

Information and Communication Technologies (ICT) Programme

Project No: H2020-ICT-2016-1-732105

D3.6: Cross-layer Modelling

Methodology for CPS

Lead Beneficiary: TNO

Workpackage: WP3

Date: 23.04.2018

Distribution - Confidentiality: Public

Abstract:

This document establishes the Modelling Methodology for the CERBERO project.

Research on system modelling in CERBERO outlines the main challenges on modelling

Cyber-Physical Systems, which arise from the intrinsic heterogeneity, concurrency, and

runtime adaptivity of such systems.

© 2017 CERBERO Consortium, All Rights Reserved.

Ref. Ares(2018)4047102 - 31/07/2018

H2020-ICT-2016-1-732105 - CERBERO

WP3 – 3.6: Cross-layer Modelling Methodology for CPSs

Page 2 of 52

Disclaimer
This document may contain material that is copyright of certain CERBERO beneficiaries,

and may not be reproduced or copied without permission. All CERBERO consortium

partners have agreed to the full publication of this document. The commercial use of any

information contained in this document may require a license from the proprietor of that

information.

The CERBERO Consortium is the following:

Num. Beneficiary name Acronym Country

1 (Coord.) IBM Israel – Science and Technology LTD IBM IL

2 Università degli Studi di Sassari UniSS IT

3 Thales Alenia Space Espana, SA TASE ES

4 Università degli Studi di Cagliari UniCA IT

5
Institut National des Sciences Appliquees de

Rennes
INSA FR

6 Universidad Politecnica de Madrid UPM ES

7 Università della Svizzera italiana USI CH

8 Abinsula SRL AI IT

9 Ambiesense LTD AS UK

10
Nederlandse Organisatie Voor Toegepast

Natuurwetenschappelijk Ondeerzoek TNO
TNO NL

11 Science and Technology S&T NL

12 Centro Ricerche FIAT CRF IT

For the CERBERO Consortium, please see the http://cerbero-h2020.eu web-site.

Except as otherwise expressly provided, the information in this document is provided by

CERBERO to members "as is" without warranty of any kind, expressed, implied or

statutory, including but not limited to any implied warranties of merchantability, fitness for

a particular purpose and non infringement of third party’s rights.

CERBERO shall not be liable for any direct, indirect, incidental, special or consequential

damages of any kind or nature whatsoever (including, without limitation, any damages

arising from loss of use or lost business, revenue, profits, data or goodwill) arising in

connection with any infringement claims by third parties or the specification, whether in

an action in contract, tort, strict liability, negligence, or any other theory, even if advised

of the possibility of such damages.

The technology disclosed herein may be protected by one or more patents, copyrights,

trademarks and/or trade secrets owned by or licensed to CERBERO Partners. The partners

reserve all rights with respect to such technology and related materials. Any use of the

protected technology and related material beyond the terms of the License without the prior

written consent of CERBERO is prohibited.

http://cerbero-h2020.eu/

H2020-ICT-2016-1-732105 - CERBERO

WP3 – 3.6: Cross-layer Modelling Methodology for CPSs

Page 3 of 52

Document Authors
The following list of authors reflects the major contribution to the writing of the document.

Name(s) Organization Acronym

Dr. Rer. Nat. Julio A. de Oliveira Filho TNO

Dr. Joost Adriaanse TNO

Dr. Maxime Pelcat INSA

Dr. Francesco Regazonni USI

Dr. Francesca Palumbo UNISS

Dr. Michael Masin IBM

Dr. Evgeny Shindin IBM

Dr. Katiuscia Zedda Abinsula

The list of authors does not imply any claim of ownership on the Intellectual Properties described

in this document. The authors and the publishers make no expressed or implied warranty of any

kind and assume no responsibilities for errors or omissions. No liability is assumed for incidental

or consequential damages in connection with or arising out of the use of the information contained

in this document.

Document Revision History

Date Ver. Contributor (Beneficiary) Summary of main changes

02.01.2018 0.1 Julio Oliveira Suggestion for ToC

Dump of SoA material

22.01.2018 0.2 Julio Oliveira Dump of material – no detailed

organization yet

20.02.2018 0.3 Maxime Pelcat

Francesca Palumbo

Francesco Regazonni

Michael Masin

Evgeny Shindin

Joost Adriaanse

Contributions from partners:

Models of architecture

Hybrid modelling

Optimization

Cross-layer modelling

KPI modelling

Agent based modelling

For each of these topics, state of

the art and contribution of the

CERBERO framework.

12.03.2018 0.4 Julio Oliveira Integration of contributions

Text alignment for readability

H2020-ICT-2016-1-732105 - CERBERO

WP3 – 3.6: Cross-layer Modelling Methodology for CPSs

Page 4 of 52

19.03.2018 0.5 Julio Oliveira Streamlines the text, brings in

introductory paragraphs and

executive summary.

Integration of last contributions

29/03/2018 0.6 Francesca Palumbo

Katiuscia Zedda

Internal Review

11/04/2018 0.7 Julio Oliveira Integration of review comments

Inclusion of section on how to

read the document

Included table of related

requirements

24/04/2018 1.0 Julio Oliveira Final version – beta. Ready for

last internal review.

07/06/2018 1.1 Julio Oliveira Final version – alpha --.

Incorporated all final review

remarks and proposed close

document writing.

H2020-ICT-2016-1-732105 - CERBERO

WP3 – 3.6: Cross-layer Modelling Methodology for CPSs

Page 5 of 52

Table of contents

1 Executive Summary ... 6
1.1 Structure of Document .. 6
1.2 Related Documents... 7
1.3 Related CERBERO requirements .. 7

2 Modelling Cyber-Physical systems .. 9
2.1 The CERBERO Modelling Approach for Cyber-Physical Systems........................ 11

3 Survey on Modelling Cyber-Physical Systems – challenges and current

approaches ... 16
3.1 Modelling complex systems ... 16

3.1.1 Cross-layer modelling .. 16
3.1.2 Multi-view model based design .. 18
3.1.3 Interoperability between model-based design tools ... 20
3.1.4 Modelling Key Performance Indicators ... 22

3.2 Modelling reconfiguration and self-adaptation .. 23
3.2.1 Models of Computation ... 23
3.2.2 Modeling of uncertainty of CPS and operational environments 25

3.3 Model-based design space exploration ... 27

4 The CERBERO approach for modelling Cyber-Physical Systems 29
4.1 CERBERO novelties on modelling complex systems .. 29

4.1.1 Models of Architecture – CERBERO’s approach to cross-layer modelling 29
4.1.2 System level multi-view modelling ... 31
4.1.3 The CERBERO intermediate format : sharing models for increased tool

interoperability ... 33
4.1.4 Modelling Key Performance Indicators ... 37

4.2 CERBERO novelties on modelling for reconfiguration and self-adaptation 39
4.2.1 CERBERO novelties on modelling concurrent and distributed behavior 39
4.2.2 CERBERO novelties on modelling of uncertainty .. 39

4.3 Model based design space exploration in CERBERO .. 40

5 Implementing the CERBERO modelling approach ... 43

6 References ... 47

H2020-ICT-2016-1-732105 - CERBERO

WP3 – 3.6: Cross-layer Modelling Methodology for CPSs

Page 6 of 52

1 Executive Summary

This document establishes the Modelling Methodology for the CERBERO project

[CERBERO17]. Research on system modelling in CERBERO outlines the main

challenges on modelling Cyber-Physical Systems (CPSs) which arise from the intrinsic

heterogeneity, concurrency, and runtime adaptivity of such systems. In this document, we

discuss state-of-the-art techniques that address the modelling challenge. Specific

technologies discussed in here include modelling for different abstraction levels (from

system level to hardware-software implementation), multi-view modelling techniques,

model based design space exploration, and modelling of distributed and concurrent

systems.

The CERBERO project introduces innovations in each one of the topics mentioned above.

In particular, CERBERO’s approach for modelling CPSs builds upon:

an integral modelling for different abstraction levels (cross-layer modelling).

an integral multi-view modelling, simulation and analysis, focused on facilitating the

exchange of information between partial aspect models and on facilitating the

interoperability of design tools.

an efficient model based design space exploration. Including hybrid modelling of

computational and physical systems for improving design space exploration capabilities.

an intermediate format for exchanging model information between tools, targeting increase

in tool interoperability.

a catalog and characterization of models of computation, in order to guide the generation

of new aspect models. Also, on understanding the relationships between different models

of computation to guide model transformation and interoperability between models with

different computational semantics.

Accordingly, this document discusses these innovations and makes an initial assessment of

their impact in the design of CPSs.

1.1 Structure of Document

The suggested way to read this document can

be seen in Figure 1. Section 2 opens the

technical discussion in this document

grounding modelling as a design activity and

part of an engineering process known as

model-based design. Within section 2.1, we

delineate the view and focus of the research

on modelling techniques within the

CERBERO project – we point in a summary

way all the main contributions that are

targeted by the project.

