. It uses the information provided by the Adaptation 

Monitors to decide whether to change the configuration of the Adaptation Fabrics 

using the Adaptation Engines. 
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Figure 1 - CERBERO (Self-)Adaptation Infrastructure 

The core adaptation process as shown in Figure 1, therefore, consists of composed blocks 

of functionality, each containing an adaptation manager, overseeing monitors to track 

system, environment, and user. These monitors are then used, in combination with an 

embedded model, to drive adaptation through an adaptation engine. Importantly, these 

units may be organized hierarchically: the adaptation may involve sensing and 

manipulating a set of subordinate systems, each of which may also have its own 

adaptation behaviours, as well as signalling requirements to super-ordinate systems. This 

allows, for example, a software-developed high-level adaptation manager to coordinate 

adaptation between several lower-level subsystems. 
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3. Hardware Adaptation 

In the context of HW, three different adaptation fabrics will be used within CERBERO: 

ARTICo3, MDC and Just-in-Time HW composition. Furthermore, ARTICo3 acts as a 

container for the other two possibilities and, hence, ARTICo3 + MDC or ARTICo3 * JIT 

composition are possible. 

ARTICo3 addresses module-level reconfiguration (typically, a HW accelerator), 

providing acceleration scalability and/or fault tolerance in DMR or TMR (Double or 

Triple Modular Redundancy) for enhanced reliability. It can hold modules designed using 

Register-Transfer-Level (RTL) design entry, modules designed by using High Level 

Synthesis (HLS), or, as mentioned, modules built with MDC and HLS, or with JIT HW 

composition. 

MDC provides coarse-grain reconfiguration support (CGR). The associated tool flow 

provides circuit merging and fast reconfiguration switching for a finite set of predefined 

circuits.  

Finally, JIT HW composition addresses fine-grain reconfiguration, providing a way to 

map circuits at runtime by composing small HW components laid on an overlay 

architecture. This mapping can be deterministic (starting from an intermediate SW 

representation) or based on  bio-inspired techniques, namely, Evolvable HW. 

Section 3.1 provides a summary of related work on the adaptation possibilities and 

approaches derived from the use of FPGA technology. It contains details on how 

reconfiguration overlays can be set on top of them, and how the combination of different 

granularity levels can provide benefits in terms of higher adaptation levels, as it is 

planned to provide with the CERBERO HW adaptation strategy. 

Section 3.2 provides insights to the three basic techniques (ARTICo3, MDC and Just-in-

Time HW composition). Later, Section 3.3 addresses the two required reconfiguration 

engines: CGR (for MDC) and DPR (for ARTICo3 and JIT HW composition).  

Finally, Section 3.4 deals with HW monitors. An effort has been made to provide 

consistent monitoring interfaces for all HW fabric types, as well as for runtime SW 

execution at CPS level.  

3.1. State of the Art on HW adaptation 

Although there are many research works on the topic of HW adaptation, this section 

focuses on the most challenging issues within CERBERO to this respect, namely, the 

provision of HW overlays on FPGAs to easy and dynamise their reconfiguration 

capabilities, and the use of combined granularities in order to combine the advantages of 

different types of HW adaptation. They are shown below. 

3.1.1. State of the Art and Advances on FPGA overlays 

Today applications require huge computing power and standard monolithic general-

purpose processors have often left the place to more efficient Graphic Processing Units 

(GPUs) or Massively Parallel Processor Arrays (MPPAs) [Dinechin14]. However, such 

kind of devices impose strong challenges when power constraints have to be met, e.g. in 
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CPS or Internet of Things (IoT) contexts. Here, Application Specific Integrated Circuits 

(ASICs) can better fit with the computing and power efficiency demand. However, 

ASICs development is an extremely long and costly process, and often FPGAs can be 

chosen as an alternative. FPGAs can be pushed to provide efficiency close to the ASICs, 

while offering also programmability [Trimberger15]. However, compared to the typical 

software development, FPGAs require depth hardware expertise and longer 

implementation phases. HLS [Liang12] [Najjar13] made it simpler by introducing the 

possibility of programming FPGAs directly from high level languages, such as C, C++ or 

OpenCL. Nevertheless, long compilation times are still necessary to generate FPGAs 

programming files, limiting the usage of HLS only for static reconfigurable systems 

[Stitt11]. 

The latest FPGAs opened to the possibility of tightly coupling them with an operating 

system running on general purpose processors [Ahmad16]. In such architectures, the 

operating system could manage hardware tasks in the same way it deals with software 

ones, thus exploiting some kind of hardware abstraction that hides the underlying 

implementation details [Bergmann13]. Such a hardware abstraction is commonly referred 

to as FPGA overlay [Cong14]. FPGA overlays are basically programmable hardware 

abstraction layers on top of FPGAs obtained by means of pre-implemented 

programmable components mapped on the available FPGA resources and serving both 

computing and routing functionalities. The concept of FPGA overlays consists of using 

FPGAs as programmable accelerators instead of wired application specific ones. In this 

way, the problem of designing accelerators is replaced by the one of programming 

ALUs/processors [Polig15]. The benefits of using FPGA overlays are: better application 

management, portability, easy and fast code compilation and FPGA programming, and 

massive design reuse.  

FPGA overlays are not conceived for replacing HLS tools or vendor specific design 

flows, rather they aid developers when programmability, resource sharing and design 

time are strictly constrained. They abstract FPGA strengths, like scalability, reliability 

and isolation, from implementation details, delivering them to the developer that can also 

be not aware of the particular hardware substrate. Two main kinds of FPGA overlays 

have been presented in literature: 

• fine-grained FPGA overlays – they provide basically an FPGA-on-an-FPGA, thus 

realizing a non vendor specific FPGA whose bitstream is portable to other FPGA 

devices thanks to the small granularity of the configured components (LUTs, 

switch boxes, communication boxes), at the price of long compilation time and 

big configuration, area and performance overheads [Brant12]; 

• coarse-grained FPGA overlays – they implement reconfigurability at the 

data/word level, guaranteeing simpler design and faster compilation phase. They 

can differ in terms of complexity and number of computational units, interconnect 

and configuration strategy [Laforest17]. The main trends are [Kapre06]: pushing 

performance with a spatially constrained overlay where computation and 

interconnecting units remain unchanged during the execution of a certain kernel 

[Capalija13]; save resources leveraging on time multiplexed computing and 

interconnecting units whose behaviour is changed during kernel execution, cycle-

by-cycle [Liu15].  
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Despite several FPGA overlay architectures have been presented so far, only few of them 

have been effectively validated in the practice [Bergmann13] [Capalija13]. This is mainly 

due to area and performance overheads, meaning that overlays have been often designed 

with no care about the underlying hardware substrate, leaving to the synthesis tool the 

possibility of inferring operations within coarse grained blocks, such as DSP, and leading 

to sub-optimal results [Ronak14]. Recently, with the increasing interest of the scientific 

community on FPGA overlays, some works tried to overcome these issues by better 

shaping the overlay depending on the available resources of the specific FPGA target, 

such as DSPs [Jain2 2015] or BRAMs [Kapre17].  

 

In the CERBERO project we intend to exploit the benefits of FPGA overlays (by enabling efficient and 

effective hardware software adaptation strategies), while mitigating their limits (by the adoption of proper 

compilation and design infrastructures). The bottom part of the CERBERO framework (see D5.6) will 

be mainly exploited; hardware abstractions will allow the usage of advanced and combined hardware 

reconfiguration approaches (as coarse-grained or dynamic partial reconfiguration) in a lightweight manner, 

hiding such complexity to the designer. The purpose is providing different forms of adaptivity, both 

functional and non-functional, taking into account system, environment and users triggers. 

3.1.2. State of the Art and Advances in Multi-Grain Reconfigurable 

Approaches 

Reconfigurable systems offer high performance and flexibility, filling the gap between 

general purpose processors and ASIC systems. A reconfigurable system is generally 

composed by a network of configurable processing elements (PEs) with configurable 

interconnections that can compute simple or more complex functions according to their 

granularity. Reconfigurable systems can be divided in two main granularity classes: Fine-

Grained (FG) and Coarse-Grained (CG). 

FG reconfigurable systems involve PEs that can compute simple functions at the single 

bit level, they can offer high flexibility being able to compute any kind of functionality, 

but involving a large amount of PEs. This implies the need of large configuration 

bitstreams and long configuration phases. The most common example of FG architectures 

is FPGAs, usually exhibiting substantial configuration memory footprint and time. 

Recently, dynamic partial reconfiguration has been proposed to mitigate a bit those 

limits, allowing for the dynamic reconfiguration of predefined (at design time) regions 

within an active design [Vivado17].  

CG reconfigurable systems involve PEs at the level of the data/word, thus being able to 

compute more complex functionalities. For implementing a given functionality, they 

achieve higher area efficiency and imply less configuration overhead (data and time) with 

respect to FG systems [Hartenst12]. Nevertheless, they offer more limited flexibility. 

Different works explored the adoption of both kinds of reconfigurable solutions, FG and 

CG, on the same substrate to combine their benefits together. Modern FPGAs themselves 

are actually multi-grain platforms, since they include CG reconfigurable blocks as 

BRAMs and DSPs. Amagasaki et al. [Amaga08] propose a variable grain logic cell 

(VGLC) architecture that can change the computational granularity corresponding to the 

application. The VGLC has four units, each one involving a two input 1-bit full adder and 

a two input LUT sharing some common logic. The HoneyComb architecture [Thomas12] 
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is an adaptable dynamically reconfigurable cell array. Every cell consists of a routing unit 

and a functional module; the routing units of all cells are connected to their neighbours 

and compose the reconfigurable communication network. The specification of every 

component within the array can be enabled, disabled, or modified, thus also partial 

reconfiguration is possible. The DeSyRe framework [Sourdis13], leveraging on a mixed 

grain texture, can manifest adaptivity and fault tolerance features. A DeSyRe RISC 

component is divided in smaller sub-components surrounded by reconfigurable 

interconnects. In case of fault of one sub-component, it can be replaced, using the 

reconfigurable interconnects, by an identical unused close sub-component or by a 

functionally equivalent instance implemented in FG reconfigurable hardware. Diniz et al. 

