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1 Executive Summary 

This document establishes the Modelling Methodology for the CERBERO project 

[CERBERO17]. Research on system modelling in CERBERO outlines the main 

challenges on modelling Cyber-Physical Systems (CPSs) which arise from the intrinsic 

heterogeneity, concurrency, and runtime adaptivity of such systems. In this document, we 

discuss state-of-the-art techniques that address the modelling challenge. Specific 

technologies discussed in here include modelling for different abstraction levels (from 

system level to hardware-software implementation), multi-view modelling techniques, 

model based design space exploration, and modelling of distributed and concurrent 

systems. 

The CERBERO project introduces innovations in each one of the topics mentioned above. 

In particular, CERBERO’s approach for modelling CPSs builds upon: 

an integral modelling for different abstraction levels (cross-layer modelling). 

an integral multi-view modelling, simulation and analysis, focused on facilitating the 

exchange of information between partial aspect models and on facilitating the 

interoperability of design tools. 

an efficient model based design space exploration. Including hybrid modelling of 

computational and physical systems for improving design space exploration capabilities. 

an intermediate format for exchanging model information between tools, targeting increase 

in tool interoperability. 

a catalog and characterization of models of computation, in order to guide the generation 

of new aspect models. Also, on understanding the relationships between different models 

of computation to guide model transformation and interoperability between models with 

different computational semantics. 

Accordingly, this document discusses these innovations and makes an initial assessment of 

their impact in the design of CPSs.  

1.1 Structure of Document 

The suggested way to read this document can 

be seen in Figure 1. Section 2 opens the 

technical discussion in this document 

grounding modelling as a design activity and 

part of an engineering process known as 

model-based design. Within section 2.1, we 

delineate the view and focus of the research 

on modelling techniques within the 

CERBERO project – we point in a summary 

way all the main contributions that are 

targeted by the project. 

Section 3 reviews the state of the art in 

several focal points of the modelling activity 

– those corresponding mainly to the research topics within CERBERO. Aim is to make a 

Figure 1: Structure of the D3.6 document 
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clear statement on what was available in the literature before CERBERO and what 

contributions of the CERBERO project advances this state-of-the-art scene. This section 

can be skipped by a reader that is already up-to-date on the most recent advances in 

modelling of CPSs. 

Section 4 discusses each one of the research topics and modelling techniques that are 

further developed in the CERBERO project, with the intention of explaining their 

fundamental differences to the state-of-the-art and establishing the value added by their 

innovations. 

Section 5 connects all proposed modelling technique to the CERBERO tools and use cases 

where the respective research and validation efforts take place.  

1.2 Related Documents 

CERBERO D3.4 – Modelling of Key Performance Indicators [CERBERO_D3.4]  

The KPIs can be used to represent the system properties. CERBERO proposes innovative 

techniques to model Key Performance Indicators and it uses them to guide other modelling 

aspects as well (for example, the choice on Models of Computation). The modelling of KPI 

is of such importance within the set of modelling innovations introduced by CERBERO, 

that it is detailed in an apart document (D3.4). For this reason in this document (D3.6), we 

only highlight the innovations introduced and refer mainly of the technical discussion to 

the text in D3.4. 

 

CERBERO D3.5 – Models of Computation [CERBERO_D3.5] 

 Similar to the modelling of KPIs, CERBERO proposes many innovations on 

cataloging and operating models of computations. Due to the details and importance of 

these contributions, Models of Computation is more extensively discussed in an apart 

document. For this reason in this document (D3.6), we only h highlight the innovations 

introduced and refer mainly of the technical discussion to the text in D3.4. 

1.3 Related CERBERO requirements 

Deliverable D2.7 of the CERBERO project [CERBERO_D2.7] defines a list of CERBERO 

Technical Requirements (CTRs) the project should achieve. Each of them is referenced 

with a unique identifier ranging from 0001 to 0020. Research topics related to modelling 

activities are covered as summarized in Table 1. 
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Table 1: Links to CERBERO technical requirements 

CTR 

id 
CTR Description Link with the D3.6 document on 

Modelling Methodology for CPSs 

0001 CERBERO framework SHOULD 

increase the level of abstraction at 

least by one for HW/SW co-design 

and for System Level Design. 

Integral cross-layer modelling  

Integral multi-view modelling  

Key Performance Indicators 

0002 CERBERO framework SHOULD 

provide interoperability between 

cross-layer tools and semantics at the 

same level of abstraction. 

Integral multi-view modelling 

CERBERO Intermediate Format 

Key Performance Indicators 

0004 CERBERO framework SHOULD 

provide software and system in-the-

loop simulation capabilities for 

HW/SW co-design and System Level 

Design. 

Integral multi-view modelling 

Model-based design space exploration 

 

0005 CERBERO framework SHOULD 

provide multi-viewpoint multi-

objective correct-by-construction 

high-level architecture 

Integral multi-view modelling 

 

0007 CERBERO framework SHALL define 

methodology and SHOULD provide 

library of reusable functional and non-

functional KPIs. 

Key Performance Indicators 

0009 CERBERO SHALL develop 

integration methodology and 

framework. 

This document 

0020 CERBERO framework SHALL 

provide methodology and tools for 

development of adaptive applications. 

Key Performance Indicators 

Model-based design space exploration 

Models of Architecture 
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2 Modelling Cyber-Physical systems 

 

Nowadays, electronic monitoring and automation systems are becoming pervasive in 

almost every aspect of human life. Many traditionally human-controlled activities are now 

performed by (semi-)autonomous systems that actively sense, decide, and act in place of 

the humans. Examples range from self-driving automobiles to swarms of robots and factory 

production lines. Such emerging solutions do not work isolated, but they operate within 

large scale, complex, dynamical systems. They realize sophisticated signal processing 

algorithms in distributed configurations, often with feedback loops where physical 

processes affect computations and vice versa. This tight integration of computation and 

physical processes makes these systems unique, and we call them Cyber-Physical 

Systems or simply CPSs. 

The design of CPSs presents particular challenges. Time becomes a matter of 

correctness instead of performance, because the time it takes to perform a task may be 

critical to the correct functioning of the system. Consider for example a self-driving car 

that has to decide about stopping upon or deviating from an approaching obstacle. In CPSs, 

many things happen at once, as a complex combination of physical and computational 

processes occur in parallel. Measuring and controlling the dynamics of these processes by 

orchestrating actions that influence the processes are the main tasks of embedded systems. 

Consequently, concurrency is intrinsic in CPS. Many CPS systems are also large in the 

number of participating components and often these components are spread apart, 

interconnected with very diverse network topologies. During design, the structural aspect 

of CPSs become as important as the functional aspects. 

 

USE OF MODELS IN CPS DESIGN - ADVANTAGES 

The absolute most accepted approach for the design of CPS is by using models – a strategy 

called model-based design. Working with models has major advantages.  

Models can be made formal and mathematically/logically sound. We can say definitive 

things by using models. For example, we can assert that a model is deterministic, meaning 

that given the same inputs it will always produce the same outputs. No such absolute 

assertion is possible with any physical realization of a system. If our model is a good 

abstraction of the physical system (here, “good abstraction” means that it omits only 

unnecessary details), then the definitive assertion about the model gives us confidence in 

the physical realization. Such confidence is hugely valuable, particularly for embedded 

systems where malfunctions can threaten human lives. Studying models of systems gives 

us insight into how those systems will behave in the physical world.  

Additionally, using models in modern engineering became very attractive from an 

efficiency and economic point of view. Models are faster and cheaper to construct and 

easier to manipulate than the real (physical, full-scale) artifacts they describe. 

Computer models are used in many engineering disciplines to analyze and predict the 

behavior of the systems they describe. Engineers use dedicated software tools to 

interactively create and manipulate the models and to simulate/evaluate the behavior of the 

systems using various test scenarios. In experimental setups, models can be subjected to 
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stimuli and conditions that would not be feasible or just be too dangerous to carry out with 

the real artifact. 

Finally, working with models strongly enables design automation. (Formal) Models can 

be checked for language conformance, internal consistency and completeness, and 

ultimately can be used to analyze the properties of the systems they describe. When these 

models are made machine readable, software tools can be constructed to manipulate the 

models and to perform automated operations on them like checking the consistency, 

constraints and completeness of the model and execute internal model transformations. 

This offers a great benefit, since carrying out these operations by humans would be too 

error-prone or could simply be not feasible due to the size or complexity of the model. 

 

MODELLING AS A DESIGN ACTIVITY 

We call “modelling” to the set of activities related to writing, manipulating, and 

transforming models. The task of the designer during the modelling is to express 

unambiguously particular properties and behavior of a (sub) system or process we are 

interested in while neglect others, which are considered irrelevant for a purpose. Some 

aspects are intentionally omitted to keep the models from becoming overly complex and 

because the associated component interactions do not play a dominant role in system 

behavior. There are various model types such as physical, functional, analytical, causal, 

etc.  

Modelling is usually carried out by using a modelling language that consists of a set of 

modelling primitives with well-defined semantics and composition rules. Using modelling 

languages, designers are able to create a machine readable specification of the system 

whose consistency and completeness can then be checked automatically. Modelling 

languages can be given a textual as well as a graphical representation. Mostly, designers 

prefer to work with graphical presentations of a model, such as a set of diagrams. Graphical 

metaphors are used that closely match the abstractions used by the designer when 

conceptualizing the system. Also, various relations between system components can be 

shown explicitly in the diagrams. A mixed form of model presentation is also possible, in 

which parts of the model are expressed using graphical elements and other parts are 

specified using a textual formalism. 

Furthermore, models can be used both for analysis purposes as well as for synthesis 

purposes. If the model semantics allow it, important system properties could be derived 

early in the development cycle and the designer can reason about and experiment with 

alternative designs at the abstraction level of the model. This is an enormous advantage 

over traditional development approaches, where the system is often coded first and where 

the critical system requirements are met afterwards by tuning and tweaking the system’s 

implementation. In some cases, if the semantics of the model is sufficiently complete, the 

implementation of the system (software) can be synthesized from the model.  