Section 3 reviews the state of the art in

several focal points of the modelling activity

– those corresponding mainly to the research topics within CERBERO. Aim is to make a

Figure 1: Structure of the D3.6 document

H2020-ICT-2016-1-732105 - CERBERO

WP3 – 3.6: Cross-layer Modelling Methodology for CPSs

Page 7 of 52

clear statement on what was available in the literature before CERBERO and what

contributions of the CERBERO project advances this state-of-the-art scene. This section

can be skipped by a reader that is already up-to-date on the most recent advances in

modelling of CPSs.

Section 4 discusses each one of the research topics and modelling techniques that are

further developed in the CERBERO project, with the intention of explaining their

fundamental differences to the state-of-the-art and establishing the value added by their

innovations.

Section 5 connects all proposed modelling technique to the CERBERO tools and use cases

where the respective research and validation efforts take place.

1.2 Related Documents

CERBERO D3.4 – Modelling of Key Performance Indicators [CERBERO_D3.4]

The KPIs can be used to represent the system properties. CERBERO proposes innovative

techniques to model Key Performance Indicators and it uses them to guide other modelling

aspects as well (for example, the choice on Models of Computation). The modelling of KPI

is of such importance within the set of modelling innovations introduced by CERBERO,

that it is detailed in an apart document (D3.4). For this reason in this document (D3.6), we

only highlight the innovations introduced and refer mainly of the technical discussion to

the text in D3.4.

CERBERO D3.5 – Models of Computation [CERBERO_D3.5]

 Similar to the modelling of KPIs, CERBERO proposes many innovations on

cataloging and operating models of computations. Due to the details and importance of

these contributions, Models of Computation is more extensively discussed in an apart

document. For this reason in this document (D3.6), we only h highlight the innovations

introduced and refer mainly of the technical discussion to the text in D3.4.

1.3 Related CERBERO requirements

Deliverable D2.7 of the CERBERO project [CERBERO_D2.7] defines a list of CERBERO

Technical Requirements (CTRs) the project should achieve. Each of them is referenced

with a unique identifier ranging from 0001 to 0020. Research topics related to modelling

activities are covered as summarized in Table 1.

H2020-ICT-2016-1-732105 - CERBERO

WP3 – 3.6: Cross-layer Modelling Methodology for CPSs

Page 8 of 52

Table 1: Links to CERBERO technical requirements

CTR

id
CTR Description Link with the D3.6 document on

Modelling Methodology for CPSs

0001 CERBERO framework SHOULD

increase the level of abstraction at

least by one for HW/SW co-design

and for System Level Design.

Integral cross-layer modelling

Integral multi-view modelling

Key Performance Indicators

0002 CERBERO framework SHOULD

provide interoperability between

cross-layer tools and semantics at the

same level of abstraction.

Integral multi-view modelling

CERBERO Intermediate Format

Key Performance Indicators

0004 CERBERO framework SHOULD

provide software and system in-the-

loop simulation capabilities for

HW/SW co-design and System Level

Design.

Integral multi-view modelling

Model-based design space exploration

0005 CERBERO framework SHOULD

provide multi-viewpoint multi-

objective correct-by-construction

high-level architecture

Integral multi-view modelling

0007 CERBERO framework SHALL define

methodology and SHOULD provide

library of reusable functional and non-

functional KPIs.

Key Performance Indicators

0009 CERBERO SHALL develop

integration methodology and

framework.

This document

0020 CERBERO framework SHALL

provide methodology and tools for

development of adaptive applications.

Key Performance Indicators

Model-based design space exploration

Models of Architecture

H2020-ICT-2016-1-732105 - CERBERO

WP3 – 3.6: Cross-layer Modelling Methodology for CPSs

Page 9 of 52

2 Modelling Cyber-Physical systems

Nowadays, electronic monitoring and automation systems are becoming pervasive in

almost every aspect of human life. Many traditionally human-controlled activities are now

performed by (semi-)autonomous systems that actively sense, decide, and act in place of

the humans. Examples range from self-driving automobiles to swarms of robots and factory

production lines. Such emerging solutions do not work isolated, but they operate within

large scale, complex, dynamical systems. They realize sophisticated signal processing

algorithms in distributed configurations, often with feedback loops where physical

processes affect computations and vice versa. This tight integration of computation and

physical processes makes these systems unique, and we call them Cyber-Physical

Systems or simply CPSs.

The design of CPSs presents particular challenges. Time becomes a matter of

correctness instead of performance, because the time it takes to perform a task may be

critical to the correct functioning of the system. Consider for example a self-driving car

that has to decide about stopping upon or deviating from an approaching obstacle. In CPSs,

many things happen at once, as a complex combination of physical and computational

processes occur in parallel. Measuring and controlling the dynamics of these processes by

orchestrating actions that influence the processes are the main tasks of embedded systems.

Consequently, concurrency is intrinsic in CPS. Many CPS systems are also large in the

number of participating components and often these components are spread apart,

interconnected with very diverse network topologies. During design, the structural aspect

of CPSs become as important as the functional aspects.

USE OF MODELS IN CPS DESIGN - ADVANTAGES

The absolute most accepted approach for the design of CPS is by using models – a strategy

called model-based design. Working with models has major advantages.

Models can be made formal and mathematically/logically sound. We can say definitive

things by using models. For example, we can assert that a model is deterministic, meaning

that given the same inputs it will always produce the same outputs. No such absolute

assertion is possible with any physical realization of a system. If our model is a good

abstraction of the physical system (here, “good abstraction” means that it omits only

unnecessary details), then the definitive assertion about the model gives us confidence in

the physical realization. Such confidence is hugely valuable, particularly for embedded

systems where malfunctions can threaten human lives. Studying models of systems gives

us insight into how those systems will behave in the physical world.

Additionally, using models in modern engineering became very attractive from an

efficiency and economic point of view. Models are faster and cheaper to construct and

easier to manipulate than the real (physical, full-scale) artifacts they describe.

Computer models are used in many engineering disciplines to analyze and predict the

behavior of the systems they describe. Engineers use dedicated software tools to

interactively create and manipulate the models and to simulate/evaluate the behavior of the

systems using various test scenarios. In experimental setups, models can be subjected to

H2020-ICT-2016-1-732105 - CERBERO

WP3 – 3.6: Cross-layer Modelling Methodology for CPSs

Page 10 of 52

stimuli and conditions that would not be feasible or just be too dangerous to carry out with

the real artifact.

Finally, working with models strongly enables design automation. (Formal) Models can

be checked for language conformance, internal consistency and completeness, and

ultimately can be used to analyze the properties of the systems they describe. When these

models are made machine readable, software tools can be constructed to manipulate the

models and to perform automated operations on them like checking the consistency,

constraints and completeness of the model and execute internal model transformations.

This offers a great benefit, since carrying out these operations by humans would be too

error-prone or could simply be not feasible due to the size or complexity of the model.

MODELLING AS A DESIGN ACTIVITY

We call “modelling” to the set of activities related to writing, manipulating, and

transforming models. The task of the designer during the modelling is to express

unambiguously particular properties and behavior of a (sub) system or process we are

interested in while neglect others, which are considered irrelevant for a purpose. Some

aspects are intentionally omitted to keep the models from becoming overly complex and

because the associated component interactions do not play a dominant role in system

behavior. There are various model types such as physical, functional, analytical, causal,

etc.

Modelling is usually carried out by using a modelling language that consists of a set of

modelling primitives with well-defined semantics and composition rules. Using modelling

languages, designers are able to create a machine readable specification of the system

whose consistency and completeness can then be checked automatically. Modelling

languages can be given a textual as well as a graphical representation. Mostly, designers

prefer to work with graphical presentations of a model, such as a set of diagrams. Graphical

metaphors are used that closely match the abstractions used by the designer when

conceptualizing the system. Also, various relations between system components can be

shown explicitly in the diagrams. A mixed form of model presentation is also possible, in

which parts of the model are expressed using graphical elements and other parts are

specified using a textual formalism.

Furthermore, models can be used both for analysis purposes as well as for synthesis

purposes. If the model semantics allow it, important system properties could be derived

early in the development cycle and the designer can reason about and experiment with

alternative designs at the abstraction level of the model. This is an enormous advantage

over traditional development approaches, where the system is often coded first and where

the critical system requirements are met afterwards by tuning and tweaking the system’s

implementation. In some cases, if the semantics of the model is sufficiently complete, the

implementation of the system (software) can be synthesized from the model.

Modelling is an essential activity in the engineering process. Modelling is the way to

operationalize – conceptually and mathematically – certain design steps: design

conception, design evaluation and design adjustment steps, the so called “build –

evaluate – adjust” cycle (Figure 2).