[Diniz14] propose a runtime accelerator-binding scheme for tile-based mixed-grained 

reconfigurable processors. The mixed-grained reconfigurable processor is composed of 

multiple tiles. Each tile consists of multiple CG and FG reconfigurable elements. The 

number of reconfigurable elements inside each tile and in the whole architecture is a 

design time decision. Given an architectural configuration, a communication-minimizing 

binding for datapaths of custom instructions is determined at runtime, employing 

datapath reusing and inter-tile communication cost estimation. Yuan at al. [Yuan15] 

present a multi-grain FPGA aimed for mobile computing and focus on two key steps 

towards higher efficiency: interconnect networks, and coarse-grained reconfigurable 

digital signal processors. The chip incorporates FG configurable logic blocks, medium-

grained digital signal processors along with reconfigurable block RAMs, and two CG 

kernels. 

 

The abovementioned approaches are limited to partially reconfigurable CG arrays, where the PEs are 

identical. Moreover they do not provide the designer proper instruments to partition functionalities 

between FG and CG substrates, neither to trigger reconfiguration. In the CERBERO project the multi-

grain adaptive support will combine ARTICo3 and MDC approaches, where different partially 

reconfigurable slots of the FPGA (ARTICo3 compliant) are filled in with heterogeneous application 

specific CG datapaths (MDC compliant). The idea is not providing just functional adaptivity, but also 

being able to support non-functional (i.e. redundancy for fault tolerance or parallelization to improve 

throughput) driven ones, combining the benefits of both FG and CG. The goal of CERBERO in this 

perspective is not simply providing multi-grain reconfigurable accelerators, rather to build proper 

hardware abstractions, capable of facilitating FPGA overlays together with a framework for the design of 

the different parts of the system, their deployment and runtime management. 

3.2. Adaptation Fabrics 

3.2.1. ARTICo3 

The use of SRAM-based FPGAs has merged the best of two worlds (i.e. hardware and 

software), enabling systems with software-like flexibility while keeping the high-

performance benefits of dedicated hardware-based processing. The specific technology 

that supports this is Dynamic and Partial Reconfiguration (DPR), a procedure that 

basically consists of writing in a configuration memory to change part of the circuits 

implemented in the FPGA device while the rest of the system is still working. This 

hardware copy & paste methodology is illustrated in Figure 2. 
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Figure 2 – DPR-compliant layout of the ARTICo3 architecture 

The ARTICo3 (please, refer to D5.6 for more information) architecture exploits DPR in 

high-performance embedded systems that use a processor-coprocessor approach. 

However, instead of relying only on one application-specific hardware accelerator for 

each task as it has been traditionally done, the computing fabric supports a multi-

accelerator based computing scheme. Similarly to embedded GPUs with support for 

general purpose computing, the ARTICo3 computing fabric can operate in SIMD-like 

fashion (Single Instruction Multiple Data), where each copy of a given hardware 

accelerator works with a different set of input data. In this regard, it is important to 

highlight that ARTICo3-based computing requires both the processor-coprocessor 

approach and a hardware/software partitioning that only selects computing-intensive 

data-parallel tasks to be implemented as hardware accelerators. The execution model of 

the architecture can be seen in Figure 3. 

 
Figure 3 – ARTICo3 execution model for SIMD-like execution (top) and its impact on power 

consumption (left: memory-bounded; right: computing-bounded) 
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However, module replication using DPR can be used to increase fault tolerance in the 

reconfigurable partitions too. The configurable datapath of the architecture can switch the 

data delivery/collection patterns to either target computing performance (see previous 

paragraph), or redundant execution, with two or even three copies of an accelerator 

performing the same computation over the same input data where the results are retrieved 

through a voting unit to mask possible errors. 

3.2.2. MDC Accelerators 

Coarse-grained reconfigurable (CGR) architectures demonstrated to be a viable 

possibility to achieve adaptivity in cyber physical systems [ESL-HEVC]. Contrary to 

FGR/DPR architectures, CGR applies reconfiguration at the word/data level. Computing 

and interconnecting resources are configured word by word, rather than considering 

single bits. A computing resource could be, for instance, a whole multiply and 

accumulate unit managing 8 to 16 bit-width data, as depicted in Figure 4. In such a 

context, reconfiguration can be performed extremely quickly due to the limited bitstream 

size, as described below. 

 
Figure 4 – Example of CGR Architecture 

The most common approach in designing CGR systems is from architecture to 

applications: a generic architecture of potentially configurable, homogeneous or 

heterogeneous Processing Elements (PEs) linked with potentially configurable, 

interconnecting structures is made available for mapping different kernels. Such 

substrates are usually very generic. In such a way, flexibility is favoured, at the price of 

execution efficiency of the single applications. 

The CGR design approach exploited by the MDC tool (please refer to deliverable D5.6 

for details on MDC) is the opposite, going from applications to the architecture. The 

CGR substrate is shaped according to a set of desired applications, resulting in an 

application specific substrate capable of achieving strong execution efficiency, but 

limited to the fixed implementable applications set. Moreover, the cost of reconfiguration 

is minimized, both in terms of time (up to one clock cycle to configure the 

interconnection logic, when composed of combinatorial elements) and power (no need of 

downloading a new big bitstream through dedicated channels). Modular high level 

representations of the applications can simplify the design of such CGR architectures 

since each module can be mapped directly to one different PE. The original functionality 

of the applications can be guaranteed by the insertion of crossbar switches that drive the 

data according to configuration patterns. The dimension of these patterns depends on the 
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number of crossbar switches placed throughout the substrate. For instance, in the example 

of Figure 4, a 4-bit configuration pattern is necessary. 

3.2.3. Just-In-Time Composable Hardware 

JIT hardware composition refers to the ability to implement, at runtime, hardware 

accelerators on FPGAs without a pre-synthesized design. The components that make up 

this fabric are three different ones: a virtual architecture, a library of PEs, and an 

algorithm guiding the mapping of the PEs on the virtual architecture. 

Virtual architecture 

The virtual architecture consists of a 1D or 2D regular overlay that abstracts the FPGA 

resources from upper layers. An overlay is made of different blocks that contain specific 

resources of an FPGA. The blocks of the overlay need to have predefined communication 

interfaces between them.  

It is possible to have layout blocks that are common to multiple FPGA models. 

Therefore, upper layers do not need to take into account the distribution of logic elements 

within the FPGA fabric that is being used, but the type of block. 

The virtual architecture should support scalability in order to dynamically change the size 

of the circuit and adapt itself to different computing requirements. 

Library of PEs  

In order to compose hardware, it is necessary to have a set of different PEs synthesized 

and mapped to fit into blocks of the virtual architecture. The PEs can be different circuits: 

multiplexers, adders, etc. These elements will be stored as relocatable bitstreams so they 

can be accomodated into any suitable block of the virtual architecture. 

One of the main challenges in this kind of fabric is how to select the PEs that allow the 

implementation of the widest possible range of accelerators. 

Runtime composition algorithms 

Finally, it is necessary to have algorithms that map the different PEs into the different 

blocks of the virtual architecture in order to obtain the desired functionality. Different 

approaches will be explored: 

1) Deterministic approach 

The idea behind this approach is based on runtime software compilation where one high-

level programming language is compiled into an intermediate representation (IR), and 

then the runtime engine specific to this fabric compiles this IR for the processor where 

the SW runs. After this, the deterministic hardware composition, with the help of a 

runtime mapper algorithm, can map different PEs from a predefined library onto the 

virtual architecture getting the desired accelerator. 

These runtime adaptation libraries will abstract hardware details from the user making 

very easy for people without hardware skills to implement hardware accelerators, thus 

making FPGAs more accessible to people with no hardware background. FPGA vendors 

are currently making a great effort to achieve this purpose with HLS. Although HLS 

makes the design of HW accelerators much easier, hardware skills are still needed in 

order to get efficient solutions. In contrast, for just-in-time hardware composition option, 
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once the PE library is created, no hardware knowledge is needed. Another advantage over 

HLS is that synthesis and implementation time is greatly reduced. 

In the context of CPSs with deeply heterogeneous systems where different HW and SW 

fabrics can be used, this adaptation strategy facilitate the task of the designers because 

only one software implementation will be needed. From this implementation, an IR is 

generated and can be implemented in both a HW fabric or a SW fabric. 

2) Iterative/evolutionary approach 

The idea behind this approach is based on the ability of nature to evolve to adapt itself to 

changing environments. In this case, the algorithms guiding the hardware composition 

are called evolutionary algorithms (EAs). The application of these EAs to synthesize 

electronic circuits is called evolvable hardware (EH). 

Evolutionary algorithms are a set of optimization algorithms used as problem solvers in 

cases where there is little knowledge of the physic equations underneath the problem to 

solve or where external conditions are expected to change often. EH works with a set of 

solutions at a time. Each solution consists of a mapping of the PEs in different blocks of 

the virtual architecture. It is necessary to have a fitness function that indicates how good a 

solution is. Based on this fitness function, the best solutions (individuals) of the set of 

solutions (population) are selected. Genetically inspired operators are applied to the 

selected solutions, and a new set of solutions will be created. This process will be 

repeated until a solution with a good enough fitness function is found. 