Modelling is an essential activity in the engineering process. Modelling is the way to 

operationalize – conceptually and mathematically – certain design steps: design 

conception, design evaluation and design adjustment steps, the so called “build – 

evaluate – adjust” cycle (Figure 2).  

 



H2020-ICT-2016-1-732105 - CERBERO 

WP3 – 3.6: Cross-layer Modelling Methodology for CPSs 

Page 11 of 52 

 
Figure 2: Model-based design cycle 

In the design conceptualization phase, various models are built describing different 

aspect of the design and their interactions. From these models, system level (or 

emerging) properties are derived, that can directly be compared to the (non-functional) 

requirements. If the result of the evaluation is not satisfactory (structural or parametric) 

changes in the design are necessary – which in the model-based design approach means 

manipulating the models. 

The reduction of the number of design iterations (inside and across the design stages) can 

be facilitated by well-informed design decisions, i.e. by reducing the number of incorrect 

decisions resulting in “backtracks” in the design process. The model-based approach 

directly supports achieving this goal. The models can represent all relevant knowledge we 

possessed at a particular point in the design process. With suitable model evaluation tools 

information can be derived, that can directly guide the design decision. The same 

applies when runtime adaptivity is considered: models lend the system the formal 

foundation for applying automated reasoning processes to derive adaptation plans.  

As the design progresses, more and more details are added to the models, and hence, a 

more accurate evaluation of the design becomes possible. The gradual model refinement 

supports iterative design processes, where the iterations work on increasing level of 

detail/accuracy. First only a “rough” design is made (e.g. just identifying the main system 

components and their connection topology), later the components are detailed and design 

on a finer granularity is produced. This process can be continued until implementation 

details (e.g. program code) are added, i.e. blurring the border between system design and 

implementation.  

In the next section, we provide an overview on how the CERBERO project puts together a 

model-based methodology for the design of CPSs. 

2.1 The CERBERO Modelling Approach for Cyber-Physical Systems 

The CERBERO project strongly builds upon a model-based engineering approach. 

CERBERO’s modelling methodology builds upon established and validated design 

practice used in the design of large, networked, embedded systems. CERBERO does not 
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introduce a completely new engineering process, but instead leverage on the best 

methodologies found in the design community and extends and improves many parts of 

the existing modelling and design methodologies. In fact, almost every activity and 

research topic within the project is related or based on modelling or manipulation of 

models. The CERBERO community believes that models may provide an unambiguous, 

formal, and mathematical base for designing and realizing complex systems.  

Figure 3 depicts how the CERBERO project conceives the design of a system. As for 

engineering process, CERBERO aims to transform the traditional V-Model approach 

(MBE) by providing a continuous, short-cycled, incremental design environment 

(CMBE) enabling early-stage analysis, optimization, fast deployment, and 

verification of functional and non-functional requirements.   

 

 
Figure 3: The V-Model engineering process when using a model-based design approach 

First, models are used as early as possible in the business development process to formalize 

user requirements into a system specification. In CERBERO, models at the most initial 

design phase compose the specification of the system. The following design steps 

consists in gradually refining, and enriching these models towards an (automatic) 

physical implementation. So, for example, the specification models are enriched for an 

early system-level simulation, analysis, and design space exploration – facilitating an 

guiding the design decision process. As a result, the requirement level of the models is 

refined to a functional and logic breakdown of the system using rich domain-specific 

details. HW/SW co-design and synthesis from high-level of abstractions (semi-)automates 

the transformation of these models into a physical realization. At all moments, models are 

also the base for validation and verification at the same level of details. Each iteration of 

the design process tries to deliver a version of the system: at initial cycles, such 

deployments are made onto executable models; as more design cycles are added, 

deployments include an interoperable setup with models and real system parts (for 

example, working with a system-in-the-loop simulator); finally as the design phase 

approaches its end, deployments tend to assume form of source code or hardware/physical 

components. 

The vision above extends and enriches many other design research groups 

[PTOL][SEI][VINC12] who build upon similar principles and goals. CERBERO is 
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unique in the several different innovations – many of them related to the modelling 

activity – proposed to this engineering process. CERBERO innovations target three 

main areas of contributions:  

1) modelling and design of complex, large scale, networked systems;  

2) modelling concurrency and distributed behavior;  

3) efficient methods and tools for model-based design space exploration, using 

sophisticated techniques such as modelling of hybrid systems and uncertain 

environments. 

In the next, we highlight each one of the activities that leads us to a unique approach and 

indicates the detailed discussion of each topic within this document. 

 

MODELLING COMPLEX SYSTEMS 

CERBERO modelling methodology brings four innovative contributions to the design of 

complex systems, as depicted in Figure 4:  

(1) CERBERO innovates with a cross-layer modelling approach where model 

information flows from more abstract, system-level models into 

implementation/domain specific models at HW/SW level. The state of the art in 

this topic is presented in Section 3.1.1 and our approach is discussed in Section 

4.1.1.  

(2) CERBERO build simulation tools based on multi-view (multi-view) modelling 

approach. The idea is to conceive a complex system model as a cooperation of 

many modelling viewpoints, each of which abstracts the system for a purpose, but 

complements the information in the total. The state of the art in this topic is 

presented in Section 3.1.2 and our approach is discussed in Section 4.1.2.  

(3) CERBERO proposes a new intermediate format to exchange modelling 

information between tools. The CERBERO intermediate format is able to solve 

many interoperability problems existent in the actual metamodelling oriented 

approaches. The state of the art in this topic is presented in Section 3.1.3 and our 

approach is discussed in Section 4.1.3.  

(4) CERBERO proposes a way to model key performance indicators in such a way 

that KPIs can be more easily re-used among projects and tools, and that 

enables easier automation of modelling analysis tasks. This topic is extensively 

discussed in deliverable D3.4 [CERBERO_D3.4], but as it is related to the 

modelling activity, we briefly discuss it in here and highlight our current 

achievements. The state of the art in this topic is presented in Section 3.1.4 and our 

approach is discussed in Section 4.1.4.  
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Figure 4: Innovations of CERBERO in the modelling of complex systems. (1) Cross-layer modelling, 

(2) Multi-view based simulations, (3) easier interoperability between tools due to the CERBERO 

Intermediate Format, and (4) modelling of key performance indicators. 

MODELLING CONCURRENCY AND DISTRIBUTED BEHAVIOR 

Concurrency is an intrinsic characteristic found in most of systems targeted by CERBERO. 

Concurrency refers to the ability of different parts of a system to execute out-of-order (or 

concurrently) without affecting the outcome. Such characteristic is dominant in modern 

systems due to their non-locality, large size, and non-centralized organization.  

Modelling concurrent systems has always been a challenge, but much progress has been 

made in recent times due to the formalization of communication and behavioral models by 

means of models of computation. CERBERO invests in elaborating a catalog of models 

of computations and a methodology for choosing an appropriate Model of 

Computation (MoC) for the purpose in hand. As an example, suppose a designer is 

deciding to model the states of the system and its transitions. A finite state machine (MoC) 

is appropriate in this case only if the system has no fork/join mechanisms (or making them 

explicit is not relevant for the aspect to be modeled). Otherwise, using Petri-Net formalism 

(MoC) would be more adequate on exposing these concurrency mechanisms.  

This topic is extensively discussed in deliverable D3.5 [CERBERO_D3.5], but as it is 

related to the modelling activity, we briefly discuss it in here and highlight our current 

achievements. A short overview of the state of the art in models of computation is given in 

Section Error! Reference source not found. and the CERBERO innovations at this area a

re shown in Section Error! Reference source not found.. 

 

MODELS AND TOOLS FOR DESIGN SPACE EXPLORATION 

One of the strongest benefits of using models is the possibility to explore different design 

options at a lower cost without building different prototypes. As discussed before, models 

are easier to modify, and their mathematical background allows to reason on the outcome 

of their implementations. But design space exploration may be a difficult challenge due to 
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the design space explosion problem – there are too many variants of a model (even small 

ones) to be evaluated efficiently. 

CERBERO introduces powerful techniques for the design space exploration of 

complex system models, considering adaptive behavior, hybrid systems, and 

uncertainty intrinsic to the environment where the system must work on. In 

CERBERO, we strive to describe large combinatorial problems as hybrid models – mixing 

discrete and continuous modelling. Such representation of a design space exploration 

problem can speed up the search in the design space. An overview of design space 

exploration techniques is given in Section 3.3. Innovations introduced by CERBERO are 

discussed in Section 4.3. 

 

USE AND VALIDATION OF THE CERBERO MODELLING METHODOLOGY 

Within the CERBERO project, all the innovations proposed for the design and modelling 

phase of a system are assimilated into tools that make part of the CERBERO framework. 

The introduced techniques are then validated by applying the tools in the design of the 

CERBERO use cases. In Section 5, we discuss a mapping between each proposed 

innovation, the tools where they are incorporated, and the use case within CERBERO 

where they are used and validated. 
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3 Survey on Modelling Cyber-Physical Systems – challenges 

and current approaches 

This section will review the state of the art in modelling and model-based design in CPSs. 

But, as discussing all aspects of modelling could become extremely extensive – going from 

modelling languages all the way down to code generation – we will focus on the state of 

the art in the topics related to the research inside CERBERO. In this section we frame the 

actual development status in the CPSs community, and we use the same topic structure in 

Section 4 as a background to show where CERBERO innovates. 

3.1 Modelling complex systems 

Dealing with complexity is intrinsic in the modelling of CPSs. Such complexity does not 

come only from the size of the systems – sometimes CPSs designs can be quite small – but 

specially from the multi-disciplinary nature of such systems. CERBERO invests in some 

focal points to cope with a complex design: 

(1) enable model information to propagate from high levels of abstraction towards 

lower levels and implementation in a more natural way – we call that cross-layer modelling 

(or design);  

(2) enable the model information to propagate between models (viewpoints) in a 

more natural way – we see that as an exercise on multi-view model-based design 

(3) the exchange of model information in topics (1) and (2) must be operationalized 

at tool level to leverage in automation and correctness of model transformation methods 

(4) finally, we invest in identifying universal ways to model key performance 

indicators, such that results can be more easily compared and reported. 