H2020-ICT-2016-1-732105 - CERBERO

WP3 – 3.6: Cross-layer Modelling Methodology for CPSs

Page 11 of 52

Figure 2: Model-based design cycle

In the design conceptualization phase, various models are built describing different

aspect of the design and their interactions. From these models, system level (or

emerging) properties are derived, that can directly be compared to the (non-functional)

requirements. If the result of the evaluation is not satisfactory (structural or parametric)

changes in the design are necessary – which in the model-based design approach means

manipulating the models.

The reduction of the number of design iterations (inside and across the design stages) can

be facilitated by well-informed design decisions, i.e. by reducing the number of incorrect

decisions resulting in “backtracks” in the design process. The model-based approach

directly supports achieving this goal. The models can represent all relevant knowledge we

possessed at a particular point in the design process. With suitable model evaluation tools

information can be derived, that can directly guide the design decision. The same

applies when runtime adaptivity is considered: models lend the system the formal

foundation for applying automated reasoning processes to derive adaptation plans.

As the design progresses, more and more details are added to the models, and hence, a

more accurate evaluation of the design becomes possible. The gradual model refinement

supports iterative design processes, where the iterations work on increasing level of

detail/accuracy. First only a “rough” design is made (e.g. just identifying the main system

components and their connection topology), later the components are detailed and design

on a finer granularity is produced. This process can be continued until implementation

details (e.g. program code) are added, i.e. blurring the border between system design and

implementation.

In the next section, we provide an overview on how the CERBERO project puts together a

model-based methodology for the design of CPSs.

2.1 The CERBERO Modelling Approach for Cyber-Physical Systems

The CERBERO project strongly builds upon a model-based engineering approach.

CERBERO’s modelling methodology builds upon established and validated design

practice used in the design of large, networked, embedded systems. CERBERO does not

H2020-ICT-2016-1-732105 - CERBERO

WP3 – 3.6: Cross-layer Modelling Methodology for CPSs

Page 12 of 52

introduce a completely new engineering process, but instead leverage on the best

methodologies found in the design community and extends and improves many parts of

the existing modelling and design methodologies. In fact, almost every activity and

research topic within the project is related or based on modelling or manipulation of

models. The CERBERO community believes that models may provide an unambiguous,

formal, and mathematical base for designing and realizing complex systems.

Figure 3 depicts how the CERBERO project conceives the design of a system. As for

engineering process, CERBERO aims to transform the traditional V-Model approach

(MBE) by providing a continuous, short-cycled, incremental design environment

(CMBE) enabling early-stage analysis, optimization, fast deployment, and

verification of functional and non-functional requirements.

Figure 3: The V-Model engineering process when using a model-based design approach

First, models are used as early as possible in the business development process to formalize

user requirements into a system specification. In CERBERO, models at the most initial

design phase compose the specification of the system. The following design steps

consists in gradually refining, and enriching these models towards an (automatic)

physical implementation. So, for example, the specification models are enriched for an

early system-level simulation, analysis, and design space exploration – facilitating an

guiding the design decision process. As a result, the requirement level of the models is

refined to a functional and logic breakdown of the system using rich domain-specific

details. HW/SW co-design and synthesis from high-level of abstractions (semi-)automates

the transformation of these models into a physical realization. At all moments, models are

also the base for validation and verification at the same level of details. Each iteration of

the design process tries to deliver a version of the system: at initial cycles, such

deployments are made onto executable models; as more design cycles are added,

deployments include an interoperable setup with models and real system parts (for

example, working with a system-in-the-loop simulator); finally as the design phase

approaches its end, deployments tend to assume form of source code or hardware/physical

components.

The vision above extends and enriches many other design research groups

[PTOL][SEI][VINC12] who build upon similar principles and goals. CERBERO is

H2020-ICT-2016-1-732105 - CERBERO

WP3 – 3.6: Cross-layer Modelling Methodology for CPSs

Page 13 of 52

unique in the several different innovations – many of them related to the modelling

activity – proposed to this engineering process. CERBERO innovations target three

main areas of contributions:

1) modelling and design of complex, large scale, networked systems;

2) modelling concurrency and distributed behavior;

3) efficient methods and tools for model-based design space exploration, using

sophisticated techniques such as modelling of hybrid systems and uncertain

environments.

In the next, we highlight each one of the activities that leads us to a unique approach and

indicates the detailed discussion of each topic within this document.

MODELLING COMPLEX SYSTEMS

CERBERO modelling methodology brings four innovative contributions to the design of

complex systems, as depicted in Figure 4:

(1) CERBERO innovates with a cross-layer modelling approach where model

information flows from more abstract, system-level models into

implementation/domain specific models at HW/SW level. The state of the art in

this topic is presented in Section 3.1.1 and our approach is discussed in Section

4.1.1.

(2) CERBERO build simulation tools based on multi-view (multi-view) modelling

approach. The idea is to conceive a complex system model as a cooperation of

many modelling viewpoints, each of which abstracts the system for a purpose, but

complements the information in the total. The state of the art in this topic is

presented in Section 3.1.2 and our approach is discussed in Section 4.1.2.

(3) CERBERO proposes a new intermediate format to exchange modelling

information between tools. The CERBERO intermediate format is able to solve

many interoperability problems existent in the actual metamodelling oriented

approaches. The state of the art in this topic is presented in Section 3.1.3 and our

approach is discussed in Section 4.1.3.

(4) CERBERO proposes a way to model key performance indicators in such a way

that KPIs can be more easily re-used among projects and tools, and that

enables easier automation of modelling analysis tasks. This topic is extensively

discussed in deliverable D3.4 [CERBERO_D3.4], but as it is related to the

modelling activity, we briefly discuss it in here and highlight our current

achievements. The state of the art in this topic is presented in Section 3.1.4 and our

approach is discussed in Section 4.1.4.

H2020-ICT-2016-1-732105 - CERBERO

WP3 – 3.6: Cross-layer Modelling Methodology for CPSs

Page 14 of 52

Figure 4: Innovations of CERBERO in the modelling of complex systems. (1) Cross-layer modelling,

(2) Multi-view based simulations, (3) easier interoperability between tools due to the CERBERO

Intermediate Format, and (4) modelling of key performance indicators.

MODELLING CONCURRENCY AND DISTRIBUTED BEHAVIOR

Concurrency is an intrinsic characteristic found in most of systems targeted by CERBERO.

Concurrency refers to the ability of different parts of a system to execute out-of-order (or

concurrently) without affecting the outcome. Such characteristic is dominant in modern

systems due to their non-locality, large size, and non-centralized organization.

Modelling concurrent systems has always been a challenge, but much progress has been

made in recent times due to the formalization of communication and behavioral models by

means of models of computation. CERBERO invests in elaborating a catalog of models

of computations and a methodology for choosing an appropriate Model of

Computation (MoC) for the purpose in hand. As an example, suppose a designer is

deciding to model the states of the system and its transitions. A finite state machine (MoC)

is appropriate in this case only if the system has no fork/join mechanisms (or making them

explicit is not relevant for the aspect to be modeled). Otherwise, using Petri-Net formalism

(MoC) would be more adequate on exposing these concurrency mechanisms.

This topic is extensively discussed in deliverable D3.5 [CERBERO_D3.5], but as it is

related to the modelling activity, we briefly discuss it in here and highlight our current

achievements. A short overview of the state of the art in models of computation is given in

Section Error! Reference source not found. and the CERBERO innovations at this area a

re shown in Section Error! Reference source not found..

MODELS AND TOOLS FOR DESIGN SPACE EXPLORATION

One of the strongest benefits of using models is the possibility to explore different design

options at a lower cost without building different prototypes. As discussed before, models

are easier to modify, and their mathematical background allows to reason on the outcome

of their implementations. But design space exploration may be a difficult challenge due to

H2020-ICT-2016-1-732105 - CERBERO

WP3 – 3.6: Cross-layer Modelling Methodology for CPSs

Page 15 of 52

the design space explosion problem – there are too many variants of a model (even small

ones) to be evaluated efficiently.

CERBERO introduces powerful techniques for the design space exploration of

complex system models, considering adaptive behavior, hybrid systems, and

uncertainty intrinsic to the environment where the system must work on. In

CERBERO, we strive to describe large combinatorial problems as hybrid models – mixing

discrete and continuous modelling. Such representation of a design space exploration

problem can speed up the search in the design space. An overview of design space

exploration techniques is given in Section 3.3. Innovations introduced by CERBERO are

discussed in Section 4.3.

USE AND VALIDATION OF THE CERBERO MODELLING METHODOLOGY

Within the CERBERO project, all the innovations proposed for the design and modelling

phase of a system are assimilated into tools that make part of the CERBERO framework.

The introduced techniques are then validated by applying the tools in the design of the

CERBERO use cases. In Section 5, we discuss a mapping between each proposed

innovation, the tools where they are incorporated, and the use case within CERBERO

where they are used and validated.