This approach will be used to solve different problems in CPS, for example to create 

adaptive controllers. Reinforcement algorithms will be also explored. 

This approach has really good advantages for CPS, some of them are: 

• Very good adaptability in changing environments. 

• No need to know the physics underneath the problem to be solved. Thus, if new 

problems arise on the field, it is possible to try to apply EAs to see if the problem 

can be tackled autonomously by the system. 

• Very good for autonomous systems where there is little or no human interaction. 

• Self-healing capabilities: If a problem arises on the FPGA fabric, the EA will 

detect that the previous accepted solution is no longer acceptable, and it will 

evolve to find a new solution that avoids using the damaged section of the fabric. 

3.3. HW Adaptation Engines 

As mentioned before, the adaptation engines are embedded components that provide the 

means to adapt the fabrics according to the decisions taken by the adaptation manager. In 

CERBERO’s HW-related fabrics, there is a combination of coarse-grain and dynamic 

partial reconfiguration mechanisms, and so, each one has an associated adaptation engine.  

The first one (CGR) provides fast reconfiguration between merged kernels produced 

from the MDC tool. The second one (DPR) provides exchangeability of ARTICo3 slots, 

as well as a fine-grain approach, which addresses FPGA reconfiguration at PE level or 

frame-level for JIT composition of HW. 

The combination of either CGR blocks or JIT-composed fabrics within ARTICo3 

modules provide a mixed-grained adaptation approach which is identified as a big 
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scientific contribution of the CERBERO adaptation framework, since the combination of 

their properties provides fast adaptation time, fault tolerance and performance and energy 

scalability within a dynamic HW adaptation context. 

3.3.1. Coarse-Grain Reconfiguration Engine 

The MDC tool is an automated framework that generates CGR architectures by 

describing application kernels with modular high-level models of computation: the 

Dataflow Process Networks (for more details on the model please refer to D3.5). As 

described in D5.6, MDC adopts an iterative datapath-merging algorithm that is capable of 

sharing dataflow actors among the different input models. To access shared resources 

Switching-Boxes (SBoxes) are inserted in the combined model. MDC handles 

programmability, keeping trace of the SBoxes configuration patterns for each kernel to be 

executed, saving them into dedicated Look-Up Tables. Once all the input dataflow 

models are combined together, MDC generates the corresponding HDL description 

embedding in the top-module also a configuration module that properly set the SBoxes 

selectors according to a given network ID (each application kernel corresponds to a 

different network ID). Figure 5 depicts an example with 2 input dataflow models whose 

combination is achieved by the insertion of four SBoxes, requiring an overall 

configuration pattern size of 4 bits. 

 
Figure 5 – MDC-compliant CGR architecture: N input networks merged and mapped over a unique 

CGR substrate.  

Figure 6 highlights the operation of a CGR architecture generated by MDC. When the 

network ID = 1 net 1 in Figure 2 is executed, and actors del 1 and mac 2 are excluded 

from the computation. 

 
Figure 6 – MDC-compliant CGR architecture: running example 
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Such a CGR architecture can target both ASIC and FPGA technologies. In case FPGA is 

selected, thus dealing with an application specific CGR FPGA overlay, MDC offers also 

the possibility of seamlessly integrating the CGR architecture as an adaptive hardware 

accelerator in a processor-coprocessor system (see Figure 7). 

 

 
Figure 7 – MDC generated accelerator for host-coprocessor environment 

3.3.2. Dynamic and Partial Reconfiguration Engine 

DPR on FPGAs refers to the capacity of these devices to dynamically change part of its 

circuitry (while the other parts continue with their normal operation) to implement other 

functionalities that were not present before the reconfiguration process. DPR is achieved 

by modifying some sections of the configuration memory in real time.  

The design flow of DPR-capable systems is based on the definition of a static system that 

should never change during execution (fixed digital circuit) and one or multiple 

Reconfigurable Partitions (RP), where different accelerators can be allocated at runtime. 

The main difference with  is that DPR does not need to have all the functionalities 

implemented at the same time. Only one accelerator is implemented, and the rest of the 

functions are stored in an external memory. Therefore, the main advantage of DPR over 

coarse-grain reconfiguration is FPGA resource utilization in designs where multiple 

accelerators need to be reconfigurable. This leads to designs that use smaller FPGAs or, 

in the event of having larger devices, to designs where accelerators can be specifically 

tailored to intensive  

data-parallel computation. The main disadvantage is reconfiguration time. CGR is almost 

instantaneous, whereas DPR takes more time to finish.  

Both ARTICo3 and hardware composition tools need DPR for their operation. ARTICo3 

uses DPR to reconfigure the available slots with different accelerators to exploit  

task-level parallelism, and/or with one or more copies of the same accelerator in order to 

speed up a specific data-parallel task or to obtain hardware modular redundancy for 

enhanced fault tolerance. Hardware reconfiguration tools need DPR to reconfigure the 

PEs in the blocks of the virtual architecture. 

Relocatable DPR consists in reconfiguring the same bitstream in different (but with 

equivalent resources) reconfigurable partitions. In order to achieve relocatable DPR, two 

things are necessary: relocatable partial bitstreams and a modified reconfiguration engine. 
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When implementing an accelerator in an RP, in order to make it relocatable, it is 

important to ensure that the design in the RP is completely isolated from the static 

system, and the only connection between them happens through a predetermined 

interface. Xilinx commercial tools do not generate relocatable partial bitstreams and 

therefore, it is necessary to develop a custom tool to obtain them. 

The reconfiguration engine is the component in charge of the reconfiguration process. It 

is a HW or SW component that has access to special resources of the FPGA to modify 

the configuration memory at runtime. The inputs of the reconfiguration engine are the 

location of the memory that stores the partial bitstream, and the area of the FPGA where 

it has to load the bitstream.  

The resources of the FPGA that reconfigure Xilinx FPGAs are designed to reconfigure 

one column of resources of a clock region at a time. Thus, if there are multiple RP in the 

same clock region in a vertical position, it is necessary to compose the partial bitstream 

also at runtime. Therefore, a readback-modify-write approach is required for bitstream 

composition at sub-clock region level. 

3.4. Adaptation Monitors 

Figure 8 presents the overall CERBERO self-adaptation Infrastructure. This section 

focuses more on the HW adaptation monitors that are registers placed inside the 

reconfigurable fabric. In particular, Figure 8 shows how monitors are interfaced to 

PAPIFY and the upper layers of the CERBERO (self-)Adaptation Infrastructure.  

 

 
Figure 8 – HW-level monitors’ interfaces 

In reconfigurable hardware, one or more monitors can be placed to count the occurrences 

of specific events that are important for the computation, thus they are also called Event 

Counters. Measurements from the monitors are read by PAPIFY, an application based on 

the open source standard library Performance API (PAPI).  PAPIFY interfaces the 
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monitors with the Embedded Models to quantify/estimate the KPIs. As described in D4.4, 

communication between the monitors and PAPIFY is managed through the definition of 

software PAPI components.  

Figure 9 describes in detail how the communication is managed: HW monitors write/read 

functions are defined in PAPI components and are capable of directly mapping the user-

space virtual addresses to reconfigurable HW accelerators physical addresses using 

mmap(…); in such a way, the SW application can use PAPI function calls to access the 

monitors. The example of Figure 9 shows a PAPI component that manages 

communication with multiple HW monitors. 

In the ARTICo3 architecture, there are the following monitors:  

• fault monitors, to increase reliability while monitoring multiple slots carrying out 

the same functionality;  

• latency monitors, to obtain the execution time of any accelerator in clock cycles.  

 

 
Figure 9 – HW monitor access via PAPI components  

Moreover, there is the possibility of monitoring events in accelerators placed inside the 

ARTICo3 slots. Considering MDC generated dataflow-based accelerators they can be: 

• FIFO read/write rates: 

o to estimate system consumption, by exploiting a priori characterization of 

the single actors consumption, in order to opt for less consuming 

configurations (both with coarse- or fine-grain reconfiguration) if needed; 

o to know the current computation nature if multiple dataflow branches are 

available on data-dependent applications: fine- and/or coarse-grain 

reconfiguration can improve parallelization for the most stressed branches 

in place of the others, thus improving the system execution efficiency.  

• FIFO occupancy: 

o to detect communication bottlenecks within the accelerator and decide 

whether or not a specific actor can be parallelized.  

o to resize the FIFOs according to their utilization: if a FIFO is always 

almost full and another one is always almost empty, it can mean that their 

dimensions are not properly set. Hence, the design could be reconfigured 

achieving a resizing of the FIFOs.  
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4. Software Adaptation 

SW adaptation can be defined as “changing a software system during its execution.” 

[Oreizy08] That is, adaptation is the capability of a software system to modify its 

behaviour based on internal or external changes during runtime. However, from the IEEE 

systems and software engineering vocabulary [IEEE10], adaptation is “the ease with 

which a system or component can be modified for use in applications or environments 

other than those for which it was specifically designed.” Then, we can see adaptation 

from two perspectives: static and dynamic. By one hand, static adaptation takes place at 

design phase; in the other hand, dynamic (which is often called adaptability) happens at 

runtime: 

• Static: “Software Adaptation focuses on the problems related to reusing existing 

software entities when constructing a new application and promotes the use of 

adaptors —specific computational entities for solving these problems. The main 

goal of software adaptors is to guarantee that software components will interact in 

the right way not only at the signature level, but also at the protocol and semantic 

levels.” [Canal04] In this sense, “Software Adaptation can be considered as a new 

generation of Coordination Models.” [Brogi06] 

• Dynamic: “Adaptability means changing some aspect of a system’s detailed 

behaviour while keeping the gross behaviour of the system consistent. From a 

contextual systems perspective, adaptability means matching behaviour to 

changes in environment, task, user population, preferences or some other factor; 

from a component systems perspective, it means selecting and/or configuring the 

component set to provide the optimum behaviour.” [Dobson04]. 