In the following, we discuss the current state of the art in the literature and about these 

topics. 

3.1.1 Cross-layer modelling 

 

The intrinsic complexity of CPSs is the recipe of their large potentials: interconnecting 

what in the past have been separate systems certainly open a plethora of new possibilities 

but, at the same time, it comes at the price of increased the design and verification 

challenges. At the root of this issue there is our inability to rigorously model the interactions 

between the physical and the cyber sides.  

The systems modelling language (SysML) [OMG12] provides a general-purpose notation 

for systems engineering, being capable of supporting systems that present hybrid 

phenomena, where continuous (suitable for physic components) and discrete (suitable for 

cyber components) time models mix. This aspect makes SysML suitable to be used in CPS 

design environment. SysML can be defined as semi-formal language: it has a formal 

syntax, but no formal semantics. The idea is being able to support different types of 

systems, by choosing the appropriate semantic. Semantics represent also the instrument to 

support co-simulation. 
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The INTO-CPS project [INTOCPS] aims at creating an integrated “tool chain” for 

comprehensive Model-Based Design (MBD) of CPS. Among the other features, INTO-

CPS provides support for the holistic modelling of CPS based on a SysML profile 

(proposed in the project) with a formal semantics for CPS. Such a profile leverages on a 

subset of SysML notations (block definitions and internal block diagrams) and is meant to 

target multi- and heterogeneous modelling and co-simulation. INTO-CPS supports co-

simulation leveraging on Functional Mock-up Interface (FMI) standard [FMI14]. FMI 

wraps models from different tools and abstractions in Functional Mock-up units (FMUs), 

enabling inter-FMU communication and importing into hosting tools. Models are black 

boxes, FMU compliances ensures protection of the modelled IPs, as well as, 

interoperability.  

Other approaches, to provide model simulation, generate code from SysML. Café et al 

[CAFE13] address the cross-layer modelling problem by generating co-simulation models 

(SystemC-AMS, which provides pre-built MoCs allowing co-simulation of continuous and 

discrete components) from different MoCs. Wawrzik et al [WAW15] translate SysML into 

SystemC to enable the simulation of the modelled CPS, using specific dialects of System-

C designed to tackle the phenomena being modelled (e.g. hardware/software, network and 

propagation, and analog and physical processes). 

Another interesting approach to handle the modelling complexity of CPS designs is 

provided by the “contract-based” approach [VINC12], which is intended to be used at all 

stages of system design (from requirements capture to embedded computing development) 

to properly deal with the integration and composition of heterogeneous components and 

hybrid environments. Contracts explicitly handle pairs of properties, respectively 

representing the assumptions on the environment and the promises of the system under 

these assumptions. They can be handled to address non-functional properties during the 

system design and to structure communication in a multidisciplinary field as the CPS one, 

where teams having diverse backgrounds and different fields of expertise must cooperate. 

In this case contracts allow defining clear interfaces between the different disciplines. In 

[CANC15], Cancila et al. specified a domain specific language tailored to contract-based 

design as a SysML profile to apply contracts over block diagrams.  

Ptolemy II [PTOL] provides actor-oriented modelling which supports multiple domains, 

being able to model them in the same design workspace. One of the basic assumptions 

behind Ptolemy is that modelling the diverse implementation technologies and their 

interaction is not reasonable within a homogeneous environment. Heterogeneous 

modelling is used to provide cross-layer support. In the Ptolemy environment actors could 

be set to various MoCs to represent either physical and/or cyber components. The 

interaction among MoCs leverages on the object-oriented principles of polymorphism and 

information hiding. For example, using Ptolemy software, a high-level dataflow model of 

a signal processing system can be connected to a hardware simulator that in turn may be 

connected to a discrete-event model of a communication network. 
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3.1.2 Multi-view model based design  

When using model-based design methodologies formal modelling languages can be 

defined such that they allow the description of a target system using multiple system views. 

A system view, or system aspect, is a way to look at or describe a system as a whole: each 

system view has its own associated semantic domain and can provide an exhaustive 

description of the system, but only from that point of view. Different groups of users of 

a system may consider completely different aspects of that system. For example, an 

accounts clerk will have a completely different view of the companies’ administrative 

system than its system developer. Using multi-view modelling framework provides 

several advantages: 

• It allows to capture the different ways separate groups of users of a system view 

that system. Each group of users or stakeholders, has its own concerns with respect 

to the system to be realized, possibly expressed as a set of requirements and/or key 

performance indicators in a semantic domain (e.g. responsiveness, throughput, 

energy consumption, dependability, etc.). 

• The development of a system typically involves the cooperation of multiple design 

disciplines. Each discipline will typically be addressed by only a subset of experts 

of the team. Design decisions made in one discipline can have consequences in 

other disciplines. Using multi-view models and the relevant analysis tools make 

this kind of interdisciplinary design trade-off manageable.  

• A multi-view modelling language will improve the usability of the models and offer 

greater flexibility in the exploration of design alternatives as the different system 

aspects in the model can be manipulated more independently. The models 

subsequently can be used for many purposes that can aid a system architect, such 

as automatic code generation, design optimizing, system evolution etc. 

[KARSAI10]. The interaction between the different models then plays a crucial 

role in the design process. 

In CERBERO we are developing an integral approach for modelling different 

abstraction levels and different views of the CPS. As it will become clearer in the 

following sections, we intend leverage on an intermediate format to allow sharing 

information among levels and views. One fit to all solution would certainly do not 

answer to the peculiarities of the different layers of the system. In the CERBERO 

project, different Model of Computations and Models of Architecture (see 

Sections 4.2.1) are exploited to represent all the different views, layers, and 

components of a CPS. The CERBERO Intermediate Format (CIF) purpose is to 

make them talk appropriately leading us toward a cross-layer approach. The goal 

is to make the CIF suitable to represent the CPS and the KPIs that describes it 

and, at the same time, to make each tool in the CERBERO framework stack (from 

the verification layer down to hardware) capable of reading and manipulating 

the CIF, and to send feedbacks to other tools through it when needed. 
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• It is a very powerful means to reduce model complexity: it enables designers to 

focus on only one system aspect at a time. By starting at the more abstract system 

aspects, the system design effort can progress in stages, where at each subsequent 

stage more detail of the system components is added, and more component 

interrelations are captured by the model. 

Many approaches to multi-view modelling can be found it the literature. Some of them 

target specific application domains, while others are more general purpose. For example, 

RM-ODP (Reference Model-Open Distributed Processing), a reference model introduced 

in the eighties as the result of a cooperative effort by the ISO (International Standards 

Organization) and ITU-T (International Telecommunication Union) [ISOIEC]. RM-ODP 

provides a framework through which analyzing, describing and specifying a system from 

different perspectives, called viewpoints.  

Another example is the Architecture Analysis and Design Language (AADL), which was 

standardized by the Society of Automotive Engineers (SAE) [FEILER12]. AADL defines 

a language for describing both the software architecture and the execution platform 

architectures of performance-critical, embedded, real-time systems. An AADL model 

describes a system as a hierarchy of components with their interfaces and their 

interconnections. AADL components fall into two major categories: those that represent 

the physical hardware and those representing the application software. 

SysML is a general-purpose modelling language for systems engineering that supports the 

specification, analysis, design, verification and validation of a broad range of complex 

systems, including hardware, software, information, processes, personnel and facilities 

[SYSML]. It uses a subset of UML 2.1 and provides additional extensions needed to fulfill 

the requirements for the modelling language specified by the SE DSIG (Systems 

Engineering Domain Special Interest Group) of the OMG. 

 

In CERBERO we are researching how to write model viewpoints in such a way 

that they become complementary:  easy to understand and manipulate when used 

apart, but expressive and rich when combined.  The way CERBERO approaches 

such challenges is to develop extra viewpoints (such as a mapping viewpoint) 

which is in itself a model on how two other viewpoints should be connected and 

combined.  This way of modelling is largely used in the CERBERO tool framework 

DynAA, and will be explained in more details in Section 4.1.2.  

Cross-layer and complementarities of viewpoints are the instruments we foresee to 

go beyond the traditional separation of concerns. Most properties and behavior of 

the whole CPS are emergent, i.e. they cannot be simplistically inferred from those 

of the individual components. Classical separation of concerns, despite being 

extremely useful, may lead to miss important interactions, which is why it has to 

be enhanced to go beyond boundaries. 



H2020-ICT-2016-1-732105 - CERBERO 

WP3 – 3.6: Cross-layer Modelling Methodology for CPSs 

Page 20 of 52 

3.1.3 Interoperability between model-based design tools 

The model-based design of large complex CPSs heavily depends on tooling. Tooling is 

necessary to create the models and operationalize its manipulation: model checking, 

simulation, code generation, modifications, analysis, etc. Moreover, proper model-based 

cross-layer and multi-view design – such as in CERBERO – depends on the good 

interoperability between these tools: tools should work as much as possible by 

enriching, modifying, and transforming the same system model. Constantly (and 

manually) re-writing the same models every time a new tool is needed leads to errors and 

misinterpretations.  

Providing a common base – or intermediate format – for sharing models between 

tools is the key to interoperability, but also a difficult challenge. Interoperability means 

that the information from one model should be accessible, transferable, and possible 

modifiable to/from other models (and their view points). This section, gives a short 

overview on the state of the art on representing and exchanging information between tools. 

In literature, the most established approach for representing model information is the use 

of metamodels. A metamodel defines formally the concepts allowed to be present in 

the model and the rules and relationships between these concepts. In other words, 

metamodels provide a formal organization to the information in a model. In the literature, 

the most well-known frameworks to describe metamodels (and automatically generate 

modelling tools) are the Universal Modelling Language (UML)[UML] and its many flavors 

(e.g. SYSML]), the Eclipse Modelling Framework [EMF], MetaCase's GOPRR [VLAD12] 

[KERN11] [METAEDIT], and [GME]. UML can also be used as metamodelling 

languages, but this is not a very common practice. 