H2020-ICT-2016-1-732105 - CERBERO

WP3 – 3.6: Cross-layer Modelling Methodology for CPSs

Page 16 of 52

3 Survey on Modelling Cyber-Physical Systems – challenges

and current approaches

This section will review the state of the art in modelling and model-based design in CPSs.

But, as discussing all aspects of modelling could become extremely extensive – going from

modelling languages all the way down to code generation – we will focus on the state of

the art in the topics related to the research inside CERBERO. In this section we frame the

actual development status in the CPSs community, and we use the same topic structure in

Section 4 as a background to show where CERBERO innovates.

3.1 Modelling complex systems

Dealing with complexity is intrinsic in the modelling of CPSs. Such complexity does not

come only from the size of the systems – sometimes CPSs designs can be quite small – but

specially from the multi-disciplinary nature of such systems. CERBERO invests in some

focal points to cope with a complex design:

(1) enable model information to propagate from high levels of abstraction towards

lower levels and implementation in a more natural way – we call that cross-layer modelling

(or design);

(2) enable the model information to propagate between models (viewpoints) in a

more natural way – we see that as an exercise on multi-view model-based design

(3) the exchange of model information in topics (1) and (2) must be operationalized

at tool level to leverage in automation and correctness of model transformation methods

(4) finally, we invest in identifying universal ways to model key performance

indicators, such that results can be more easily compared and reported.

In the following, we discuss the current state of the art in the literature and about these

topics.

3.1.1 Cross-layer modelling

The intrinsic complexity of CPSs is the recipe of their large potentials: interconnecting

what in the past have been separate systems certainly open a plethora of new possibilities

but, at the same time, it comes at the price of increased the design and verification

challenges. At the root of this issue there is our inability to rigorously model the interactions

between the physical and the cyber sides.

The systems modelling language (SysML) [OMG12] provides a general-purpose notation

for systems engineering, being capable of supporting systems that present hybrid

phenomena, where continuous (suitable for physic components) and discrete (suitable for

cyber components) time models mix. This aspect makes SysML suitable to be used in CPS

design environment. SysML can be defined as semi-formal language: it has a formal

syntax, but no formal semantics. The idea is being able to support different types of

systems, by choosing the appropriate semantic. Semantics represent also the instrument to

support co-simulation.

H2020-ICT-2016-1-732105 - CERBERO

WP3 – 3.6: Cross-layer Modelling Methodology for CPSs

Page 17 of 52

The INTO-CPS project [INTOCPS] aims at creating an integrated “tool chain” for

comprehensive Model-Based Design (MBD) of CPS. Among the other features, INTO-

CPS provides support for the holistic modelling of CPS based on a SysML profile

(proposed in the project) with a formal semantics for CPS. Such a profile leverages on a

subset of SysML notations (block definitions and internal block diagrams) and is meant to

target multi- and heterogeneous modelling and co-simulation. INTO-CPS supports co-

simulation leveraging on Functional Mock-up Interface (FMI) standard [FMI14]. FMI

wraps models from different tools and abstractions in Functional Mock-up units (FMUs),

enabling inter-FMU communication and importing into hosting tools. Models are black

boxes, FMU compliances ensures protection of the modelled IPs, as well as,

interoperability.

Other approaches, to provide model simulation, generate code from SysML. Café et al

[CAFE13] address the cross-layer modelling problem by generating co-simulation models

(SystemC-AMS, which provides pre-built MoCs allowing co-simulation of continuous and

discrete components) from different MoCs. Wawrzik et al [WAW15] translate SysML into

SystemC to enable the simulation of the modelled CPS, using specific dialects of System-

C designed to tackle the phenomena being modelled (e.g. hardware/software, network and

propagation, and analog and physical processes).

Another interesting approach to handle the modelling complexity of CPS designs is

provided by the “contract-based” approach [VINC12], which is intended to be used at all

stages of system design (from requirements capture to embedded computing development)

to properly deal with the integration and composition of heterogeneous components and

hybrid environments. Contracts explicitly handle pairs of properties, respectively

representing the assumptions on the environment and the promises of the system under

these assumptions. They can be handled to address non-functional properties during the

system design and to structure communication in a multidisciplinary field as the CPS one,

where teams having diverse backgrounds and different fields of expertise must cooperate.

In this case contracts allow defining clear interfaces between the different disciplines. In

[CANC15], Cancila et al. specified a domain specific language tailored to contract-based

design as a SysML profile to apply contracts over block diagrams.

Ptolemy II [PTOL] provides actor-oriented modelling which supports multiple domains,

being able to model them in the same design workspace. One of the basic assumptions

behind Ptolemy is that modelling the diverse implementation technologies and their

interaction is not reasonable within a homogeneous environment. Heterogeneous

modelling is used to provide cross-layer support. In the Ptolemy environment actors could

be set to various MoCs to represent either physical and/or cyber components. The

interaction among MoCs leverages on the object-oriented principles of polymorphism and

information hiding. For example, using Ptolemy software, a high-level dataflow model of

a signal processing system can be connected to a hardware simulator that in turn may be

connected to a discrete-event model of a communication network.

H2020-ICT-2016-1-732105 - CERBERO

WP3 – 3.6: Cross-layer Modelling Methodology for CPSs

Page 18 of 52

3.1.2 Multi-view model based design

When using model-based design methodologies formal modelling languages can be

defined such that they allow the description of a target system using multiple system views.

A system view, or system aspect, is a way to look at or describe a system as a whole: each

system view has its own associated semantic domain and can provide an exhaustive

description of the system, but only from that point of view. Different groups of users of

a system may consider completely different aspects of that system. For example, an

accounts clerk will have a completely different view of the companies’ administrative

system than its system developer. Using multi-view modelling framework provides

several advantages:

• It allows to capture the different ways separate groups of users of a system view

that system. Each group of users or stakeholders, has its own concerns with respect

to the system to be realized, possibly expressed as a set of requirements and/or key

performance indicators in a semantic domain (e.g. responsiveness, throughput,

energy consumption, dependability, etc.).

• The development of a system typically involves the cooperation of multiple design

disciplines. Each discipline will typically be addressed by only a subset of experts

of the team. Design decisions made in one discipline can have consequences in

other disciplines. Using multi-view models and the relevant analysis tools make

this kind of interdisciplinary design trade-off manageable.

• A multi-view modelling language will improve the usability of the models and offer

greater flexibility in the exploration of design alternatives as the different system

aspects in the model can be manipulated more independently. The models

subsequently can be used for many purposes that can aid a system architect, such

as automatic code generation, design optimizing, system evolution etc.

[KARSAI10]. The interaction between the different models then plays a crucial

role in the design process.

In CERBERO we are developing an integral approach for modelling different

abstraction levels and different views of the CPS. As it will become clearer in the

following sections, we intend leverage on an intermediate format to allow sharing

information among levels and views. One fit to all solution would certainly do not

answer to the peculiarities of the different layers of the system. In the CERBERO

project, different Model of Computations and Models of Architecture (see

Sections 4.2.1) are exploited to represent all the different views, layers, and

components of a CPS. The CERBERO Intermediate Format (CIF) purpose is to

make them talk appropriately leading us toward a cross-layer approach. The goal

is to make the CIF suitable to represent the CPS and the KPIs that describes it

and, at the same time, to make each tool in the CERBERO framework stack (from

the verification layer down to hardware) capable of reading and manipulating

the CIF, and to send feedbacks to other tools through it when needed.

H2020-ICT-2016-1-732105 - CERBERO

WP3 – 3.6: Cross-layer Modelling Methodology for CPSs

Page 19 of 52

• It is a very powerful means to reduce model complexity: it enables designers to

focus on only one system aspect at a time. By starting at the more abstract system

aspects, the system design effort can progress in stages, where at each subsequent

stage more detail of the system components is added, and more component

interrelations are captured by the model.

Many approaches to multi-view modelling can be found it the literature. Some of them

target specific application domains, while others are more general purpose. For example,

RM-ODP (Reference Model-Open Distributed Processing), a reference model introduced

in the eighties as the result of a cooperative effort by the ISO (International Standards

Organization) and ITU-T (International Telecommunication Union) [ISOIEC]. RM-ODP

provides a framework through which analyzing, describing and specifying a system from

different perspectives, called viewpoints.

Another example is the Architecture Analysis and Design Language (AADL), which was

standardized by the Society of Automotive Engineers (SAE) [FEILER12]. AADL defines

a language for describing both the software architecture and the execution platform

architectures of performance-critical, embedded, real-time systems. An AADL model

describes a system as a hierarchy of components with their interfaces and their

interconnections. AADL components fall into two major categories: those that represent

the physical hardware and those representing the application software.