This section is focused on dynamic adaptation as the different components of the 

CERBERO toolchain must adapt its behaviour during execution based on the current 

context. So, the next section will present more details on adaptation types and techniques 

for dynamic adaptation in the context of the self-adaptation infrastructure. A complete 

survey on static adaptation was written by Kell [Kell08].  

4.1. SW agents and the self-adaptation manager  

A SW adaptive agent is an entity that is able to gather contextual information (through 

adaptation monitors) and, based on that data, adjust its execution based on a behavioural 

model (adaptation fabrics), following a monitoring-plan-adapt cycle (coordinated by an 

adaptation manager), being the plan a two steps process (using an adaptation engine) in 

which the information is interpreted and then an adaptive action is selected [Garlan02]. 

Functionally, a SW agent to provide self-adaptation can be derived from the robotics 

architectures such as the three-layers (3T) [Gat97] architectures, goal-driven systems that 

follow the sense-plan-act paradigm. Software architectures for robotics control based on 

the 3T schema demonstrated considerable flexibility and adaptability, so advances in 

modern robotics controllers can be exploited as a base for self-adaptation engines 

[Kramer07]. 
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Based on that approach, the layers are sequenced from bottom (functional) to top 

(deliberative) layers, being the intermediate layer the executive one. The execution flow 

is from bottom to top, being the sensor and data acquisition components placed in the 

functional layer. Typically, in such layer appear reflexive behaviours, which are reactive 

adaptations with a low latency, which correspond to critical safety constraints. The 

executive layer often provides task modelling capabilities, including hierarchical tasks 

decomposition and what-if simulation techniques for selecting the adaptation behaviour. 

The top layer is often related to Artificial Intelligence (AI) techniques, implementing 

planning & scheduling or machine learning mechanisms. Its objective is to perform both 

predictive and proactive adaptation, based on high-level models of the system. 

Functionally, the information flows between the lower level to the higher one, triggering 

adaptive behaviours in function of the context of each layer. As well, the deliberative 

layer can generate a plan (based on predictive models) to achieve the goals (goal-driven) 

that is to be executed from top to bottom. 

The 3T schema is often related to a single agent, i.e., it can be coupled with a CPS. For 

providing collaboration required for CPSoS, these agents often provide coordination 

primitives, and, commonly, it is defined an agent hierarchy that can be centralized o 

decentralized. For the first one the classic schema is to share a database in which all 

agents store contextual information, so the other agents trigger adaptive behaviours based 

on that data. While this schema is easier to implement, the dependency of a central agent 

has several flags such as potential bottlenecks or unavailability of the system in case of 

failure of the central agent. Instead, the decentralized schema entails that the information 

is distributed among various agents, which provides more autonomy of each individual 

agent. However, the implementation is complex due to the synchronization between 

agents, while also it is required to properly define the role of each agent. 

 

The contribution of CERBERO respect to the SW adaptation will be conducted toward supporting 

distributed dynamic adaptation for CPSoS by means of synchronizing behaviours through different 

components. To achieve this goal, a key factor will be the CERBERO intermediate format layer, which 

will allow different components to share information and perform adaptation based not only in its actual 

status but also considering others component’s state. Moreover, a data fusion logging service will 

enhance SW adaptation providing a coherent log that can be exploited to correct and to enhance the 

system’s behaviours. 

4.2. Adaptation techniques and strategies 

There are several adaptation techniques and strategies that enables self-adaptation 

engines to select the adaptive behaviour based in the current context. In the following 

enumeration, we will briefly present some of the techniques that are applicable at CPSoS 

level: 

• What-if simulation: support the formulation and management of high-level 

what-if scenarios. These can be initiated by the system or environment (system-

driven) or by the user (user-driven). A relevant aspect of the last is that requires 

research into user-interface aspects of formulating these cases and presenting the 

results, as well as developing the rules for dealing with what-if scenarios. 
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• Task modelling: different actions modelling languages enables adaptation based 

on context. The modelling of different agents’ actions (and the user if required), 

e.g., as a hierarchical sequence of operational procedure steps, or using the 

Abstract Task Hierarchy (as described in [Bosse17]) enable behaviour selection 

based on the current context, providing mainly reactive adaptation schemas. 

• Planning & scheduling: these techniques can be applied to perform both 

predictive and proactive adaptation based on high-level models of the system 

under control. In this regard, planning & scheduling techniques often provides 

long term plans and resource usage predictions that allow the engine to act in a 

proactive way. Generally, these techniques are goal-oriented. 

• Simulation in the loop: if a simulation model of the system is available, it is 

possible to perform simulation in the loop, i.e., execute the simulation on-line. 

This enables predictive adaptation based on the comparison between the physical 

system and the software simulation. Applying simulation on the loop for real-time 

applications can lead to a better predictive adaptation, as it is possible to 

anticipate off-nominal conditions based on a high-coupled model. 

• Explanation and sense-making: allow comparison of results within different 

scenarios, ranking possible action plan according to some criteria. In general, this 

technique requires to aggregate, interpret and present results coming in from 

various other components in a way that allows the user to be supported in their 

decision-making. In other words, what is the best way to convert the information 

flowing around the system into actionable information, supporting an explanation 

of the reasoning that properly enables user-commanded adaptation. 

• User modelling: include a user model based around task load and emotional 

valence could be useful to provide adaptation when the human is considered as a 

layer of the system. The user model could be extended with additional dimensions 

and fields, ranging from simple user preferences, to past behaviours, or even 

derived parameters observed from the system behaviour. 

• Machine learning: applying machine learning processes could enhance proactive 

adaptation based on the system history, providing support for self-optimization 

for various components of the system. Furthermore, it can be applied to improve 

the user model which will lead to better user-commanded adaptations. 

• Collaboration: in a CPSoS application, collaboration techniques can be deployed 

to enable adaptive behaviours in coordinated environments. In this regard, it is 

desirable that heterogeneous CPSs can coordinate their activities to achieve a 

common goal, which typically entails a component of distributed optimization. 

Each adaptation technique can be exploited by itself, providing SW adaptation at various levels of 

abstraction. However, within the CERBERO framework toolchain we will adopt what-if simulation, 

planning & scheduling, simulation in the loop and user modelling. In this regard, the objective is to 

provide adaptation not only based in an isolated technique but to coordinate them to adapt the system in 

the context of CPSoS, which commonly requires to adapt the system simultaneously at various 

abstraction levels. For instance, an adaptation on the system level (e.g., triggered from the simulation in 

the loop) could require adaptation on the user level, which is related to user modelling techniques. Our 

aim is to synchronize these adaptation techniques through the CERBERO intermediate format layer. 
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Focusing on CPS level, SW adaptation relies on the fact of having the system specified as 

a graph of intercommunicated actors. At this actor level, software adaptation will be 

triggered by the modification of parameters in a dataflow application representation 

conforming the PiSDF model [Desnos13]. These parameter modifications have different 

potential sources, compatible with CERBERO use case requirements: 

• Modifications in sensed cyber (self-awareness) KPIs, 

• Modifications in sensed physical KPIs, 

• Modifications in user-triggered commands. 

Using parameterized dataflow has for advantages to let the processing be triggered by the 

arrival of data, helping distributed execution, while keeping reconfiguration capabilities 

to the system based on external events. Dataflow parameters also homogenize the 

modeling of HW and SW reconfigurations, offering a way to master heterogeneity 

support. In order to manage highly varying workload and parameters, extensions of the 

JIT-MS [Heulot14] adaptive system management will be studied. In particular, 

extensions will be made for both CGR and DPR reconfigurations. 
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5. Sensor Adaptation 

5.1. Introduction 

Sensor-based adaptation can range from basic adaptation with using simple sensors to 

identify thresholds for action (e.g. measuring volts, temperature etc.) up to information 

fusion techniques. Sensor-based adaptation therefore includes information fusion 

techniques needed to enable different notions of adaptivity, and the different adaptation 

strategies based on the sensed data. It focuses on information-based adaptivity. 

Information from same or different sources needs to be combined for system adaptivity 

strategies in order to e.g.: enhance images/videos for the user and computer vision, make 

complex decisions, retrieve the necessary information from information storage, enable 

self-healing and energy aware adaptation of the robotic arm, or enable decision support 

for electric car simulator. 

Sensor fusion also known as multi-sensor data fusion is a subset of information fusion. It 

combines sensory data or data from disparate sources in such a way as to reduce the 

uncertainty.   

The uncertainty reduction can mean more accurate or more dependable information, or 

refer to the result of an emerging view, such as stereoscopic vision - calculation of depth 

information by combining two-dimensional images from two cameras at slightly different 

viewpoints. 

Many data fusion approaches are problem specific; however some common methods are 

based on: 

• Central limit theorem, e.g. [Katenka08] 

• Kalman filter, e.g. [Barbosa16] 

• Bayesian networks, e.g. [Jianzhong16] 

• Dempster-Shafer, e.g. [Zhang15] 

• Convolutional neural network, e.g. [Liu17] 

Global Positioning System (GPS) is an example application of sensor fusion where data 

needs to be fused using various different methods. 