As an example, we depict in Figure 5 a simplified version 

for the metamodel of the task view in the CERBERO 

framework tool DynAA (see section 4.1.2 for more details 

on the task or functional view). The task view represents the 

functionality and process level concurrency in the system. 

Such a metamodel allows a designer to produce a whole 

family of models, each of which describing the tasks in a 

system and their input/output ports, and the links 

representing communication between the tasks. If a model 

conforms to the metamodel, such as the example above, it 

can be represented by a graph. The nodes of this graph are 

the concepts allowed in the model by the metamodel, 

whereas the edges of the graph describe the relationships 

between these concepts.  

The metamodel approach is very strong and valuable. When a 

metamodel is known, we can build tools to collect, organize, 

store, and manipulate the information of a model. By 

traversing the model graph, a tool can 'understand' the model, 

access its concepts and check which are the specific relationships in the model. The 

metamodel approach became specially strong and important because it enabled the 

automated generation of design tools. Given a metamodel, it is possible to automatically 

Figure 5: Metamodel for the 

task view in the CERBERO 

framework tool DynAA 
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generate modelling tools, formal verification tools, code generators, analysis tools, and 

simulators for all the family of models that conform to the metamodel. 

Despite all the advantages of the metamodelling approach, it faces serious challenges in 

three situations related to the interoperability of tools [PARSONS]: 

1. The multi-view interoperability problem: The complete system model has to be 

defined by many views (see explanations in sections 3.1.2 and 4.1.2). Creating a 

modelling framework flexible enough to accommodate all views and potentially 

new (not yet considered ones) is what we call the multi-view interoperability 

problem. 

2. The multi-tool interoperability problem: The system model (or part of it) must 

be shared by many generic tools. They reflect the multi-view problem in a tool 

operational environment. 

3. The model maintenance problem: The system model must be consistent and 

maintained through evolving versions of the metamodel, evolving versions of the 

intermediate/persistence format, and multi-versions of the tools.  

All three situations are natural on the design of CPSs and therefore on the field of 

innovation within CERBERO. Proposed approaches to solve these problems are not 

successful and only partially alleviate the problems. Table 2 shows, for each 

interoperability problem, the unaddressed challenges: 

 

Table 2: Unsolved interoperability problems when using metamodels 

 Multi-view 

interoperability 

problem 

Multi-tool interoperability 

problem 

Model 

maintenance 

problem 

Unified 

metamodels 

Model 

information used 

by different views 

are either 

duplicated – 

generating several 

data management 

problems – or 

kept in one of the 

views, what 

forces other views 

to incorporate 

knowledge about 

other 

metamodels. 

Tools are forced to comply to a 

large, not flexible enough 

standard. It creates mostly 

adoption barriers.  

Also, tools trying to 

read/understand an 

intermediate format are often 

pushed to be compliant to all 

the metamodels instead of only 

the part that is interesting for 

their modelling purposes 

Evolving the 

metamodel of 

one view is 

likely to affect 

other 

metamodels. 

Independent 

metamodels 

per view  

Relies strongly on 

tool automation to 

make it easy 

dealing with so 

many different 

metamodels. 

Tool developers are resilient to 

implement details of third-party 

metamodels in their tools if 

they do not see the market 

payoff 

No unified 

method to 

describe 

versioning in 

different 

metamodels. 
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3.1.4 Modelling Key Performance Indicators  

Adopting a cross-layer and multi-view modelling framework (see Sections 3.1.1 and 3.1.2) 

provides rich capabilities to analyzing, communicating, and documenting design choices; 

but this is merely the first step. When realizing a system, designers often have a very large 

space of possible alternatives. The selection of the most suitable alternative is usually a 

multi-objective problem, which aims at identifying the system capable of globally 

maximizing the design goals. It becomes necessary to efficiently explore alternatives and 

evaluate the design alternatives.  

Such exploration can also occur in real time, in which the system searches during runtime 

for a more adapted or appropriate configuration. Such feature ultimately enables adaptivity, 

a fundamental requirement for current and future generations of CPSs. Ideally, design 

alternatives should be characterized in such a way that the derived properties should 

directly be comparable to key performance indicators (KPIs).  

KPIs are a well-known concept from economics and management [ROUB13] [ADEL09], 

where are used to evaluate the performance of an organization. A similar concept can be 

applied to CPSs. KPIs must be selected in a way that they will define the goal of the 

systems. KPI measures are mainly the output of design evaluation and will allow to 

quantify the discrepancies between the system goals and the actual or estimated 

performance. Along the design process and during the whole lifetime of the system the 

system designers (and the adaptive systems themselves) must make informed decisions 

when selecting the most “promising” design/configuration alternative. The selection 

should be driven by quantified properties of the design. These properties are originated in 

the design of components, compositions, parameters; and in the execution scenarios, i.e. 

the interactions between the systems designed and its embedding environment. 

The CERBERO project proposes (and investigates) new ways to define the 

intermediate format between tools to solve the interoperability problems 

mentioned above. In summary, the CERBERO project propose a two-layered 

intermediate format that decouples the model information (content) from the 

way the information is represented (schema). This approach is innovative, 

follows modern developments in non-schema databases, and promises to bring 

advantages in three aspects:  

1. model information can be easier shared by multiple views;  

2. tools do not have to deal with metamodels of other tools; and  

3. information representation is ready for dealing with versioning 

systems.   

We detail the CERBERO intermediate format proposal, and its relation to the 

modelling activity in section 4.2.2. 
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The model-based engineering approach formalizes all relevant aspects of the design in 

models and thus gives the formal foundation for deriving the emerging properties of the 

design. Frequently, the quantified design properties are aggregated in a “design quality 

measure” and used to guide a constrained design optimization process. The model-based 

derivation of the design properties is just a manifestation of old and established engineering 

approach, namely use models to predict system behavior [MORIN09]. 

The model-based derivation of design properties and its use in “evolving” the system go 

beyond strictly design-time activities [KARSAI10]. The driving forces behind system 

evolution are “keeping operational” or “making it better” the system implemented as 

expressed in a quality measure. In runtime reconfigurable designs the calculation of the 

emerging system properties is carried out during the nominal operation of the systems to 

detect anomalies and consequently initiate and guide redesign (optimization) in runtime. 

Due to the possibly prohibitively large design space and the complexity of the design 

process the scope of the runtime redesign (i.e. the monitored set of key performance 

indicators and the investigated design alternatives) should be constrained [STRE06]. 

3.2 Modelling reconfiguration and self-adaptation 

Reconfiguration and self-adaptation is based on modelling of concurrency and intrinsic 

uncertainty in behavior of CPS and its environment. In the next sections we describe state 

of the art in their modelling. 

3.2.1 Models of Computation 

Complexity in CPSs also come due to the intrinsic concurrency characteristic of these 

systems – typically distributed, networked, dynamic, and adaptive. Though many progress 

has been made in the field of designing concurrent systems, many other open questions 

remain, especially on the analyzability and expressiveness of concurrent models. 

CERBERO’s research tries to cope with modelling concurrency based on models of 

computation and agent-based software. We discuss the state of art in these topics in the 

following. 

The main innovation of CERBERO is to use KPI analysis to manage both the 

design phase and the intelligent adaptation of complex cyber-physical systems. 

We start from model based KPI analysis as a way to guide the exploration of 

design alternatives.  Then we extend the models of KPIs to guide real time 

adaptation of the system. Models of KPI in CERBERO will be cross-layer, namely 

that each model can be refined at a different level of abstraction, or mapped to a 

different layer, of the system. This would allow to trade the precision of the KPI 

evaluation with the required adaptation performance of the system. 
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A Model of Computation (MoC) [LEE98] defines the semantics of a computational system 

model, i.e. which components the model can contain, how they can be interconnected, and 

how they interact. Every programming language has at least one (often several) underlying 

MoCs. A MoC describes a method to specify, simulate and/or execute algorithms. MoCs 

were much promoted by the Ptolemy and Ptolemy II projects from the University of 

California Berkeley. In [CHANG97], Chang, et al. explain how several MoCs can be 

combined in the Ptolemy tool. MoCs can serve three different purposes: 

1. Specification: A specification model focuses on clearly expressing the 

functionalities of a system. It is especially useful in standards documents. 

2. Simulation: A simulation model is used to extract knowledge of a system when the 

current implementation is not available. It may be much simpler than the final code 

and is focused precisely on the features of interest. 

3. Execution: An execution model must contain all the information for the final code 

execution. 

The definition of MoCs is broad and covers many models that have emerged in the last few 

decades. The notion of a MoC is close to the notion of a programming paradigm in the 

computer programming and compilation world [VANROY 09]. Arguably, the most 

successful MoC families, in terms of adoption in academic and industry worlds are 

[PELCAT13]: 

• Finite State Machine MoCs (FSM) in which states are defined in addition to rules 

for transitioning between two states. 

• Process Network MoCs (PN) in which concurrent and independent modules known 

as processes communicate ordered tokens (data quanta) through First-In First-Out 

(FIFO) channels. 

• Discrete Event MoCs (DE) in which modules react to events by producing events. 

• Functional MoCs in which a program does not have a preset initial state but uses 

the evaluation result of composed mathematical functions. 

• Petri Nets which contain unordered channels named transitions, with multiple 

writers and readers and local states called places, storing data tokens. 

• Synchronous MoCs in which, like in Discrete Events, modules react to events by 

producing new events but contrary to Discrete Events, time is not explicit and only 

the simultaneity of events and causality are important. 