SysML is a general-purpose modelling language for systems engineering that supports the

specification, analysis, design, verification and validation of a broad range of complex

systems, including hardware, software, information, processes, personnel and facilities

[SYSML]. It uses a subset of UML 2.1 and provides additional extensions needed to fulfill

the requirements for the modelling language specified by the SE DSIG (Systems

Engineering Domain Special Interest Group) of the OMG.

In CERBERO we are researching how to write model viewpoints in such a way

that they become complementary: easy to understand and manipulate when used

apart, but expressive and rich when combined. The way CERBERO approaches

such challenges is to develop extra viewpoints (such as a mapping viewpoint)

which is in itself a model on how two other viewpoints should be connected and

combined. This way of modelling is largely used in the CERBERO tool framework

DynAA, and will be explained in more details in Section 4.1.2.

Cross-layer and complementarities of viewpoints are the instruments we foresee to

go beyond the traditional separation of concerns. Most properties and behavior of

the whole CPS are emergent, i.e. they cannot be simplistically inferred from those

of the individual components. Classical separation of concerns, despite being

extremely useful, may lead to miss important interactions, which is why it has to

be enhanced to go beyond boundaries.

H2020-ICT-2016-1-732105 - CERBERO

WP3 – 3.6: Cross-layer Modelling Methodology for CPSs

Page 20 of 52

3.1.3 Interoperability between model-based design tools

The model-based design of large complex CPSs heavily depends on tooling. Tooling is

necessary to create the models and operationalize its manipulation: model checking,

simulation, code generation, modifications, analysis, etc. Moreover, proper model-based

cross-layer and multi-view design – such as in CERBERO – depends on the good

interoperability between these tools: tools should work as much as possible by

enriching, modifying, and transforming the same system model. Constantly (and

manually) re-writing the same models every time a new tool is needed leads to errors and

misinterpretations.

Providing a common base – or intermediate format – for sharing models between

tools is the key to interoperability, but also a difficult challenge. Interoperability means

that the information from one model should be accessible, transferable, and possible

modifiable to/from other models (and their view points). This section, gives a short

overview on the state of the art on representing and exchanging information between tools.

In literature, the most established approach for representing model information is the use

of metamodels. A metamodel defines formally the concepts allowed to be present in

the model and the rules and relationships between these concepts. In other words,

metamodels provide a formal organization to the information in a model. In the literature,

the most well-known frameworks to describe metamodels (and automatically generate

modelling tools) are the Universal Modelling Language (UML)[UML] and its many flavors

(e.g. SYSML]), the Eclipse Modelling Framework [EMF], MetaCase's GOPRR [VLAD12]

[KERN11] [METAEDIT], and [GME]. UML can also be used as metamodelling

languages, but this is not a very common practice.

As an example, we depict in Figure 5 a simplified version

for the metamodel of the task view in the CERBERO

framework tool DynAA (see section 4.1.2 for more details

on the task or functional view). The task view represents the

functionality and process level concurrency in the system.

Such a metamodel allows a designer to produce a whole

family of models, each of which describing the tasks in a

system and their input/output ports, and the links

representing communication between the tasks. If a model

conforms to the metamodel, such as the example above, it

can be represented by a graph. The nodes of this graph are

the concepts allowed in the model by the metamodel,

whereas the edges of the graph describe the relationships

between these concepts.

The metamodel approach is very strong and valuable. When a

metamodel is known, we can build tools to collect, organize,

store, and manipulate the information of a model. By

traversing the model graph, a tool can 'understand' the model,

access its concepts and check which are the specific relationships in the model. The

metamodel approach became specially strong and important because it enabled the

automated generation of design tools. Given a metamodel, it is possible to automatically

Figure 5: Metamodel for the

task view in the CERBERO

framework tool DynAA

H2020-ICT-2016-1-732105 - CERBERO

WP3 – 3.6: Cross-layer Modelling Methodology for CPSs

Page 21 of 52

generate modelling tools, formal verification tools, code generators, analysis tools, and

simulators for all the family of models that conform to the metamodel.

Despite all the advantages of the metamodelling approach, it faces serious challenges in

three situations related to the interoperability of tools [PARSONS]:

1. The multi-view interoperability problem: The complete system model has to be

defined by many views (see explanations in sections 3.1.2 and 4.1.2). Creating a

modelling framework flexible enough to accommodate all views and potentially

new (not yet considered ones) is what we call the multi-view interoperability

problem.

2. The multi-tool interoperability problem: The system model (or part of it) must

be shared by many generic tools. They reflect the multi-view problem in a tool

operational environment.

3. The model maintenance problem: The system model must be consistent and

maintained through evolving versions of the metamodel, evolving versions of the

intermediate/persistence format, and multi-versions of the tools.

All three situations are natural on the design of CPSs and therefore on the field of

innovation within CERBERO. Proposed approaches to solve these problems are not

successful and only partially alleviate the problems. Table 2 shows, for each

interoperability problem, the unaddressed challenges:

Table 2: Unsolved interoperability problems when using metamodels

 Multi-view

interoperability

problem

Multi-tool interoperability

problem

Model

maintenance

problem

Unified

metamodels

Model

information used

by different views

are either

duplicated –

generating several

data management

problems – or

kept in one of the

views, what

forces other views

to incorporate

knowledge about

other

metamodels.

Tools are forced to comply to a

large, not flexible enough

standard. It creates mostly

adoption barriers.

Also, tools trying to

read/understand an

intermediate format are often

pushed to be compliant to all

the metamodels instead of only

the part that is interesting for

their modelling purposes

Evolving the

metamodel of

one view is

likely to affect

other

metamodels.

Independent

metamodels

per view

Relies strongly on

tool automation to

make it easy

dealing with so

many different

metamodels.

Tool developers are resilient to

implement details of third-party

metamodels in their tools if

they do not see the market

payoff

No unified

method to

describe

versioning in

different

metamodels.

H2020-ICT-2016-1-732105 - CERBERO

WP3 – 3.6: Cross-layer Modelling Methodology for CPSs

Page 22 of 52

3.1.4 Modelling Key Performance Indicators

Adopting a cross-layer and multi-view modelling framework (see Sections 3.1.1 and 3.1.2)

provides rich capabilities to analyzing, communicating, and documenting design choices;

but this is merely the first step. When realizing a system, designers often have a very large

space of possible alternatives. The selection of the most suitable alternative is usually a

multi-objective problem, which aims at identifying the system capable of globally

maximizing the design goals. It becomes necessary to efficiently explore alternatives and

evaluate the design alternatives.

Such exploration can also occur in real time, in which the system searches during runtime

for a more adapted or appropriate configuration. Such feature ultimately enables adaptivity,

a fundamental requirement for current and future generations of CPSs. Ideally, design

alternatives should be characterized in such a way that the derived properties should

directly be comparable to key performance indicators (KPIs).

KPIs are a well-known concept from economics and management [ROUB13] [ADEL09],

where are used to evaluate the performance of an organization. A similar concept can be

applied to CPSs. KPIs must be selected in a way that they will define the goal of the

systems. KPI measures are mainly the output of design evaluation and will allow to

quantify the discrepancies between the system goals and the actual or estimated

performance. Along the design process and during the whole lifetime of the system the

system designers (and the adaptive systems themselves) must make informed decisions

when selecting the most “promising” design/configuration alternative. The selection

should be driven by quantified properties of the design. These properties are originated in

the design of components, compositions, parameters; and in the execution scenarios, i.e.

the interactions between the systems designed and its embedding environment.

The CERBERO project proposes (and investigates) new ways to define the

intermediate format between tools to solve the interoperability problems

mentioned above. In summary, the CERBERO project propose a two-layered

intermediate format that decouples the model information (content) from the

way the information is represented (schema). This approach is innovative,

follows modern developments in non-schema databases, and promises to bring

advantages in three aspects:

1. model information can be easier shared by multiple views;

2. tools do not have to deal with metamodels of other tools; and

3. information representation is ready for dealing with versioning

systems.

We detail the CERBERO intermediate format proposal, and its relation to the

modelling activity in section 4.2.2.

H2020-ICT-2016-1-732105 - CERBERO

WP3 – 3.6: Cross-layer Modelling Methodology for CPSs

Page 23 of 52

The model-based engineering approach formalizes all relevant aspects of the design in

models and thus gives the formal foundation for deriving the emerging properties of the

design. Frequently, the quantified design properties are aggregated in a “design quality

measure” and used to guide a constrained design optimization process. The model-based

derivation of the design properties is just a manifestation of old and established engineering

approach, namely use models to predict system behavior [MORIN09].

The model-based derivation of design properties and its use in “evolving” the system go

beyond strictly design-time activities [KARSAI10]. The driving forces behind system

evolution are “keeping operational” or “making it better” the system implemented as

expressed in a quality measure. In runtime reconfigurable designs the calculation of the

emerging system properties is carried out during the nominal operation of the systems to

detect anomalies and consequently initiate and guide redesign (optimization) in runtime.