5.2. Adaptation strategies for sensors and detectors  

Figure 10 presents the generic view of information processing and strategies for 

adaptation. The data from sensors needs to be combined in order to make decisions, for 

example. Both the data from individual sensors as well as the fused data will be stored in 

order to be used in e.g. adaptation strategies. The stored data needs to be retrievable in 

order to be usable. 
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Figure 10 – Generic view of information processing and strategies for adaptation from sensed data 

Here, the fused data and data from individual sensors is stored so that it can be later 

retrieved. The strategies for adaptation can make use of data coming directly from 

sensors, the fused data, and also the relevant data that was retrieved from the storage – 

which can be considered as prior knowledge for example. 

The adaptation strategies considered in this section are summarised in Table 1.  

Table 1 – Summary of adaptation strategies 

Adaptation Strategy Description Summary Triggers for 

adaptation 

Adaptation of Enhanced 

Vision System 

Adaptation of the image quality to varying visibility 

conditions based on the number of active cameras. 

Can be also triggered by user requesting specific 

image quality. Synchronous cameras will de-noise 

images, asynchronous cameras will see through 

moving objects 

Environment, User 

 

Adaptation of the image quality to poor visibility 

conditions based on new image enhancement 

methods 

Environment, User 

Adaptation of the fusion 

model for hybrid image 

retrieval 

The weights associated with query and its context 

are adaptively updated based on the measured 

levels of their relationship 

System, User 

Computation precision 

adaptation 

The computation precision will adapt to the current 

needs based on the sensed KPIs   

System 

Decision support 

adaptation  

The decision support function will adapt its 

recommendations based on combined information 

such as traffic, temperature, battery level, etc.  

 

5.2.1. Enhanced Vision System 

The purpose of enhanced vision system is to improve the user’s situational awareness 

(can be related to Augmented Reality) and computer vision methods. 

The enhanced vision system consists of multiple cameras, various image enhancement 

methods, and the adaptation to visibility conditions capability.  
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Adaptation to visibility conditions may involve automatic assessment of environmental 

visibility.  The visibility can be divided into absolute and relative. For absolute visibility, 

the distance from the object should be known plus some object’s characteristics. The 

relative visibility is a deviation of the current conditions from the ideal subjective 

visibility - no clouds, noise, good illumination. Relative visibility would be based on 

characteristics such as luminance, contrast, object clarity (quality of edges, blurriness, 

etc.). 

A physical way to measure visibility could be based on a light receiver and a transmitter 

in a fixed position in the robot. This type of visibility measurement would measure the 

contrast between a target and its background. Camera would be located within a specific 

distance from the robot’s component. The assumption is that the component’s contrast in 

ideal visibility conditions is known. 

For example, two cameras can be used to determine the night-time and day-time visibility 

conditions based on the contrast information and the estimated distance from foreground 

objects [Du13].  

The method proposed in [Graves14] estimates the visibility based on the Sobel filters 

taking into consideration the fact that the reduced visibility results in an image with less 

detail, especially in the distance.  

Sutter et al [Sutter16] automatically estimate the visibility from panoramic images. The 

algorithm is based on Koschmieder’s law, which relates apparent contrast of an object to 

its distance from the observer. Local contrast information is computed from image 

patches using a standard measure for human contrast perception.  

Multi-camera systems are increasingly used in both consumer and industrial applications. 

One example is the mobile phones market [Dual1]. The images from different cameras 

are combined in different ways in order to: generate the depth map to blur the image 

background (e.g. HTC), capture more light and reduce noise (e.g. Huawei), create wide 

field of view and reduce distortions (LG), provide the zoom-in capability (iPhone). 

Another example of commercially available multi-camera system is the super resolution 

camera array which allows to capture images of moving subjects at a very high level of 

details [Eoptis2].  

Multi-camera arrays are also used for depth estimation [Javidnia17]. In this particular 

example the proposed framework utilizes analysis of the local Epipolar Plane Image to 

initiate the depth estimation process. The estimated depth map is then processed using 

Total Variation minimization based on the Fenchel-Rockafellar duality. 

Multi-camera systems can be also used for atmospheric visibility estimation [Du13] and 

high dynamic range microscopy [Javidnia17]. 

Multi-purpose multi-camera array was made by Stanford Computer Graphics Laboratory 

and consists of 100 CMOS-based cameras [Stanford3]. Their multi-camera system can 

function in many ways, depending on the arrangement and aiming of the cameras. The 

arrangement needs to be physically changed. 

 

We intend to use a multi-camera system to enhance images in a new adaptive way e.g. to adaptively 

select a subset of cameras to obtain the required image quality. 
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Regarding the image enhancement approaches for visibility improvement, apart from the 

image processing techniques based on the standard filters for noise removal, contrast 

correction, histogram equalization, etc., there are also more sophisticated methods. The 

system developed for NASA fuses images from standard and infrared cameras [Hines05]. 

In [Kalkofen07] some visual key features such as edges are overlaid on top of original 

image to enhance the depth perception of the focus objects. Focus objects are not only 

overlaid on top of the video image, but they are partially occluded by key features from 

context objects. Another approach that overlays an image of detected edges on the 

original in order to augment the Google Glass user’s perception is presented in 

[Hwang14]. Others try to correct optical defects of human eyes, especially defocus, by 

overlaying a compensation image on the user's actual view so that the filter cancels the 

aberration [Itoh15]. 

 

We intend to develop and combine new image enhancement approaches that can be applied to adaptively 

enhance the image based on the different visibility levels. In addition, the enhancement will utilize the 

information from more than one camera (in different ways) for further improvement. 

 

The existing single image sensors struggle to capture image data in low light conditions. 

This in turn makes it difficult to track, detect, and identify targets, for example. 

In order to capture sufficient light in low light conditions, the exposure time or the sensor 

sensitivity can be increased. However, the increased exposure time would introduce 

motion blurs for moving objects and lead to significant degradation of image quality 

while increasing the sensor sensitivity would exaggerate the ambient random noise 

fluctuations. 

Hence, all existing types of camera sensors have their advantages and disadvantages (see 

Table 2). 

 

Table 2 – Comparisons of camera sensors. Adapted from [Li11]. 

Type Advantages Disadvantages 

High Speed Fast shutter Low image resolution 

Require large data bandwidth 

High Resolution Rich spatial details Blurs for fast motion 

Multispectral High contrast 

High dynamic range 

Require special equipment 

 

Below we will discuss adaptation strategies for visibility conditions in a system of 

cameras, for a design-time model of an adaptive camera system and then for visibility 

conditions in a physical prototype i.e. runtime.  
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Adaptation strategy and enhanced vision in design-time  

We to use an array of high resolution cameras with relatively short exposure time to alleviate the 

aforementioned problem. The images taken by the synchronized camera system will be fused after their 

registration in order to de-noise the resultant image, see [Zhang09] for example of image de-noising 

from multiple views. 

 

The cameras can be connected to each other using the binary tree topology, for example 

[Wilburn04]. One camera can then be designated as root camera which would generate 

clocks and triggers that would be propagated to other cameras in order to synchronise 

them.  

We would like to have the control of the synchronisation levels. For example, a very 

good synchronisation would be necessary for de-noising of images with moving objects, 

and slightly asynchronous cameras can be used for de-noising and moving object removal 

(when taking pictures of the ocean floor, for instance). 

 

We intend to use tightly packed high-definition cameras focusing on the same scene arranged into an 

array grid. One of the simple but effective de-noising algorithm which can be also considered as a super-

resolution method is the averaging of registered images. 

 

One of the potential novel problems to solve would be the automatic adaptation of the 

image resolution (noise-level) to the lighting conditions which could be due to the 

weather change, for example. Thus, based on the light sensor readings and the 

experimentally predetermined image qualities corresponding to specific lighting 

conditions, the required number of camera sensors would be activated.  Alternatively, a 

user may request a specific image quality. 

Regarding the potential optimisation problem to solve, one can try to minimise the 

throughput or response time of the camera system, while maximising the image quality 

(signal to noise ratio). The image quality improves with the higher number of activated 

cameras which on the other hand will affect throughput and response time. 

One type of the trade-off could be related to the performances of computer vision 

algorithms e.g. edge detection, object detection and tracking and the image quality and 

response time of live video streaming. The image quality improves with the higher 

number of activated cameras, but at the expense of increased response time. 

As aforementioned, different number of active cameras requires different throughput 

levels and will produce images of different quality. The more cameras active, the better 

the image quality can generally be obtained, however resulting in higher throughput 

burdens. Second, different compression algorithms and compression ratios will also result 

in different throughput, image quality (if a lossy compression is used), and different times 

required to compress. CERBERO technologies DynAA Simulation Model and AOW 

Optimizer will be used to simulate different camera configurations in terms of different 

number of cameras activated and different compression algorithms and compression 

ratios. The results from different DynAA simulations will be fed into the AOW 

Optimizer in order to find the optimal configurations with respect to the key performance 
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indicators, such as image quality, response time, and throughput. Figure 11 represents the 

design-time model for the adaptive camera system. 

 
Figure 11 – Enhanced vision – design-time model. 

 

Adaptation strategy and enhanced vision in a physical prototype 

The physical prototype of the camera system will adapt its footage to visibility conditions 

in real time by  

• Overlaying the edges detected by Canny edge detector [Canny1986] on top of the 

original image 

• Fusing the novel edge detector with the original image 

Adaptation to visibility conditions may also involve automatic assessment of 

environmental visibility. In the simplest case this could be based on the measurements 

from illumination sensor. The adaptation would then take the form of automatic 

adjustment of brightness of camera lights, or the colour histogram equalisation.  