Within the CERBERO project, several studies are on-going that aim at extending 

MoCs to provide CPS-friendly features. These studies include for instance the 

extension of dataflow to represent persistent states that hinder parallelism and 

limit system scalability, integrating some information on system non-functional 

properties into a MoC to cross the barrier between requirements and abstract 

application modelling, enabling “moldable” parameters that can deeply change 

the nature of an application while still making design-time analysis and runtime 

management possible. More details on the CERBERO evolutions of MoCs are 

given in deliverable D3.5. 
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3.2.2 Modeling of uncertainty of CPS and operational environments  

The data of real-world problems more often than not are uncertain - not known exactly at 

the design time. The reasons for data uncertainty include, among others: 

measurement/estimation errors coming from the impossibility to measure/estimate exactly 

the data entries representing characteristics of physical systems/technological 

processes/environmental conditions, etc.; implementation errors coming from the 

impossibility to implement a system exactly as it is designed. Moreover, real-world 

applications cannot ignore the possibility that even a small uncertainty in the data can make 

the nominal optimal solution to the problem completely meaningless from a practical 

viewpoint. Fortunately, there are design techniques that are developed to overcome this 

issue and can be used for CPS reconfiguration and self-adaptation. 

Robust Optimization (RO) offers a methodology capable of detecting cases when data 

uncertainty can heavily affect the quality of the nominal solution, and of generating a robust 

solution immunized against the effect of data and model uncertainty [Ben-Tal – El Ghaoui 

– Nemirovski, 2009]. The uncertain numerical data belonging to a given uncertainty set 

could be separated from the certain problem structure (i.e., goals, constraints, and decision 

variables). In its original form, RO dictates that constraint must be satisfied for all possible 

realizations of uncertainties. However, the more uncertainty we should deal with, the more 

constrained the design will be and the value of the objective function of lesser quality. To 

provide more efficient solutions, RO was extended to take into account the probability of 

meeting a constraint in the form of Chance Constraints. When using CC, we ask RO to 

provide a solution ensuring that the chance of not meeting a constraint is less than ϵ instead 

of meeting the constraints under all circumstances. As some uncertainties are “realized” 

and more information become available, one could prefer to find not an optimal control but 

optimal control policy that leads system reconfiguration based on the realization of the 

uncertainties. Affinely Adjustable Robust Counterpart (AARC) is class of tractable 

approaches of RO policies where the future control depends linearly on the realized 

uncertainties. Note, that when such a policy is realized as a part of system architecture it 

can be viewed as self-adaptation policy and thus this optimization method extends self-

adaptation techniques. For an example of application of robust optimization to system 

design see [Shindin et al, 2014] 

Stochastic programming models assume that uncertain parameters have known 

probability functions. The goal of stochastic programming is to find some policy that is 

feasible for all (or almost all) the possible data instances and maximizes the expectation of 

some function of the decisions and the random variables. More generally, such models are 

formulated, solved analytically or numerically, and analyzed in order to provide useful 

information to a decision-maker. The most widely applied and studied stochastic 

programming models are two-stage (linear) programs. Here the decision maker takes some 

action in the first stage, after which a random events occur, affecting the outcome of the 

first-stage decision, and the second stage decisions are made.  

Two-stage model was originated in the works of Beale [Beale, 1955], and Dantzig 

[Dantzig, 1955]. The classical two-stage linear stochastic programming problems can be 

formulated as: min
𝑥∈𝑋

𝑔(𝑥) = 𝑐𝑇𝑥 + 𝐸[𝑄(𝑥, 𝜉)]    𝑠. 𝑡.  𝐴𝑥 = 𝑏, 𝑥 ≥ 0  where 𝑄(𝑥, 𝜉)  is the 

optimal value of the second-stage problem min
𝑥∈𝑋

𝑄(𝑥, 𝜉) = 𝑞(𝜉)𝑇𝑦    𝑠. 𝑡.  𝑇(𝜉)𝑥 +

𝑊(𝜉)𝑦 = ℎ(𝜉), 𝑦 ≥ 0  The difficulties in solving this problem mainly concern the 
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computation of   which typically represented by the multiple integral, wherein the 

evaluation of the integrand   requires the solution of a linear programming problem (LP). 

To solve the two-stage stochastic problem numerically, one often need to assume that the 

random vector 𝜉 has a finite number of possible realizations, called scenarios, say 𝜉1 … 𝜉𝐾, 

with respective probability masses 𝑝1 … 𝑝𝐾 . Then the expectation in the first-stage 

problem's objective function can be written as the summation. The above numerical 

approach works reasonably well if the number K of scenarios is not too large. In practice 

it might be possible to construct scenarios by eliciting expert's opinions on the future. The 

number of constructed scenarios should be relatively modest so that the obtained 

deterministic equivalent can be solved with reasonable computational effort. Another 

method to reduce the scenario set to a manageable size is by using Monte Carlo simulation. 

Suppose the total number of scenarios is very large or even infinite. Suppose further that 

we can generate a sample 𝜉1 … 𝜉𝑁 of N replications of the random vector 𝜉. Usually the 

sample is assumed to be independent identically distributed. Given a sample, the 

expectation function 𝑄(𝑥, 𝜉) is approximated by the sample average 
1

𝑁
∑ 𝑄(𝑥, 𝜉𝑗)𝑁

𝑗=1   This 

formulation is known as the Sample Average Approximation method. The SAA problem is 

a function of the considered sample and in that sense is random. For a given sample 𝜉1 … 𝜉𝐾 

the SAA problem is of the same form as a two-stage stochastic linear programming 

problem with the scenarios 𝜉1 … 𝜉𝐾 each taken with the same probability 𝑝𝑘 =  
1

𝐾
 . More 

details and algorithms concerning numerical methods can be found in [Ermoliev-Wets, 

1988]. 

The two-stage stochastic programming models have been static in the sense that a 

(supposedly optimal) decision can be made at one point in time, while accounting for 

possible recourse actions after all uncertainty has been resolved. There are many situations 

where one is faced with problems where decisions should be made sequentially at certain 

periods of time based on information available at each time period. Such multi-stage 

stochastic programming problems can be viewed as an extension of two-stage 

programming to a multi-stage setting. Another model extension, similarly to RO, are 

probabilistic (also called chance) constraints [Charnes-Cooper-Symonds, 1958], Miller 

and Wagner [Miller-Wagner, 1965] and Prékopa [Prékopa, 1970].  

 

 

 

The CERBERO framework tool Architecture Optimization Workbench (AOW) 

[Broodney12, Broodney14] is being extended within CERBERO to be able to deal with 

modelling of uncertainties. More details on CERBERO approach and AOW will be 

discussed in Section 4.3 
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3.3 Model-based design space exploration 

Design space exploration (DSE) is the process of searching through different system design 

alternatives. The aim of this process is usually to find some design which outperforms the 

other alternatives. Ideally one would want to find the optimal system design, but this is not 

always feasible. The power to operate on the space of potential design candidates renders 

DSE useful for many engineering tasks, including rapid prototyping, optimization, and 

system integration. The main challenge in DSE arises from the sheer size of the design 

space that must be explored. 

The most challenging problems in design space exploration are managing the solution 

space size and using a cost function which accurately describes what the desired 

performance is of the system. But such challenge becomes even more complex if there is 

uncertainty when modelling the system and its environment. Dealing with such complex-

in-nature space exploration problems is one of the targets of CERBERO. This section 

quickly overviews the two main approaches to this problem.  

One of the natural options to perform DSE is to formulate DSE process as mathematical 

optimization problem, where one should optimize (minimize or maximize) system KPIs 

(objectives) which are functions of design decisions (decision variables) subject to possible 

design options and/or topologies and/or constraints on system KPIs (constraints). 

For DSE purpose, one can separate modern optimization tools in two major categories: 

operations research-oriented (OR) tools (such as Cplex Studio [Cplex] and Gurobi 

[Gurobi]), and system engineering-oriented (SE) tools. OR tools are capable to solve very 

large problems with a huge numbers of decision variables and constraints. But this 

approach requires the domain expert to transform the system model into one of the classes 

of the mathematical optimization problems that are supported by a optimization solver  

As an alternative, the main SE tools are designed for systems engineers to incorporate 

models and perform DSE using a black box / simulation-based optimization. Examples of 

such tools are [ModeFrontier], [ModelCenter], [Isight], [OptiY], [Nexus], [Kimeme], 

[Pacelab Suite], [Pacelab SysArc], [HEEDS MDO], [IOSO], and [Optimus]. These tools 

cannot optimize complex systems with large number of parts and/or big numbers of 

possible topologies by following reasons:  

1. Simulation-based techniques typically require long runtime in case of multiply 

choices. Statistical methods offered by software can't be useful to reduce 

number of possible solution because of combinatorial nature of problem.  

2. Usage of heuristic algorithms decreases the quality of the obtained solution.  
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3. Constraints are checked sequentially. Therefore, it could be hard to find a 

feasible solution, and the first feasible solution could be far from optimum. 

Architecture Optimization Workbench (AOW) [Broodney et al 2012, 2014], [Masin et 

al 2013, 2014] is a single exclusion from this list that utilizes advantages from both 

categories of tools. AOW is further developed within CERBERO and uses a unique 

combination of modelling approach, sound software engineering and state-of-the-art 

mixed integer linear optimization technology. Thus, it is the only existing tool that 

allows multi-objective optimization of system’s architecture topology using the 

strongest existing solvers, such as Cplex [CPLEX]. Using AOW, engineers have the 

ability to evaluate hundreds to millions of potential architecture configurations in a 

matter of hours and to be able to support the architectural decisions with quantifiable 

benefits in driving cost and performance benefits for the program. More details on 

CERBERO approach and AOW will be discussed in Section 4.3 
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4 The CERBERO approach for modelling Cyber-Physical 

Systems 

This section presents the innovations in modelling actually in research within the 

CERBERO project. We organize the sections in the following using the same structure as 

they were reviewed in the state-of-the-art (Section 3). 

4.1 CERBERO novelties on modelling complex systems 

4.1.1 Models of Architecture – CERBERO’s approach to cross-layer modelling 

As demonstrated in this document, the practice of representing digital signal processing 

applications with formal MoC is currently growing, fostered by new system-level 

objectives such as cyber-physical entanglement or autonomic computing.  

Formal MoCs are used to study application properties (liveness, schedulability, 

parallelism...) at a high level, often before implementation details are known. Formal MoCs 

also serve as an input for DSE that evaluates the consequences of software and hardware 

decisions on the final system. The development of formal MoCs is fostered by the design 

of increasingly complex applications requiring early estimates on the -functional behavior 

of the system under test.  