Due to the possibly prohibitively large design space and the complexity of the design

process the scope of the runtime redesign (i.e. the monitored set of key performance

indicators and the investigated design alternatives) should be constrained [STRE06].

3.2 Modelling reconfiguration and self-adaptation

Reconfiguration and self-adaptation is based on modelling of concurrency and intrinsic

uncertainty in behavior of CPS and its environment. In the next sections we describe state

of the art in their modelling.

3.2.1 Models of Computation

Complexity in CPSs also come due to the intrinsic concurrency characteristic of these

systems – typically distributed, networked, dynamic, and adaptive. Though many progress

has been made in the field of designing concurrent systems, many other open questions

remain, especially on the analyzability and expressiveness of concurrent models.

CERBERO’s research tries to cope with modelling concurrency based on models of

computation and agent-based software. We discuss the state of art in these topics in the

following.

The main innovation of CERBERO is to use KPI analysis to manage both the

design phase and the intelligent adaptation of complex cyber-physical systems.

We start from model based KPI analysis as a way to guide the exploration of

design alternatives. Then we extend the models of KPIs to guide real time

adaptation of the system. Models of KPI in CERBERO will be cross-layer, namely

that each model can be refined at a different level of abstraction, or mapped to a

different layer, of the system. This would allow to trade the precision of the KPI

evaluation with the required adaptation performance of the system.

H2020-ICT-2016-1-732105 - CERBERO

WP3 – 3.6: Cross-layer Modelling Methodology for CPSs

Page 24 of 52

A Model of Computation (MoC) [LEE98] defines the semantics of a computational system

model, i.e. which components the model can contain, how they can be interconnected, and

how they interact. Every programming language has at least one (often several) underlying

MoCs. A MoC describes a method to specify, simulate and/or execute algorithms. MoCs

were much promoted by the Ptolemy and Ptolemy II projects from the University of

California Berkeley. In [CHANG97], Chang, et al. explain how several MoCs can be

combined in the Ptolemy tool. MoCs can serve three different purposes:

1. Specification: A specification model focuses on clearly expressing the

functionalities of a system. It is especially useful in standards documents.

2. Simulation: A simulation model is used to extract knowledge of a system when the

current implementation is not available. It may be much simpler than the final code

and is focused precisely on the features of interest.

3. Execution: An execution model must contain all the information for the final code

execution.

The definition of MoCs is broad and covers many models that have emerged in the last few

decades. The notion of a MoC is close to the notion of a programming paradigm in the

computer programming and compilation world [VANROY 09]. Arguably, the most

successful MoC families, in terms of adoption in academic and industry worlds are

[PELCAT13]:

• Finite State Machine MoCs (FSM) in which states are defined in addition to rules

for transitioning between two states.

• Process Network MoCs (PN) in which concurrent and independent modules known

as processes communicate ordered tokens (data quanta) through First-In First-Out

(FIFO) channels.

• Discrete Event MoCs (DE) in which modules react to events by producing events.

• Functional MoCs in which a program does not have a preset initial state but uses

the evaluation result of composed mathematical functions.

• Petri Nets which contain unordered channels named transitions, with multiple

writers and readers and local states called places, storing data tokens.

• Synchronous MoCs in which, like in Discrete Events, modules react to events by

producing new events but contrary to Discrete Events, time is not explicit and only

the simultaneity of events and causality are important.

Within the CERBERO project, several studies are on-going that aim at extending

MoCs to provide CPS-friendly features. These studies include for instance the

extension of dataflow to represent persistent states that hinder parallelism and

limit system scalability, integrating some information on system non-functional

properties into a MoC to cross the barrier between requirements and abstract

application modelling, enabling “moldable” parameters that can deeply change

the nature of an application while still making design-time analysis and runtime

management possible. More details on the CERBERO evolutions of MoCs are

given in deliverable D3.5.

H2020-ICT-2016-1-732105 - CERBERO

WP3 – 3.6: Cross-layer Modelling Methodology for CPSs

Page 25 of 52

3.2.2 Modeling of uncertainty of CPS and operational environments

The data of real-world problems more often than not are uncertain - not known exactly at

the design time. The reasons for data uncertainty include, among others:

measurement/estimation errors coming from the impossibility to measure/estimate exactly

the data entries representing characteristics of physical systems/technological

processes/environmental conditions, etc.; implementation errors coming from the

impossibility to implement a system exactly as it is designed. Moreover, real-world

applications cannot ignore the possibility that even a small uncertainty in the data can make

the nominal optimal solution to the problem completely meaningless from a practical

viewpoint. Fortunately, there are design techniques that are developed to overcome this

issue and can be used for CPS reconfiguration and self-adaptation.

Robust Optimization (RO) offers a methodology capable of detecting cases when data

uncertainty can heavily affect the quality of the nominal solution, and of generating a robust

solution immunized against the effect of data and model uncertainty [Ben-Tal – El Ghaoui

– Nemirovski, 2009]. The uncertain numerical data belonging to a given uncertainty set

could be separated from the certain problem structure (i.e., goals, constraints, and decision

variables). In its original form, RO dictates that constraint must be satisfied for all possible

realizations of uncertainties. However, the more uncertainty we should deal with, the more

constrained the design will be and the value of the objective function of lesser quality. To

provide more efficient solutions, RO was extended to take into account the probability of

meeting a constraint in the form of Chance Constraints. When using CC, we ask RO to

provide a solution ensuring that the chance of not meeting a constraint is less than ϵ instead

of meeting the constraints under all circumstances. As some uncertainties are “realized”

and more information become available, one could prefer to find not an optimal control but

optimal control policy that leads system reconfiguration based on the realization of the

uncertainties. Affinely Adjustable Robust Counterpart (AARC) is class of tractable

approaches of RO policies where the future control depends linearly on the realized

uncertainties. Note, that when such a policy is realized as a part of system architecture it

can be viewed as self-adaptation policy and thus this optimization method extends self-

adaptation techniques. For an example of application of robust optimization to system

design see [Shindin et al, 2014]

Stochastic programming models assume that uncertain parameters have known

probability functions. The goal of stochastic programming is to find some policy that is

feasible for all (or almost all) the possible data instances and maximizes the expectation of

some function of the decisions and the random variables. More generally, such models are

formulated, solved analytically or numerically, and analyzed in order to provide useful

information to a decision-maker. The most widely applied and studied stochastic

programming models are two-stage (linear) programs. Here the decision maker takes some

action in the first stage, after which a random events occur, affecting the outcome of the

first-stage decision, and the second stage decisions are made.

Two-stage model was originated in the works of Beale [Beale, 1955], and Dantzig

[Dantzig, 1955]. The classical two-stage linear stochastic programming problems can be

formulated as: min
𝑥∈𝑋

𝑔(𝑥) = 𝑐𝑇𝑥 + 𝐸[𝑄(𝑥, 𝜉)] 𝑠. 𝑡. 𝐴𝑥 = 𝑏, 𝑥 ≥ 0 where 𝑄(𝑥, 𝜉) is the

optimal value of the second-stage problem min
𝑥∈𝑋

𝑄(𝑥, 𝜉) = 𝑞(𝜉)𝑇𝑦 𝑠. 𝑡. 𝑇(𝜉)𝑥 +

𝑊(𝜉)𝑦 = ℎ(𝜉), 𝑦 ≥ 0 The difficulties in solving this problem mainly concern the

H2020-ICT-2016-1-732105 - CERBERO

WP3 – 3.6: Cross-layer Modelling Methodology for CPSs

Page 26 of 52

computation of which typically represented by the multiple integral, wherein the

evaluation of the integrand requires the solution of a linear programming problem (LP).

To solve the two-stage stochastic problem numerically, one often need to assume that the

random vector 𝜉 has a finite number of possible realizations, called scenarios, say 𝜉1 … 𝜉𝐾,

with respective probability masses 𝑝1 … 𝑝𝐾 . Then the expectation in the first-stage

problem's objective function can be written as the summation. The above numerical

approach works reasonably well if the number K of scenarios is not too large. In practice

it might be possible to construct scenarios by eliciting expert's opinions on the future. The

number of constructed scenarios should be relatively modest so that the obtained

deterministic equivalent can be solved with reasonable computational effort. Another

method to reduce the scenario set to a manageable size is by using Monte Carlo simulation.