Initially, there could be two HD cameras within the adaptive camera system physical 

prototype. The use of two cameras as opposed to one is mainly for improved edge 

detection, and noise removal. Two cameras can also provide additional depth information 

to help measure the visibility conditions. Both cameras, after the calibration process, will 

monitor the same area of the environment from two different perspectives. Figure 12 

presents the adaptation strategy for the aforementioned camera system. 
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Figure 12 – Enhanced vision – physical prototype. 

 

The adaptivity of the camera system can be based on the automatic detection of the 

visibility conditions. Some indications of the poorer visibility conditions are related to the 

noise and blurriness of certain areas in the image. The blurriness levels can be measured 

by transforming an image into the spectral space (FFT) and investigating the high and 

low signal frequencies. Another method for blurriness measurement could be based on 

the variation of Laplacian, for example. We can distinguish local and global blur. When 

considering local blur, an image can be divided into sub-images and the levels of 

blurriness estimated automatically for each region.  

The influence of the edge detected image and the original one in the fusion of both can be 

adjusted to correspond to different visibility levels, thus de-blurring and de-noising the 

image in an adaptive manner.     

The novel edge detector is based on the bilateral filter [Tomasi1998] and eight directional 

derivatives. As opposed to the Gaussian filter, the bilateral filter takes into account the 

variation of pixel intensities to preserve edges when removing the noise.  

5.2.2.  Adaptive hybrid image retrieval model  

The purpose of the adaptive hybrid image retrieval model is to enable the image 

collection search based on the combination of different types of information about an 

image and to further improve the performance by fusing the features in an adaptive 

manner. 

Search engine developers have realized that the same standard search method cannot be 

used for all queries. Users can enter an infinite number of queries representing a wide 

range of information needs. Good information retrieval engines should be able to 

interpret users’ queries and predict their intentions. It should then apply an appropriate 

search strategy and return relevant results. In summary, a successful search mechanism 

needs to adapt to each individual user’s query. To adapt to individual needs, context 
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information can be used, such as time, location, interest [Goker04]. Context information 

can include sensor-based information covering aspects of the physical environment and 

be used both for user queries and in mobile sensing in general. Approaches to adaptation 

can include having a context middleware [Myrhaug04, Yürür16] where the context-aware 

middleware combines a representation of context and sensing of the environment and 

user – in other words is akin to the adaptation manager. Just as the "decision support 

system" is an implementation of adaptation manager, we can use context-aware 

middleware in the same kind of way. 

The hybrid image retrieval model is used to retrieve relevant images from the data 

collected by the cameras based on the combination of various features, in this example 

text and visual features. There is not much point in storing collected data if it cannot be 

retrieved – this can be compared to throwing things into a black hole. In the field of 

image retrieval, combination of various features related to the same image usually 

improves the retrieval mainly due to the correlation and complementarity of the different 

types of information. An image is an information object that can be described by different 

visual features, textual features, metadata, etc.  

In the early stage of image retrieval research, librarians had to attach keywords to each 

image in order to retrieve relevant images with text retrieval techniques. Nowadays, 

however, manual labelling becomes infeasible due to the increasing size of the image 

collections. To circumvent such obstacle, content-based image retrieval (CBIR) which 

uses visual features to measure the content similarity between images, has emerged. 

Typical visual features include colour histogram, texture and shape, etc. An image is 

represented as a vector in a feature space. For example, each dimension in a colour 

histogram space corresponds to a colour bin along channels R-G-B or H-S-V, and the 

value of an image on each dimension is the normalized number of pixels in the image 

falling into the corresponding bin. The similarity between two images can be measured 

based on how close their corresponding vectors are in the feature space, e.g. through the 

Cosine function. Nevertheless, even the start-of-art CBIR techniques can only achieve a 

limited performance because of the semantic gap between the content and its high level 

semantics. Given that more and more images and multimedia documents contain both 

visual content and certain amount of text annotations (e.g. tags, metadata, text 

descriptions, etc.), combining the textual and visual features of images for image retrieval 

has recently attracted increasing attention. 

Global approaches find it hard to capture all the properties of an image; therefore, the 

implemented local features are based on the “bag of visual words” approach. The first 

step in the “bag of features” method is to localize the points of interest (point-like, 

region-like) by using corner or blob detectors. Other sampling techniques include random 

and dense sampling. The second step involves the representation of regions around the 

sample points in a form of multidimensional vectors. There are various existing 

descriptors, the SIFT (Scale Invariant Feature Transform) [Lowe99] being one of the 

most widely used. The initial extraction is performed on a training set of images and the 

K-means clustering is applied to it. Each cluster will correspond to one “visual word”, a 

local pattern. Finally, each image in a data collection can be characterized by a histogram 

of “visual words” counts. 

The relevance feedback is the user feedback related to retrieval results that is used to 

adaptively improve or narrow down the search.  
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It has been shown that the query can be correlated with its context to a different extent 

[Teevan05, Goker09]. Our fusion model uses an adaptive weighting scheme where the 

respective weights associated with the query and its context are automatically modified, 

depending on the relationship strength between visual query and its visual context and 

textual query and its textual context; the number of terms or visual terms (mid-level 

visual features) co-occurring between current query and its context represented as 

relevance feedback. 

Wu et al. [Wu12] implement an adaptive data fusion method with dynamically adjustable 

weights. Two methods for the weight updating are investigated, namely “performance 

square” updating and a mixture of the aforementioned and linear regression analysis. The 

model combines evidence from different sources but do not incorporate any user 

feedback. 

Wang et al. [Wang12] proposed an adaptive weighting approach to improve the current 

statistical context-sensitive retrieval model. First, the so-called “potential for 

adaptability” is investigated, the performance gap between the context-sensitive model 

with fixed weights and the one with adaptive weights, to show that the system can really 

benefit from having query-specific weights. Support vector regression is then applied to 

build a weight-prediction model, which enables a more flexible combination of current 

query and its context. 

Most approaches that try to adapt the weights corresponding to query and its context have 

the linear combination of the relevance scores at their core. There are many different 

approaches to adjust the weights in a linear model. Machine learning can then be used to 

dynamically change these weights. For example, [Xia16] address the issue of search 

results diversification by data fusion. The authors assessed using differential evolution to 

learn weights for the linear combination method. Experiments with three groups of data 

show that differential evolution performs better than heuristic-based weighting schemes.  

 

Our adaptive weighting approach differs from the above in that it represents a hybrid approach; it is not 

mono-modal. Moreover, we use a hybrid approach that takes into account inter- and intra-correlations 

between feature spaces and combines them in the context of user feedback, which is different from simply 

combining them in an ad-hoc manner. We use two notions of user feedback, visual and textual. 

We will measure the strength of the relationship between the query and its context by computing the 

similarity between co-occurrence matrices corresponding to the query and its context (feedback images). 

The higher the number of terms or visual terms (mid-level features) co-occurring between current query 

and the context, the stronger the relationship and vice versa. 

 

Let us assume that the relevance feedback is given after the first round retrieval to refine 

the query. The adaptation of the fusion model can be interpreted in a following way: 

1. weak relationship between query and its context, context becomes important. We 

adjust the probability of the original query terms; the adjustment will significantly 

modify the original query. 

2. strong relationship (similarity) between query and its context, context will not 

help much. The original query terms will tend to dominate the whole term 

distribution in the modified model. The adjustment will not significantly modify 

the original query. 
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5.2.3. Adaptive computation precision  

This activity uses the concept of parameterized dataflow to build systems with a native 

support for computation precision adaptation. Precision adaptation is an emerging 

research topic included within the domain of approximate computing [Nogues16]. It 

consists in changing the quality of a processing (for instance the length of a filter, the 

number of bits in data representations, the sensor sampling rate) to match the minimal 

required QoS and minimize the processing cost. Within this activity, processing is 

adapted at runtime for respecting the applicative Quality of Service while minimizing 

resources. For this purpose, moldable parameters are studied. They define a set of 

potential values that the runtime manager can explore to adapt precision. 

5.3. Information fusion methods to enable adaptivity  

Information fusion is a combination of different types of information in order to obtain 

more reliable and accurate information.  

In computer vision, for example, image fusion is the process of combining relevant 

information from two or more images into a single image. The resulting image should be 

more informative than any of the input images. Different combination methods will also 

produce different effects like noise removal, panoramic view, edge enhancement, etc. 

Information fusion utilizes all available information at multiple abstraction levels 

(measurements, features, decisions) to maximize an expert system’s performance. Table 

3 presents the summary of all the fusion strategies to be used in the CERBERO project, 

including the novel fusion strategies. 

Table 3 – Summary of fusion strategies 

Fusion strategy Description Summary 

Image fusion for image enhancement The new fusion method combines novel edge detector with 

the original image to enhance the camera footage 

Novel image fusion model for depth 

information 

The images from different cameras could be fused in order 

to create the depth map of the environment. The fused data 

could be used for image enhancement by progressively 

blurring the background for example, and for enhanced 

navigational capabilities 

Image fusion for image de-noising The images from multiple cameras can be fused to remove 

noise (synchronised cameras) or see through obstacles 

(asynchronous cameras) 

Novel fusion method for hybrid image 

retrieval 

Different types of information about an image needs to be 

fused in order to retrieve relevant images from the 

collection. The proposed fusion incorporates inter and 

intra feature correlations for further improvement 

Novel fusion of the frame difference based 

and feature-based methods for detecting 

and tracking moving objects 

Different object detection and tracking methods could be 

fused to overcome the limitations of individual 

approaches, e.g. frame difference with feature-based 

methods. Can  be used for video augmentation, for 

example. 

Fusion for computation precision Fusion/combination of different parameters influencing 
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adaptation computation is necessary to enable computation precision 

adaptation 

5.3.1. Image fusion  

Image fusion is needed for the proposed adaptation strategies and image enhancement 

approaches. It consists of different strategies for combining images from camera sensors. 