On the architectural side of system development, heterogeneous platforms are becoming 

ever more complex. Languages and models exist to formalize performance-related 

information of a hardware system. They most of the time represent the topology of the 

system in terms of interconnected components and focus on time performance. However, 

the body of work on Models of Architecture (MoAs) is much more limited and less neatly 

delineated than the one on MoCs [PELCAT18].  

The use of a couple MoC-MoA for DSE is illustrated in the following figure representing 

a Y-chart where an application is modelled using a MoC, an architecture is modelled using 

an MoA and application/architecture are redesigned based on early efficiency metrics 

(representing the defined/desired KPIs) extracted from a simulation phase. 

  
Figure 6: Design Space Exploration based on the MoC-MoA couple. 

. 

For self-adaptation purposes, a couple MoC-MoA is also an asset, enabling system self-

scheduling, measured KPI interpretation as well as multi-system management. 
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Consequently, couples MoC-MoA help crossing barriers between design layers and 

provide low-complexity CPS representations at system level. 

As part of the CERBERO project, we are proposing a definition [PELCAT17] for the 

concept of an MoA that recognizes the importance of MoAs in the process of system 

design. 

 

Model of Architecture Definition [PELCAT17]:  

A Model of Architecture (MoA) is an abstract efficiency model of a system 

architecture that provides a unique, reproducible cost computation, 

unequivocally assessing an architecture efficiency cost when supporting the 

activity of an application described with a specified MoC. 

 

While the reproducible cost computation prevents mere block decompositions from being 

considered an MoA, abstraction makes it possible to reuse a unique MoA for several KPIs.  

 

Activity Definition [PELCAT17]:  

Application activity corresponds to the amount of processing and 

communication necessary for accomplishing the requirements of the 

considered application during the considered time slot. Application activity can 

take different shapes and is composed of abstract processing and 

communication tokens. 

 

As an example of a simple MoA, the Linear System-Level Architecture Model (LSLA) has 

proven efficient in modelling the power consumption of a heterogeneous multi-ARM 

system [PELCAT17]. LSLA is representing an additive KPI whose amount depends on 

both computation and communication amounts. The next figure represents a model 

conforming to the LSLA MoA. This model has been learnt automatically from energy 

measurements and reveals that processing elements (PE) on the left consume about 230mW 

when running parts of the test application and PEs on the right consume about 1.2W when 

running parts of the test application. More details on this example are given in 

[PELCAT17]. 

 

 
Figure 7: Example of an architecture model conforming to the LSLA MoA. 

This topic is closely related to the research on KPIs discussed in Section 4.1.4. 
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4.1.2 System level multi-view modelling 

 

The CERBERO modelling methodology (and the tool framework) conceives the model of 

a CPS system as a collection of many interdependent, simpler models, each of which 

abstracts and expresses a viewpoint over the same system-under-design. This way of 

composing a complex system model out of many different views (or aspects) is called 

multi-view modelling, and its basic concepts were discussed already in section 3.1.2. The 

support and research topics for multi-view modelling in CERBERO are specially targeted 

in the DynAA design tool, by TNO [OLIVEIRA13]; the AOW optimization tool, by IBM; 

and in the CERBERO intermediate format. We discuss the DynAA tool in this section. 

AOW is discussed in Section 4.3, and the intermediate format in Section 4.1.3. 

Within the framework tool DynAA, CERBERO investigates how multiple viewpoint 

models (views) can be integrated and combined for producing system analysis results and 

perform system-level simulation. DynAA works with four fundamental viewpoints to 

describe a CPS: 

• the behavioral model, which describes the functional composition of a task and its 

execution sequence;  

• the task model, which captures the parallelism and the event handling;  

• the physical model, which describes the hardware configuration of the 

implementation.  

• the mapping model, which describes a binding between the task and the physical 

models. 

The behavioral model (or viewpoint) uses similar semantics as a UML activity diagram 

[OMG07], by specifying a sequence of operations, called control flows. Unlike UML 

activity diagrams, the DynAA behavioral model does not support fork ()/join () and barrier 

constructs, as these constructs are associated with modelling (dynamic) concurrency and 

covered by the task model. In other words, the behavioral model only captures purely 

sequential behavior inside a task. Figure 8 depicts an example of a behavioral diagram in 

the DynAA modelling language. The behavioral aspect supports different types of 

operations, such as processing operations, communication operations (either send or 

receive) and the delay operations. Operations are annotated with computational load 

information, such as number of integer operations needed, number of floating point 

operations needed, size of communicated messages, etc. 

 
Figure 8: Behavioral model (viewpoint) in DynAA 
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The functional blocks of the behavioral model are grouped into tasks, i.e. parallel 

executable units of code based on the external event handling and concurrency (real-time) 

concerns. Hence, composition is the first way we use to combine modelling views. The 

task model (with the associated behavioral model) captures the programmatic properties of 

the design. Note that no hardware and physical communication related properties are 

incorporated in the model. Tasks coordinate the work by communicating and 

synchronizing with each other, i.e. tasks are interconnected. The connections are called 

links and have flow semantics (Kahn process networks MoC, more details on that at 

[CERBERO_D3.5]). Figure 9 shows the task model example – written using the DynAA 

graphical language – for a very simple application. 

 

 
Figure 9: Task model (viewpoint) in DynAA 

Tasks inherit resource requirements from the blocks in the associated behavioral model. 

Consequently, a task can have a specified memory footprint, a computation load, and 

a set of required hardware resources (a list of device type names), based on the 

exchange of information with another modelling viewpoint.  

The physical model (viewpoint) describes an abstraction of the physical resources of the 

system being modelled. It models the hardware resources that are used to implement/run 

an application. Hardware resources include processing resources (processors, cores), 

communication resources (communication interfaces, communication networks), storage 

resources (memory) and energy resources (power supply, battery). Hardware resources can 

be shared (processor, memory, network) or can be consumed and replenished (energy). 
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Figure 10: Physical model (viewpoint) in DynAA 

Hardware related characteristics start playing a role when the task graph is mapped to the 

physical model: the task network is executed on a physical hardware configuration 

consisting of processing nodes connected by communication links (lower-right graph). So, 

for example the memory footprint value is used to check if a node can accommodate that 

task in its memory. The computational load is used to derive overall calculation time of a 

task mapped onto a node. The mapping relationship between the task model and the 

physical model is very important and may be very complex. For this reason, there is an 

extra view – the mapping model – whose purpose is only to integrate the concepts of the 

other two viewpoints. Integration models (viewpoints) are another way CERBERO 

uses to operationalize multi-view modelling. The DynAA tools can combine the 

information of these multiple viewpoints on the same CPSs to generate simulation code. 

The simulation code is used for design space exploration (see Sections 3.3 and 4.3) and 

deriving system KPIs (see Sections 3.1.4 and 4.1.4).  

In summary, the CERBERO project proposes new techniques on the operationalization of 

multi-view modelling for purposes of system analysis and system simulation. These 

techniques are based on: 

• Composition of modelling views – propagation of component properties 

throughout different views; 

• Combination of modelling views – component properties our of different views, 

are combined to generate a system property, e.g. load of a task is combined with 

the processing capability of a node to derive estimates for the execution time of the 

task. 

• Integration viewpoints – when the interaction between viewpoints is complex, we 

use an extra viewpoint (e.g. the mapping model) to specify the interoperability 

between viewpoints. 

4.1.3 The CERBERO intermediate format : sharing models for increased tool 

interoperability 
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The CERBERO approach for cross-layer (Section 4.1) and multi-view (Section 4.1.2) 

model-based design requires an efficient sharing of system models between design 

tools. Tool interoperability – that is, the efficient sharing of model information between 

different tools – is a major challenge in the design community. As discussed in Section 

3.1.3, the current major approach to this task is to use metamodels to guide the information 

sharing. But this approach does not solve neither the multi-view interoperability problem, 

nor the multi-tool interoperability problem, nor the model maintenance problem. 

CERBERO innovates by proposing a two-layered intermediate format for sharing 

model information between tools (and model views). The CERBERO Intermediate 

Format (CIF) strives for: 

• sharing system model information across different levels of abstraction and 

different modelling views. The modelling of CPSs is intrinsically multi-

disciplinary, multi-view, and involves different abstraction layers. Any unique 

model representation for the whole system that cannot cope with these intrinsic 

characteristics is doomed to fail. The model information should be equally adequate 

and accessible for the representation of several views, to the different tools 

manipulating the model (modelling, analysis, code-generation, runtime, 

validation), and for manipulation at different abstraction levels. In other words, an 

intermediate format that fully exploits the idea of a one-model-with-multiple-views 

on the system model. 

• enabling different tools to access information about a system model with 

minimally incorporating details of the metamodels used in other tools. When a 

tool looks at the system information in the intermediate format, it sees ... only 

information! Tools should be able to read, understand, and manipulate the model 

data with minimal knowledge on how this data is organized in other tools. 

To solve tool interoperability problems, CERBERO proposes an innovative, two-layered 

intermediate format that detaches the model data from the metamodel (schema) structure 

information – see Figure 11. The first layer of CIF is called the instance layer and 

represents the existence of things with properties, independent of any classes, schema, or 

pre-classification to which these things may belong. The second layer of CIF is called 

classes layer and consists of definitions for classes and metamodels (schemas). Classes of 

interest are then defined by sets of properties. The CIF approach is largely based on the 

work of Parsons and Wand [PARSONS] and follows the most modern development in the 

information representation and database community: enables semantic operability instead 

of structure interoperability, builds on non-schema databases and non-schema information 

modelling. 
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Figure 11: Layers of the CERBERO Intermediate Format 

We use an example to explain the innovations introduced by the CERBERO Intermediate 

Format based on the simple system described in Figure 12. The system model describes 

two tasks (Sender and Receiver), whose ports (tx, rx) are connected by a communication 

link. The metamodel to describe such models is part of the CERBERO tool DynAA and 

can be seen in Figure 5, in Section 3.1.3. 