Suppose the total number of scenarios is very large or even infinite. Suppose further that

we can generate a sample 𝜉1 … 𝜉𝑁 of N replications of the random vector 𝜉. Usually the

sample is assumed to be independent identically distributed. Given a sample, the

expectation function 𝑄(𝑥, 𝜉) is approximated by the sample average
1

𝑁
∑ 𝑄(𝑥, 𝜉𝑗)𝑁

𝑗=1 This

formulation is known as the Sample Average Approximation method. The SAA problem is

a function of the considered sample and in that sense is random. For a given sample 𝜉1 … 𝜉𝐾

the SAA problem is of the same form as a two-stage stochastic linear programming

problem with the scenarios 𝜉1 … 𝜉𝐾 each taken with the same probability 𝑝𝑘 =
1

𝐾
 . More

details and algorithms concerning numerical methods can be found in [Ermoliev-Wets,

1988].

The two-stage stochastic programming models have been static in the sense that a

(supposedly optimal) decision can be made at one point in time, while accounting for

possible recourse actions after all uncertainty has been resolved. There are many situations

where one is faced with problems where decisions should be made sequentially at certain

periods of time based on information available at each time period. Such multi-stage

stochastic programming problems can be viewed as an extension of two-stage

programming to a multi-stage setting. Another model extension, similarly to RO, are

probabilistic (also called chance) constraints [Charnes-Cooper-Symonds, 1958], Miller

and Wagner [Miller-Wagner, 1965] and Prékopa [Prékopa, 1970].

The CERBERO framework tool Architecture Optimization Workbench (AOW)

[Broodney12, Broodney14] is being extended within CERBERO to be able to deal with

modelling of uncertainties. More details on CERBERO approach and AOW will be

discussed in Section 4.3

H2020-ICT-2016-1-732105 - CERBERO

WP3 – 3.6: Cross-layer Modelling Methodology for CPSs

Page 27 of 52

3.3 Model-based design space exploration

Design space exploration (DSE) is the process of searching through different system design

alternatives. The aim of this process is usually to find some design which outperforms the

other alternatives. Ideally one would want to find the optimal system design, but this is not

always feasible. The power to operate on the space of potential design candidates renders

DSE useful for many engineering tasks, including rapid prototyping, optimization, and

system integration. The main challenge in DSE arises from the sheer size of the design

space that must be explored.

The most challenging problems in design space exploration are managing the solution

space size and using a cost function which accurately describes what the desired

performance is of the system. But such challenge becomes even more complex if there is

uncertainty when modelling the system and its environment. Dealing with such complex-

in-nature space exploration problems is one of the targets of CERBERO. This section

quickly overviews the two main approaches to this problem.

One of the natural options to perform DSE is to formulate DSE process as mathematical

optimization problem, where one should optimize (minimize or maximize) system KPIs

(objectives) which are functions of design decisions (decision variables) subject to possible

design options and/or topologies and/or constraints on system KPIs (constraints).

For DSE purpose, one can separate modern optimization tools in two major categories:

operations research-oriented (OR) tools (such as Cplex Studio [Cplex] and Gurobi

[Gurobi]), and system engineering-oriented (SE) tools. OR tools are capable to solve very

large problems with a huge numbers of decision variables and constraints. But this

approach requires the domain expert to transform the system model into one of the classes

of the mathematical optimization problems that are supported by a optimization solver

As an alternative, the main SE tools are designed for systems engineers to incorporate

models and perform DSE using a black box / simulation-based optimization. Examples of

such tools are [ModeFrontier], [ModelCenter], [Isight], [OptiY], [Nexus], [Kimeme],

[Pacelab Suite], [Pacelab SysArc], [HEEDS MDO], [IOSO], and [Optimus]. These tools

cannot optimize complex systems with large number of parts and/or big numbers of

possible topologies by following reasons:

1. Simulation-based techniques typically require long runtime in case of multiply

choices. Statistical methods offered by software can't be useful to reduce

number of possible solution because of combinatorial nature of problem.

2. Usage of heuristic algorithms decreases the quality of the obtained solution.

H2020-ICT-2016-1-732105 - CERBERO

WP3 – 3.6: Cross-layer Modelling Methodology for CPSs

Page 28 of 52

3. Constraints are checked sequentially. Therefore, it could be hard to find a

feasible solution, and the first feasible solution could be far from optimum.

Architecture Optimization Workbench (AOW) [Broodney et al 2012, 2014], [Masin et

al 2013, 2014] is a single exclusion from this list that utilizes advantages from both

categories of tools. AOW is further developed within CERBERO and uses a unique

combination of modelling approach, sound software engineering and state-of-the-art

mixed integer linear optimization technology. Thus, it is the only existing tool that

allows multi-objective optimization of system’s architecture topology using the

strongest existing solvers, such as Cplex [CPLEX]. Using AOW, engineers have the

ability to evaluate hundreds to millions of potential architecture configurations in a

matter of hours and to be able to support the architectural decisions with quantifiable

benefits in driving cost and performance benefits for the program. More details on

CERBERO approach and AOW will be discussed in Section 4.3

H2020-ICT-2016-1-732105 - CERBERO

WP3 – 3.6: Cross-layer Modelling Methodology for CPSs

Page 29 of 52

4 The CERBERO approach for modelling Cyber-Physical

Systems

This section presents the innovations in modelling actually in research within the

CERBERO project. We organize the sections in the following using the same structure as

they were reviewed in the state-of-the-art (Section 3).

4.1 CERBERO novelties on modelling complex systems

4.1.1 Models of Architecture – CERBERO’s approach to cross-layer modelling

As demonstrated in this document, the practice of representing digital signal processing

applications with formal MoC is currently growing, fostered by new system-level

objectives such as cyber-physical entanglement or autonomic computing.

Formal MoCs are used to study application properties (liveness, schedulability,

parallelism...) at a high level, often before implementation details are known. Formal MoCs

also serve as an input for DSE that evaluates the consequences of software and hardware

decisions on the final system. The development of formal MoCs is fostered by the design

of increasingly complex applications requiring early estimates on the -functional behavior

of the system under test.

On the architectural side of system development, heterogeneous platforms are becoming

ever more complex. Languages and models exist to formalize performance-related

information of a hardware system. They most of the time represent the topology of the

system in terms of interconnected components and focus on time performance. However,

the body of work on Models of Architecture (MoAs) is much more limited and less neatly

delineated than the one on MoCs [PELCAT18].

The use of a couple MoC-MoA for DSE is illustrated in the following figure representing

a Y-chart where an application is modelled using a MoC, an architecture is modelled using

an MoA and application/architecture are redesigned based on early efficiency metrics

(representing the defined/desired KPIs) extracted from a simulation phase.

Figure 6: Design Space Exploration based on the MoC-MoA couple.

.

For self-adaptation purposes, a couple MoC-MoA is also an asset, enabling system self-

scheduling, measured KPI interpretation as well as multi-system management.

H2020-ICT-2016-1-732105 - CERBERO

WP3 – 3.6: Cross-layer Modelling Methodology for CPSs

Page 30 of 52

Consequently, couples MoC-MoA help crossing barriers between design layers and

provide low-complexity CPS representations at system level.

As part of the CERBERO project, we are proposing a definition [PELCAT17] for the

concept of an MoA that recognizes the importance of MoAs in the process of system

design.

Model of Architecture Definition [PELCAT17]:

A Model of Architecture (MoA) is an abstract efficiency model of a system

architecture that provides a unique, reproducible cost computation,

unequivocally assessing an architecture efficiency cost when supporting the

activity of an application described with a specified MoC.

While the reproducible cost computation prevents mere block decompositions from being

considered an MoA, abstraction makes it possible to reuse a unique MoA for several KPIs.

Activity Definition [PELCAT17]:

Application activity corresponds to the amount of processing and

communication necessary for accomplishing the requirements of the

considered application during the considered time slot. Application activity can

take different shapes and is composed of abstract processing and

communication tokens.

As an example of a simple MoA, the Linear System-Level Architecture Model (LSLA) has

proven efficient in modelling the power consumption of a heterogeneous multi-ARM

system [PELCAT17]. LSLA is representing an additive KPI whose amount depends on

both computation and communication amounts. The next figure represents a model

conforming to the LSLA MoA. This model has been learnt automatically from energy

measurements and reveals that processing elements (PE) on the left consume about 230mW

when running parts of the test application and PEs on the right consume about 1.2W when

running parts of the test application. More details on this example are given in

[PELCAT17].

Figure 7: Example of an architecture model conforming to the LSLA MoA.

This topic is closely related to the research on KPIs discussed in Section 4.1.4.

H2020-ICT-2016-1-732105 - CERBERO

WP3 – 3.6: Cross-layer Modelling Methodology for CPSs

Page 31 of 52

4.1.2 System level multi-view modelling

The CERBERO modelling methodology (and the tool framework) conceives the model of

a CPS system as a collection of many interdependent, simpler models, each of which

abstracts and expresses a viewpoint over the same system-under-design. This way of

composing a complex system model out of many different views (or aspects) is called

multi-view modelling, and its basic concepts were discussed already in section 3.1.2. The

support and research topics for multi-view modelling in CERBERO are specially targeted

in the DynAA design tool, by TNO [OLIVEIRA13]; the AOW optimization tool, by IBM;

and in the CERBERO intermediate format. We discuss the DynAA tool in this section.