 

Image fusion for image enhancement 

We combine the images from the novel edge detector with the original image in order to 

enhance the underwater visibility for both the robot operator and computer vision 

algorithms. The data fusion takes the form of a linear combination method. 

Here, the weight 𝑤  could represent the illumination measurement coming from the 

illumination sensor which is scaled to a numerical value from interval [0,1]. This type of 

weighting would represent a continuous form of adaptation of the camera footage to the 

different visibility conditions levels; the bigger the weight, the higher the level of image 

enhancement to counter the poor visibility conditions.  

The aforementioned data fusion process affects the entire image because no thresholding 

operation is used on the edge detected image. This combination method results in the 

sharpening, noise reduction, and the edge enhancement of an image.  

 

Image fusion for depth information 

Two cameras positioned in a straight line within some distance from each other can be 

used to measure the atmospheric visibility based on the contrast between the target and its 

sky background, and the distance of the target. For example, the visibility can be 

calculated by determining the contrasts of a target with its sky background in the two 

digital photographs, as well as the distance between the locations where the photos were 

taken [Buades10] (see Figure 13). 

 
Figure 13 – Visibility estimation based on the dual camera system. Adapted from [Buades10]. 

 

Combination of images from two cameras can be used to create the depth map of a scene. 

Figure 14 presents the mathematical foundations of the idea. 
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Figure 14 – The depth information from two cameras. Adapted from [Li11]. 

 

The depth information can be used to adapt imagery by progressively blurring the 

background for example, and for enhanced navigational capabilities of the robot. 

 

Image fusion for image de-noising 

The image fusion model used for removing noise from images is based on image 

averaging. The images are generated by multiple synchronised or slightly asynchronous 

cameras. They are all registered in order to depict the same scene and were taken 

simultaneously. 

The averaging algorithm of registered images would allow us to reduce the noise by the 

factor of square root n where n denotes the number of cameras [Buades10]. Thus, for four 

cameras the factor would be 2, and for nine – 3. 

The registration (calibration) process of the images taken by multiple cameras can be 

performed from the software perspective by detecting a number of (e.g. 50) the most 

characteristic points in the images (keypoints) using one of the corner detectors (e.g. 

Harris) [Kim04]. Next, the areas around the keypoints can be described in a vector form 

using a SIFT (Scale Invariant Feature Transform) descriptor which is based on directional 

image derivatives. The search for the corresponding images patches can be performed by 

similarity/dissimilarity measurement between the descriptors – e.g. Euclidean, Manhattan 

distance, cosine of the angle etc. Because matches may be inaccurate, common 

homography algorithms use a Random Sample Consensus (RANSAC) to remove outliers 

from the list of matches. The homography is considered a success if sufficient number of 

inliers is found, e.g. 25 [LiKamWa13]. The displacement vector for each feature 

(descriptor) can then be used to find the transformation (e.g. affine transformation in the 

form of 3x3 matrix using least squares method – rotation, scaling, translation) so that the 

images can be represented in the same coordinate system. 

After the registration process, the images can be combined within the camera system by 

the averaging algorithm (super-resolution), for example [Buades10, IMAV]. In the case 

of a very good synchronisation the algorithm would de-noise the images, while for the 

slightly asynchronous cameras it can also remove moving objects (when taking the 

images of the ocean floor, for instance). 
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5.3.2. Fusion for hybrid image retrieval   

Different types of information about an image need to be combined to retrieve relevant 

images from the database. In order to utilize the correlated and complimentary 

information, we also incorporate inter and intra correlations between feature spaces. 

The existing fusion approaches can be divided into early and late fusion strategies. Early 

fusion is the combination at representation level while the late fusion is the combination 

at decision level. 

The most common early fusion technique is concatenation of visual and textual 

representations. Some models incorporate the tensor product to combine the systems 

[Wang10]. Tensor product captures the relationships between all dimensions of different 

feature spaces.  

In the case of late fusion, the most widely used method is the arithmetic mean of the 

scores, their sum (referred to as CombSUM [Csurka12], [Ballas14]), or their weighted 

linear combination. One of the best performing systems on the ImageCLEF data 

collection, XRCE [Mensink10], utilizes both (for comparison purposes) early 

(concatenation of features) and late (an average of scores) fusion approaches. Another 

common combination method, referred to as CombPROD in the literature ([Csurka12], 

[Ballas14]), is the square of the geometric mean of the scores - their product. It has been 

argued that the major drawback of the late fusion approaches is their inability to capture 

the correlation between different modalities [Mensink11].  

It has been discovered, however, that specific early and late fusion strategies can be 

interchangeable [Kaliciak14]. 

Other combination methods involve a combination of late fusion and image re-ranking 

[Clinchant11]. Because the first stage is based on the pre-filtering of the collection by 

text, the model is referred to as the semantic combination.  

Some fusion strategies can be also classified as intermediate fusion [Bhowmik14]. They 

simultaneously learn individual classifier and combination classifier weights [Zhang11], 

and this process happens at various levels of learning. 

The fusion approach that can be easily modified to incorporate the user feedback is based 

on the so-called transmedia pseudo-relevance mechanism [Csurka12]. This is a feedback 

query expansion, usually based on textual query expansion (in most papers, e.g. 

[Depeursinge10]). Typically, textual annotations from the top visually-ranked images (or 

from a mixed run) are used to expand a textual query. 

The hybrid relevance feedback model with adaptive weights was inspired by Quantum 

Mechanics, where the combined system is represented as a tensor product of density 

matrices.  

The hybrid relevance feedback model is defined on a Hilbert space which can be thought 

of as a natural extension of the standard vector space model, with its useful notions of 

subspaces and projections. The model is based on the notion of co-occurrence and the 

tensor operators, and incorporate different types of correlation between feature spaces. 

Inter correlations are captured by the tensor operator and the intra correlations are 

modelled by co-occurrence matrices. 
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5.3.3. Fusion of the frame difference based and feature-based 

methods for detecting and tracking moving objects 

In general, approaches to detecting and tracking objects are often based on frame-

difference, background subtraction (e.g. colour based image segmentation), and methods 

based on the optical flow.  

The colour based methods work well if the colour of an object is known and is relatively 

uniform. If these assumptions are met then the colour-based object detection and tracking 

can be also invariant to camera movement. The frame difference based methods on the 

other hand do not rely on object colour but are quite sensitive to camera movements.   

Both approaches can be associated with low to medium computational cost. We would 

like to fuse these low cost approaches in order to alleviate some of the drawbacks of 

individual methods and combine the strengths of both. 

Additionally, we would like to investigate the use of multiple camera system in object 

detection and tracking. 

5.3.4. Fusion of time-series sensor data  

Most CPS systems will contain a large set of different sensors. Some of this sensors will 

provide continuous stream of data (like cameras or microphones) but most sensors will 

produces sensor readings at often very different frequencies (which could be once every 

few seconds but also many times per second, often referred to as sample rate in Hz). In 

case data from multiple sensors is to be used to perform complex data analysis processes, 

it is important that the available data from the different sensors is pre-processed before it 

can be fused into input data for the analysis. This mainly applies to time series data and 

not so much for continuous data stream (where sample rate is often determined by the 

media protocol used). The required pre-processing will depend on the complexity of 

performed data analysis algorithms in the adaptation process. Some algorithms will not 

work properly if they directly receive raw data from sensors, especially not if sample rate 

between multiple signals differs or if the data contains noise (e.g. sudden high frequency 

glitches) or gaps (e.g. periods without reading because value did not change). 

For many data analysis algorithms (like anomaly detection or trend analysis), the 

different input signals need to be synchronized in time and frequency (so the algorithms 

can use evenly distributed input data). For this fixed time intervals need to be defined 

based on which input data is re-sampled. It could be that some sensors provide data at 

much higher frequency than others or some sensors can provide sudden bursts of data. 

Missing data points will need to be interpolated and for other sets of data points an 

average will need to be calculated to replace the given set. The pre-processed data from 

multiple sensors can simply be fused into a single and clean data set with evenly 

sequenced data points for all input sensors. This will simplify data analysis process. 

Based on type of analysis required, it could be that some of the raw data will also need to 

be saved (e.g. for analyzing the high frequency bursts of data which are filtered out of the 

clean data set).  
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Figure 15 –  Fusion process of two time series sensor data  

 

The fusion steps of integrating time series sensor data would be: 

1. Determine time intervals (based on required precision and algorithms); 

2. Generate values, which could be accomplished by: 

o Generation of average within time interval for each sensor data set in case 

multiple values are available, or 

o Interpolating a value in case value is missing in given interval (based on 

values in previous and next interval(s));  

3. Fuse data into single equally sampled time sequenced data set. 

5.3.5. Fusion for computation precision adaptation 

In the CERBERO cyber-physical context, fusion/combination of different parameters 

influencing computation is necessary. This fusion is performed as part of the processing 

management. It partially relies on PiSDF configuration actors, i.e. pieces of computation 

that transform a set of data into a parameter capable of influencing future execution. 

The CERBERO adaptation manager is aware of several KPIs from both cyber and 

physical worlds and takes decision based on these two sets of information. Sensed KPIs 

may come from e.g. a hardware timer connected to a quartz-generated clock, an energy 

sensor (shunt resistor with current and voltage measurement), cameras observing the 

environment, an Inertial Measurement Unit (IMU), etc. All these sensed KPIs have the 
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capability to make the application QoS-aware and to drive previously evoked 

computation precision adaptation. 