 

 
Figure 12: Example of a model 

 

Classical metamodelling based approaches to 

interoperation between modelling tools use the 

metamodel to derive an intermediate format for 

storing and sharing the information of this model. 

An example could be an XML file as the snippet in 

Figure 13, which represents the sender-to-receiver 

model. Notice that the nodes in this XML file reflect 

the types and properties in the metamodel (task, 

outport, name, etc.). That implies that for another 

tool to read this format, it must understand the 

metamodelling structure of the tool that wrote the 

file. We say in this case, the metamodel information 

is part of the modelling information. 

In the CERBERO Intermediate Format, schema structure (types) are separated from 

entities and properties in two different layers. The idea for the CIF is depicted in Figure 

10, where elements in the instance layer are represented with blue dots, and elements in 

Figure 13: Snippet of an XML file 

representing the model in Figure 11 
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the classes layer are represented with yellow dots. Each element in the instance layer is an 

instance(thing) with properties. Properties can be simple, such as the name of a task (e.g. 

name: task#sender); or mutual, such as the relationship between a link and a source port 

(e.g. from). Note that mutual properties are properties shared by two instances. The 

instances have not yet any classification. Classes are defined by the set of properties an 

instance should have and are declared in the class layer. For example, a link is any instance 

containing the property from and the property to. 

 

 

Figure 10: Representation of the sender-receiver model as concepted in the CERBERO Intermediate 

Format 

The use of such a two-layered intermediate format can help solving many interoperability 

problems. For example (see Figure 10), suppose a second tool models links between tasks 

as communication channels – called channel – in their internal metamodel. Also, this tool 

attributes throughput and noise model to the channel to make its analysis possible. Such 

information – as well as the new classification – can be attributed to the same instance 

node without any prejudice or modification for the other tool. It can also be performed 

without knowledge of other tools. 

The conception and implementation of the CERBERO Intermediate format is still a work 

on-going and CERBERO is still experimenting with different use cases that demonstrate 

the adequacy of this technique to share modelling information between tools.  

In summary, the CERBERO project innovates with a different way to store and share model 

information and metamodels between tools – the CERBERO Intermediate Format. The 

principles of CIF are: 

• Separation of model content information from model structure/schema information 
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• Enable modelling tools to read/enrich a model information without (or with 

minimal) knowledge on the other tools schema/metamodels. 

4.1.4 Modelling Key Performance Indicators 

A KPI is a quantitative, relevant measure – as for example total power consumption, 

reliability, system availability, computational performance, etc. – that can be 

calculated/evaluated over a given system model. The use of KPIs is a common practice in 

the design evaluation and DSE of CPSs (for a grounding discussion see Section 3.1.4). 

Despite its importance, designers mainly define KPIs in an ad-hoc manner, and there 

is no extensive work on formalizing KPIs as well defined and structured models. Such 

lack of formalism hinders much of the potential that KPIs could offer to a design process 

– such as automating parts of the evaluation and analytically understanding the properties 

of a KPI. CERBERO intends to change that following a seminal approach introduced 

recently in [MASIN ET AL., 2013].  

The evaluation of any KPI out of its system model implies that designers must determine 

a way to calculate them. And such calculation mostly can be expressed by means of a 

certain mathematical structure, or as we call an algebra. For example, the total energy 

consumption of a machine(system) is often evaluated by summing up (synchronously) the 

energy consumed by each of its integrating components(sub-systems). Such operation 

could be expressed mathematically as: 

𝐸𝑡𝑜𝑡𝑎𝑙(𝑡) = ∑ 𝐸𝑖(𝑡),

𝑖∈𝑆

 

where S is the set of components of the machine. Notice that this calculation defines a 

certain mathematical structure: it is a summation over a property present (or measurable) 

in each element of a set. 

Now, consider as well the total monetary cost of a machine(system). Such KPI is often 

expressed as: 

𝐶𝑡𝑜𝑡𝑎𝑙(𝑡) = ∑ 𝐶𝑖(𝑡),

𝑖∈𝑆

 

and as such it presents the same mathematical structure as the energy consumption defined 

in the first example. One could argue that both KPIs could be calculated by following the 

same set of operations but applied on a different set of components of the system and/or a 

different set of their properties. It turns out that many other KPIs, in different systems, are 

often defined with the same underlying structure. Take for example the total weight of a 

system, the total availability time (of sequential services), total volume of accumulated 

liquid (in a system of hydraulic tanks), etc.  

Like the KPI family exemplified above, it is possible to identify many others that are 

recurrently used when designing complex systems. Examples of other common families of 

KPIs are: 

• The KPI is a maximum value within a set of properties (values); 

• The KPI is a minimum value within a set of properties (values); 

• The KPI is an average value within a set of properties (values); 

• The KPI is a weighted sum over a set of component’s properties; 
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• The KPI is a weighted sum over paths in a network graph – e.g. network 

throughput.  

KPIs can be much more complex than the summation algebra presented as example above. 

Some will require considering relationships between components, network topology, and 

even dynamic aspects (dependent on time). Despite its complexity, the calculation of a KPI 

falls always into some definable algebra, and often exhibiting a well know calculation 

structure. CERBERO uses this fact to model KPIs in a more formal way. In other words, 

CERBERO proposes ways to formally model and classify KPIs according to the 

mathematical structure they exhibit (or need) in their calculations. This methodology 

is extensively discussed in the deliverable [CERBERO_D3.4]. 

There are many advantages in describing KPIs in a formal way: 

• It enables automated KPI evaluation for many KPI families, where the designer 

just needs to specify part of the data set in the system model over which the 

evaluation should happen.  

• Analysis over a certain KPI family already exposes some properties of the system, 

even when no KPI evaluation is done. For example, additive KPIs such as the ones 

discussed previously cannot decrease in value when new components are added to 

the system (given that there can be no negative property value).   

• Complex KPI calculations can be defined based formal mathematical methods, 

e.g. process algebras. Moreover, the description of KPI families are not limited to 

be done by using mathematical expressions or set of equations. It can also be 

formally described as a set of procedures, algorithms, combination of other KPIs, 

etc. 

• Improved DSE can be achieved for certain KPI families due to their mathematical 

properties. For example, some KPI families can be strictly linear, or monotonic, or 

continuous-by-parts, etc. 

• Combining formal models of KPIs with the CERBERO intermediate format 

(see Section 4.1.3) yields a powerful KPI evaluation tool. The algebras defined for 

many usable KPI families map directly into traversal operations over property 

graphs such the one used to implement CIF. This combination further eases 

automation of the KPI evaluation. 

• Last, but not least, a formal approach to KPIs eases the change of KPIs in 

adaptive processes. During system adaptation, KPIs are often calculated to decide 

how the system should change. But the KPIs used themselves may change 

depending on what is the actual system state and how the system wants to adapt 

(dynamic system goal). 

The CERBERO methodology to model and analyze KPI is discussed in detail in the 

CERBERO deliverable D3.4 [CERBERO_D3.4]. 
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4.2 CERBERO novelties on modelling for reconfiguration and self-

adaptation 

4.2.1 CERBERO novelties on modelling concurrent and distributed behavior  

The CERBERO project has for objective to demonstrate the capacity of formal MoCs to 

efficiently drive CPS design and self-adaptation. MoCs can capture essential properties of 

an application that enable expressing concurrency, causality, event dependency, memory 

locality, etc. And this regardless of the system architecture. 

Separation between application (MoC) and architectural (MoA) concerns should not be 

confused with software (SW) / hardware (HW) separation of concerns. The 

software/hardware separation of concerns is often put forward in the term HW/SW co-

design [HA17]. Software and its languages are not necessarily architecture-agnostic 

representations of an application and may integrate architecture-oriented features if the 

performance is at stake. This is shown for instance by the differences existing between the 

C++ and CUDA languages. While C++ builds an imperative, object-oriented code for a 

processor with a rather centralized instruction decoding and execution, CUDA is tailored 

to GPGPUs with a large set of cores. As a rule of thumb, software qualifies what may be 

reconfigured in a system while hardware qualifies the static part of the system.  

This separation is currently blurred by new hardware paradigms such as Dynamic and 

Partial Reconfiguration (DPR) and Coarse Grain Reconfigurable substrates (CGR), 

paradigms largely exploited within the CERBERO project. 

By using a couple MoC – MoA, the CERBERO project provides new features to the system 

designer such as: 

• Self-adaptation with runtime scheduling benefiting from internal knowledge of 

application concurrency and architecture parallelism, 

• Application-awareness with application parameters crossing the boundary between 

the applicative layer and the system management layer, 

• Hardware reconfiguration at two different levels of granularity (CGR and DPR), 

• Software reconfiguration over multiple processing elements with shared or 

distributed memory, 

• Full data-driven execution where processing elements and sub-systems can be 

asynchronous and processing is triggered by the arrival of data. 

 

The choice of these systems features is motivated by the recent evolutions of CPS 

embedded platforms. Platforms such as the Xilinx Zynq Ultrascale+, Qualcomm 

Snapdragon 845, Intel Arria 10 SoC or Samsung Exynos 9 all integrate a variety of 

processing elements, often exposing reconfigurable hardware or hardware acceleration IPs.  

 

The CERBERO exploited MoCs are detailed in Deliverable D3.5 [CERBERO_D3.5].  

4.2.2 CERBERO novelties on modelling of uncertainty 

Concurrency modelled by flexible MoC, such as PiSDF, can be combined with uncertainty 

modelling techniques for better evaluation, analysis, and, consequentially, design of 
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reconfigurable and self-adaptive CPS that should address different operational conditions, 

both in internal status and external environment. 

 

The CERBERO exploited uncertainty modeling is detailed in Deliverable D4.4 

[CERBERO_D4.4]. 

4.3 Model based design space exploration in CERBERO 

As previous work to CERBERO, a team from IBM Research lab in Haifa, Israel has 

developed an approach that promises to bestow the power of optimization onto Systems 

Engineers [Broodney et al., 2012]. Such effort was realized in a software tool called AOW, 

which is further extended within CERBERO. 