This adaptation support is suited for streaming applications, such as the video processing 

pipeline from CERBERO Ocean Monitoring use case (high throughput) and the robotic 

arm control loop from CERBERO Planetary Exploration use case (low latency). 

5.4. Time synchronization 

Time synchronization is the first step in adaptive sensor fusion, and is not always 

straightforward to accomplish. The system observes the world through a sensor, and as 

such is dependent on proper time synchronized observations to build an accurate state; 

whether the observing system is a real-time system or a simulation. A simulation may be 

considered as a special type of sensor, in which the information is not derived from a 

physical phenomenon, as is usual for a sensor, but from a simulated phenomenon instead. 

In Table 4 the different combinations for sensor / system combinations are shown with 

the corresponding types of required synchronization mechanisms. 

 

Table 4 Type of synchronization required for sensor/system combination 

  Sensor 

  Physical Simulation 

System 
Real-time Synchronization not required One-way synchronization  

Simulation One-way synchronization  Two-way synchronization 

 

One-way synchronization is usually a matter of halting the simulated system until the 

real-time or physical data is available when the simulation is faster than real-time, 

whereas the information needs to be buffered in the simulation is slower than real-time. 

When both systems are simulated, and two way synchronization is required, it is slightly 

more difficult since the speed of the faster simulator needs to be adjusted to the slower 

simulator. 
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Generally, two types of simulation environments can be defined. Firstly, in continuous 

simulators the models are continuously updated and integrated according to a global time 

representation, which increments in fixed time steps. Secondly, in discrete event 

simulators time advances in discrete steps and the system is considered to be static in 

between two events. If a combination of a discrete event simulator and continuous time 

simulator are used, special care needs to be taken to synchronize the time between both 

environments. Gheorghe et al. [Gheorg06] propose a formal method to design hybrid 

continuous/discrete co-simulation systems, which was further refined by Nicolescu et al. 

[Nicol07].. A graphical representation of the proposed time synchronization is shown 

Figure 16. Both simulation events need to determine what events are relevant as 

synchronization data, i.e. events that contains information that should be included in the 

other simulation. These synchronization events then determine when and how the 

simulations should synchronize. 

 

When using sensor adaptation in a scenario in which time-synchronization is required, 

usually the sensor is a continuous system. When the observing system is also a 

continuous simulation, the co-simulation can be achieved by simply setting the sensor 

sampling period to the simulation time step size, and every sample is provided the 

simulation. When the simulated system uses a discrete event simulator, the 

synchronization events are the sensor measurements and possible sensor control actions 

such as querying an active sensor, or switching a passive sensor on or off.  

 

Start

Send time of next discrete event with 
synchronization data

Discrete event simulator Continuous simulator

Synchronization 
bus

Get end of discrete simulation cycle

Start

Simulate until end of discrete cycle, or next 
synchronization event

Event 

Send synchronization 
event time and data

Send continue-
event

Wait for continuous 
simulation event

Event 

Update state with continuous 
simulation data

Simulate until next 
synchronization data

Simulate until continuous 
simulation event

Send synchronization 
data

Update simulation with 
synchronization data

No event

Event

EventNo Event

Time of next event

Discrete event data

Continuous event time and data

Figure 16. A schematic representation of the process of synchronization and the interfaces 

 of discrete event and continuous time simulators 
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6. Intended Support for Adaptation Strategies in Use Cases 

6.1. Adaptation in the Space Exploration use case 

Robotic arm adaptivity for space exploration applications is a very challenging problem, 

especially in such dynamic, uncertain and harsh environments. For this reason, adaptation 

methods must be provided to guarantee the success of the robotic arm movement.  

Final end effector position is provided by inverse kinematics equations to determine the 

joint parameters to reach the desired position. WidowX robotic arm, which is selected for 

demonstration purposes, includes six actuators that act as sensors, providing information 

about position, speed, torque, etc. Controllers that track the trajectory by reading every 

actuator position are able to detect deviations between reached and desired position. 

These deviations may be due to obstacles, maximum torque for the current load, circuit          

malfunction due to radiation effects and loss of communication with one or more 

actuators. 

CERBERO technologies provide Self-Adaptation manager support for adaptive motion 

planning and Self-Healing. These technologies are the following: 

• ARTICo3: Inverse kinematics equations have multiple solutions to reach the 

desired end effector position. ARTICo3 provides parallel methods of calculation 

for inverse kinematics equations and selects which one best fits the environment, 

based on joint parameters measurements.  

• ARTICo3/MDC: Various reconfiguration types are needed to adapt to harsh 

environments. These tools provide fault monitors and hardware reconfiguration.  

• PAPIFY: Power measurement and estimation are required for an autonomous 

system. Inverse kinematics solutions could be selected to minimize power 

consumption, e.g. minimizing angle variation of each joint. 

• Preesm/Spider: Reinforcement learning provides decision methods to solve a 

variety of problems based on inputs and previous experiences. If communication 

with a joint has been lost, reinforcement learning provides a solution to adapt to 

this problem, taking into account before solving inverse kinematics equations. 

In the context of sensor fusion, the robotic arm use case has the following characteristics: 

The way on how to combine internal and external sensors for position, velocity and 

acceleration estimation in real time is crucial for space exploration robotics arms. 

Methods based on joint position or Inertial Measurement Unit (IMU) are very useful.  

Robotic arm measurements are limited by joint position and speed; based on the 

kinematics of the robotic arm, it is possible to extract data with 20 Hz rate. Each joint 

actuator is able to provide information about position, speed, torque or current load.  

Most of IMUs combine accelerometer, gyroscopic and magnetic sensors, which provides 

useful information about the robotic arm movement as attitude, angular rates, linear 

velocity and position relatively to a reference. 

By the combination of  these measurements, constant speed movements can be 

performed. A control algorithm must analyze these measurements and produce a joint 

position/speed correction in order to achieve a final end effector constant speed 

movement. 
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6.2. Adaptation in the Smart Travelling use case 

In the Smart Travelling use case the following adaptation strategies will be applied: 

• Self-adaptation through the decision support function: The decision support 

function in the Smart Travelling use case acts as the Self-Adaptation Manager, 

responsible for any required adaptation relevant for the driver. Like a software 

agent the manager will follow the 3T model and follow the sense, plan and act 

paradigm. By monitoring the status of the car, the environment and the user 

preferences and goals, the decision support function will need to determine if 

adaptation is required. In case, for example, the GPS location of the car indicate 

that the car no longer following the planned route, the decision support function 

could initiate a new route planning. In case monitored battery power is reduced 

more than predicted, the decision support function could adapt by recalculating 

the prediction based on new information received (e.g. more intense traffic, higher 

speed of travelling, lower or higher outside temperature, which will influence 

heating/cooling and thus battery consumption) and decide to propose the driver 

alternative routes or charging options.  

• Time synchronisation: For adapting DynAA to work as a system in the loop, 

adaptation is required for connecting the real time sensors to the simulations run 

inside DynAA. The most important problem to tackle is synchronization of time 

between simulation run in DyNAA and the sensors running outside of DynAA (in 

the use case Smart Travelling the sensors simulated inside SCANeR). Within the 

CERBERO project the planned adaptation of DynAA will use the time 

synchronisation solution as described in paragraph 5.4. 

• Fusion of time-series sensor data: In order to analyse the results of the 

simulation runs, data analysis processes will be executed, which will need pre-

processed fused input data from all the sensors (and simulation modules). As CRF 

uses the simulator to interpret events related to the behaviour of the driver during 

the simulation, it is important that events form all the different simulation 

modules and sensors can be correlated. To interpret specific events in the 

simulation (e.g. sudden eye movements), data is required in given time intervals 

and the data from the different sources needs to be synchronised in time to be able 

to draw conclusions on for example causes of specific events. 

6.3. Adaptation in the Ocean Monitoring use case 

In the Ocean Monitoring use case the following adaptation strategies will be applied: 

• Self-adaptation through hierarchical organization of adaptation processes. 

Instead of a single adaptation manager, adaptation will be organized as modular 

aspects, similar to NIST’s 4D/RCS-4 [Albus02]. The adaptive camera, for 

example, will contain its own adaptation manager, model, engine, and monitors. 

The power system will contain a separate manager, model (using DynAA in this 

case), engine, and monitors. If power is running low, the power component can 

signal the camera component to reduce its energy requirements. Similarly, if the 

camera detects a sensor failure, it can signal the system as a whole to end tasks 

early.  
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• Context-aware middleware as an adaptation manager. At an information 

level, there is a close connection between context-aware applications and 

adaptation [Yürür16], and – as a context-aware system component – a context-

aware middleware will play the role of the adaptation manager for optimizing 

image relevance. This will enable the ocean monitoring case to integrate 

information adaptation into a cyber-physical system. 

• Time synchronization. Just as in the smart travelling use case, the ocean 

monitoring use case depends on a time-synchronized DynAA as the embedded 

model in the adaptation system. So, while the time data sources may not be 

identical, there is the same need for synchronization between DynAA model time 

and external environment and system time.  

• Adaptation of the underwater camera system. The camera systems in the ocean 

monitoring case involve several aspects of adaptation, as outlined in sections 5.2 

and 5.3. For example, the colour balance could be based on the water depth 

measurement or the measurement of the amount of red colour in the colour 

histogram (a sensor). The red colour at different depths gradually disappears (this 

can be modelled), therefore the underwater photographers need to use camera 

filters to compensate for the loss of colour. Traditionally, the filters are physically 

changed at different depths. We are going to automatically compensate (adapt) for 

the loss of the red colour by measuring the water depth or the amount of red 

colour in the histogram, and using multicoloured lights (controlled by an 

adaptation engine) or histogram manipulation techniques.. 
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