Using AOW, the engineer can model the composition rules (a.k.a. architectural pattern, 

template) of the required system. The functional requirements are modelled, including the 

relations (data flow, energy flow, etc.) between them, and potential mappings to the 

physical components are specified. The physical structure of the system represents the 

composition rules. In the example in Figure 14, a Power Distribution System basic structure 

is depicted. The block PDB represents a multitude of such blocks in a final architecture 

and the connections in the diagram represent the structural requirements and constraints 

for a correctly constructed system. This modelling approach is called “Concise Modelling”. 

 
Figure 14: Example of a SysML diagram for design space exploration in CERBERO tool AOW. The 

systems example is based on a power distribution plant 

Optimization goals are specified in a special “objective” blocks. There is a possibility to 

add constraints (textual) blocks as well. Systems Engineers can develop libraries of 

reusable metrics in extended SysML Parametric Diagrams [Masin et al., 2013 and 2014]. 

In CERBERO, this module will be coupled with the new KPI models. 

All the inputs above are used by the software to generate mathematical optimization 

program in OPL language, to be run in the IBM ILog CPlex Optimization tool, which is 

the market leading Linear Programming solver. Since the goals are multiple and usually 
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conflicting, the solution will propose several solutions along the efficient frontier, meaning 

that for neither solution no goal can be improved without adversely affecting another. 

Patent pending algorithms assure that the options provided are as diverse as possible, thus 

offering the engineer a fresh, previously unseen, aspect on the architecture of the system. 

The results of the optimization are back-annotated into the SysML tool for the engineer to 

view. 

The AOW modelling language (used in the tool) is built on top of standard SysML and 

allows definition of different AOW concepts applying stereotypes to SysML elements. 

These concepts include: 

• viewpoints,  

• mappings between viewpoints, 

• integration features, 

• optimization concepts such as constraints, goals and decision variables, 

• metric libraries, i.e. model independent metric definitions that could be applied top 

AOW model introducing set of constraints on potential system architecture, 

• mappings between model elements and library metrics. 

Viewpoints representing different levels of abstraction or different system concepts. AOW 

currently supporting <functional>, <technical>, <geometrical> and <reliability> 

viewpoints. Affiliation of the element to the specific viewpoint expressed by assigning to 

this element corresponding stereotype. Mappings between different viewpoints expressing 

by adding dependencies between corresponding parts. These dependencies should have 

stereotype <mappedTo> (for mapping between functional and technical viewpoints) and 

<allocatedTo> (for mapping between technical and geometrical viewpoints). Integration 

features includes <catalog> stereotype applying to SysML block, that means that parts of 

this block are tacking from some catalog represented by corresponding Excel table. 

 

 

 

Another integration feature is an <inventory> stereotype, which is applied to SysML part 

or link (dependency, flow or connector) indicates that such part or link represents a set of 

parts or links given by the Excel table. Optimization constraints expressed by SysML 

constraints with special stereotypes and multiplicities on parts and link ends. Decision 

variables expressed by <optimized> stereotype that can be applied to the part or link 

indicating that total number of these parts or links and actual type of these parts or links (in 

case of <catalog> blocks) are determined by optimization, or, if applied to attribute 

indicates that actual value of this attribute determined by optimization. Optimization goals 

expressed by stereotype applied to <optimized> attribute, where value of such attribute is 

equal to some metric or subject to some equality constraint.  

Metric libraries include different types of metrics and expressed by special type of 

parametric diagrams or by special textual language. One can distinguish 3 different types 

of metrics. The first type determines a new sets, parameters and decision variables that 

created during transformation of SysML model to optimization model. The second type 
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determines calculation of compound parameters that performed before the optimization 

process start. The last type determines optimization constraints that defined by some 

compound system metrics (such as energy flow for example). To apply a metric to the 

model one should apply special stereotype to SysML part, link or attribute (for textual 

metrics) or use AOW mapping UI (for diagram metrics).  

Process of translation of AOW model to mathematical optimization model consist of 

several steps. At the first step SysML model as well as Excel tables converted to CIF, the 

CERBERO intermediate format. Next, models in CIF are going through a series of 

transformations that combine Excel and SysML model, combine different viewpoints 

according to rules defined in metric library and build option graph that represent all 

possible system architectures. Afterwards, additional sets of elements are building 

according to corresponding metric rules. It is important to note that parts having attributes 

with same names combined into attribute sets. Attribute set represent classification by 

property concept and can be used in metrics and SysML constraints. At the next step 

calculation of the pre-optimization metrics performed. These defines all optimization 

parameters. Finally, parts of the model in CIF are translated to OPL programming 

language. These includes generation of decision variables, optimization constraints and 

goals.  

CERBERO modelling methodology will extend AOW modelling paradigm in a several 

directions: 

1. The set of AOW viewpoints and mappings will modified and extended to allow 

modelling of CPS aspects in straightforward and concise way. 

2. Modelling language will extend to provide capabilities that allow definition of 

various aspects related to system and environment uncertainty. Namely, this will 

include ability to define: probability distributions, scenarios, uncertainty sources, 

system properties affected by these sources, chance constraints, adjustable and non-

adjustable decision. CERBERO methodology will also enable translation of 

uncertain system and environment aspects mentioned above into computationally 

tractable mathematical optimization problems utilizing state of the art robust and 

stochastic optimization methods. As a starting point for developing such 

methodology we consider [Shindin et al, 2014] 

3. CERBERO methodology will extend AOW modelling language to enable 

definition of continuous dynamic system aspects, including related decision 

variables, constraints and objectives for mathematical optimization problems. This 

will also include automatic translation of corresponding continuous aspects of the 

system into state of the art CLP problems that can be solved by efficient algorithms.  
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5 Implementing the CERBERO modelling approach 

In the CERBERO project, research for the modelling methodology flows directly into the 

tools: research in each innovative topic is adopted by at least one of the tools in the 

CERBERO framework. By adopting the new modelling technique into a tool allows to 

immediately address issues such as the feasibility and automation of the technique in a 

modelling environment. 

Moreover, the validation of each modelling aspect is re-enforced using the tool in use cases. 

During the presentation of results for each use case, CERBERO will also include the 

validation results over using a certain modelling technique or innovations discussed in 

Section 4. 

In Table 3, we summarize per modelling innovation discussed in this document (Section 

4), the tools where the modelling technique is absorbed and operationalized and the use 

case where the modelling aspect will be validated. All the topics mentioned in the table are 

mature in their research and the incorporation of them in the respective tool is already 

started. It must be noticed as well that there is a noticeable predominance from the tools 

AOW and DynAA in the table. This is clear to understand: these two tools are based around 

a complete modelling framework, including modelling language and GUI. For example, 

AOW uses SysML and uses IBM Rational Rose as graphical front-end. Other tools’ 

primary focus is mainly on manipulating the model – analysis, code generation, 

verification, etc. – and as such, only the modelling techniques related to their use are 

incorporated. Further, each tool is also coded with a color to help in their quick 

identification. 

 

Table 3: Per modelling aspect in CERBERO, the tools where they are incorporated and the use cases 

where they are validated. 

 Space 

Exploration 

Smart 

Travelling 

Ocean 

Monitoring 

Modelling complex systems 

Models of 

Architecture 

SPIDER 

Uses MoAs to 

quickly 

evaluate online 

options for the 

deployment of 

an application 

(HW/SW 

partitioning). 

  

Multi-view 

modelling 

SPIDER 

Uses 

combinations 

of hardware 

and software 

DynAA 

System simulation fully built 

on combinations of multi-view 

models: functional, 
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model 

viewpoints. 

 

concurrency, physical, 

network, and mapping. 

 AOW 

Optimization combining 

functional, physical, and 

constraints view. 

Tool 

interoperability 

via CERBERO 

intermediate 

format 

 DynAA 

Exchange of 

model 

information 

with AOW.  

 

PREESM 

(Intended 

work) 

Exchange of 

model 

information 

with Spyder 

and Gaph. 

AOW 

Exchange of 

model 

information 

with DynAA. 

 

CIF – CERBERO Intermediate Format 

library 

This tool is an external library and API especially 

created within the CERBERO project to facilitate 

the adoption of the proposed intermediate format 

by other tools. This API is now used by DynAA 

and AOW (see above), but its use by other tools 

in the CERBERO framework is planned for the 

second half of the project. 

Modelling of 

Key 

Performance 

Indicators 

SPIDER 

KPIs for 

execution time, 

latency, energy 

consumption 

DynAA 

KPIs for 

system 

response time 

(to use), 

battery 

lifetime, user 

satisfaction 

 

PREESM 

KPIs for 

energy 

consumption, 

throughput, 

chip area, 

reconfiguration 

time 

AOW 

KPIs for 

(monetary) 

cost, network 

communication 

and energy 
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Artico3 

KPIs for 

energy 

consumption, 

throughput, 

chip area, 

reconfiguration 

time 

 

Modelling concurrent systems 

Models of 

Computation 

SPIDER 

Demonstrates 

usage of 

Synchronous 

data flow and 

Bulk 

Synchronous 

models 

MECA 

Demonstrates 

the Situated 

Cognitive 

Engineering 

MoC 

 

PREESM 

Demonstrates 

usage of 

PiSDF models 

of computation 

DynAA 

Demonstrates 

uses of discrete 

events, petri 

nets, and 

process 

networks 

models 

 

Artico3 and 

MDC 

Demonstrates 

register 

transfer and 

synchronous 

data flow 

models of 

computation 

  

Design Space Exploration 

Advanced 

Modelling 

Techniques for 

Design Space 

Exploration 

 AOW 

Incorporates 

advanced 

optimizers that 

can deal with 

uncertainty in 

the modelled 

environment. 

Incorporates 

also advanced 
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modelling 

techniques to 

describe 

combinatorial 

problems as 

hybrid fluid-

dynamics 

models – this 

eases the 

optimization 

algorithm. 

DynAA 

Demonstrates 

simulation-

based design 

space 

exploration. 

Modelling for 

simulation 

purposes 

include 

behavioral and 

descriptive 

semantics. 
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