AOW is discussed in Section 4.3, and the intermediate format in Section 4.1.3.

Within the framework tool DynAA, CERBERO investigates how multiple viewpoint

models (views) can be integrated and combined for producing system analysis results and

perform system-level simulation. DynAA works with four fundamental viewpoints to

describe a CPS:

• the behavioral model, which describes the functional composition of a task and its

execution sequence;

• the task model, which captures the parallelism and the event handling;

• the physical model, which describes the hardware configuration of the

implementation.

• the mapping model, which describes a binding between the task and the physical

models.

The behavioral model (or viewpoint) uses similar semantics as a UML activity diagram

[OMG07], by specifying a sequence of operations, called control flows. Unlike UML

activity diagrams, the DynAA behavioral model does not support fork ()/join () and barrier

constructs, as these constructs are associated with modelling (dynamic) concurrency and

covered by the task model. In other words, the behavioral model only captures purely

sequential behavior inside a task. Figure 8 depicts an example of a behavioral diagram in

the DynAA modelling language. The behavioral aspect supports different types of

operations, such as processing operations, communication operations (either send or

receive) and the delay operations. Operations are annotated with computational load

information, such as number of integer operations needed, number of floating point

operations needed, size of communicated messages, etc.

Figure 8: Behavioral model (viewpoint) in DynAA

H2020-ICT-2016-1-732105 - CERBERO

WP3 – 3.6: Cross-layer Modelling Methodology for CPSs

Page 32 of 52

The functional blocks of the behavioral model are grouped into tasks, i.e. parallel

executable units of code based on the external event handling and concurrency (real-time)

concerns. Hence, composition is the first way we use to combine modelling views. The

task model (with the associated behavioral model) captures the programmatic properties of

the design. Note that no hardware and physical communication related properties are

incorporated in the model. Tasks coordinate the work by communicating and

synchronizing with each other, i.e. tasks are interconnected. The connections are called

links and have flow semantics (Kahn process networks MoC, more details on that at

[CERBERO_D3.5]). Figure 9 shows the task model example – written using the DynAA

graphical language – for a very simple application.

Figure 9: Task model (viewpoint) in DynAA

Tasks inherit resource requirements from the blocks in the associated behavioral model.

Consequently, a task can have a specified memory footprint, a computation load, and

a set of required hardware resources (a list of device type names), based on the

exchange of information with another modelling viewpoint.

The physical model (viewpoint) describes an abstraction of the physical resources of the

system being modelled. It models the hardware resources that are used to implement/run

an application. Hardware resources include processing resources (processors, cores),

communication resources (communication interfaces, communication networks), storage

resources (memory) and energy resources (power supply, battery). Hardware resources can

be shared (processor, memory, network) or can be consumed and replenished (energy).

H2020-ICT-2016-1-732105 - CERBERO

WP3 – 3.6: Cross-layer Modelling Methodology for CPSs

Page 33 of 52

Figure 10: Physical model (viewpoint) in DynAA

Hardware related characteristics start playing a role when the task graph is mapped to the

physical model: the task network is executed on a physical hardware configuration

consisting of processing nodes connected by communication links (lower-right graph). So,

for example the memory footprint value is used to check if a node can accommodate that

task in its memory. The computational load is used to derive overall calculation time of a

task mapped onto a node. The mapping relationship between the task model and the

physical model is very important and may be very complex. For this reason, there is an

extra view – the mapping model – whose purpose is only to integrate the concepts of the

other two viewpoints. Integration models (viewpoints) are another way CERBERO

uses to operationalize multi-view modelling. The DynAA tools can combine the

information of these multiple viewpoints on the same CPSs to generate simulation code.

The simulation code is used for design space exploration (see Sections 3.3 and 4.3) and

deriving system KPIs (see Sections 3.1.4 and 4.1.4).

In summary, the CERBERO project proposes new techniques on the operationalization of

multi-view modelling for purposes of system analysis and system simulation. These

techniques are based on:

• Composition of modelling views – propagation of component properties

throughout different views;

• Combination of modelling views – component properties our of different views,

are combined to generate a system property, e.g. load of a task is combined with

the processing capability of a node to derive estimates for the execution time of the

task.

• Integration viewpoints – when the interaction between viewpoints is complex, we

use an extra viewpoint (e.g. the mapping model) to specify the interoperability

between viewpoints.

4.1.3 The CERBERO intermediate format : sharing models for increased tool

interoperability

H2020-ICT-2016-1-732105 - CERBERO

WP3 – 3.6: Cross-layer Modelling Methodology for CPSs

Page 34 of 52

The CERBERO approach for cross-layer (Section 4.1) and multi-view (Section 4.1.2)

model-based design requires an efficient sharing of system models between design

tools. Tool interoperability – that is, the efficient sharing of model information between

different tools – is a major challenge in the design community. As discussed in Section

3.1.3, the current major approach to this task is to use metamodels to guide the information

sharing. But this approach does not solve neither the multi-view interoperability problem,

nor the multi-tool interoperability problem, nor the model maintenance problem.

CERBERO innovates by proposing a two-layered intermediate format for sharing

model information between tools (and model views). The CERBERO Intermediate

Format (CIF) strives for:

• sharing system model information across different levels of abstraction and

different modelling views. The modelling of CPSs is intrinsically multi-

disciplinary, multi-view, and involves different abstraction layers. Any unique

model representation for the whole system that cannot cope with these intrinsic

characteristics is doomed to fail. The model information should be equally adequate

and accessible for the representation of several views, to the different tools

manipulating the model (modelling, analysis, code-generation, runtime,

validation), and for manipulation at different abstraction levels. In other words, an

intermediate format that fully exploits the idea of a one-model-with-multiple-views

on the system model.

• enabling different tools to access information about a system model with

minimally incorporating details of the metamodels used in other tools. When a

tool looks at the system information in the intermediate format, it sees ... only

information! Tools should be able to read, understand, and manipulate the model

data with minimal knowledge on how this data is organized in other tools.

To solve tool interoperability problems, CERBERO proposes an innovative, two-layered

intermediate format that detaches the model data from the metamodel (schema) structure

information – see Figure 11. The first layer of CIF is called the instance layer and

represents the existence of things with properties, independent of any classes, schema, or

pre-classification to which these things may belong. The second layer of CIF is called

classes layer and consists of definitions for classes and metamodels (schemas). Classes of

interest are then defined by sets of properties. The CIF approach is largely based on the

work of Parsons and Wand [PARSONS] and follows the most modern development in the

information representation and database community: enables semantic operability instead

of structure interoperability, builds on non-schema databases and non-schema information

modelling.

H2020-ICT-2016-1-732105 - CERBERO

WP3 – 3.6: Cross-layer Modelling Methodology for CPSs

Page 35 of 52

Figure 11: Layers of the CERBERO Intermediate Format

We use an example to explain the innovations introduced by the CERBERO Intermediate

Format based on the simple system described in Figure 12. The system model describes

two tasks (Sender and Receiver), whose ports (tx, rx) are connected by a communication

link. The metamodel to describe such models is part of the CERBERO tool DynAA and

can be seen in Figure 5, in Section 3.1.3.

Figure 12: Example of a model

Classical metamodelling based approaches to

interoperation between modelling tools use the

metamodel to derive an intermediate format for

storing and sharing the information of this model.

An example could be an XML file as the snippet in

Figure 13, which represents the sender-to-receiver

model. Notice that the nodes in this XML file reflect

the types and properties in the metamodel (task,

outport, name, etc.). That implies that for another

tool to read this format, it must understand the

metamodelling structure of the tool that wrote the

file. We say in this case, the metamodel information

is part of the modelling information.

In the CERBERO Intermediate Format, schema structure (types) are separated from

entities and properties in two different layers. The idea for the CIF is depicted in Figure

10, where elements in the instance layer are represented with blue dots, and elements in

Figure 13: Snippet of an XML file

representing the model in Figure 11

H2020-ICT-2016-1-732105 - CERBERO

WP3 – 3.6: Cross-layer Modelling Methodology for CPSs

Page 36 of 52

the classes layer are represented with yellow dots. Each element in the instance layer is an

instance(thing) with properties. Properties can be simple, such as the name of a task (e.g.

name: task#sender); or mutual, such as the relationship between a link and a source port

(e.g. from). Note that mutual properties are properties shared by two instances. The

instances have not yet any classification. Classes are defined by the set of properties an

instance should have and are declared in the class layer. For example, a link is any instance

containing the property from and the property to.

Figure 10: Representation of the sender-receiver model as concepted in the CERBERO Intermediate

Format

The use of such a two-layered intermediate format can help solving many interoperability

problems. For example (see Figure 10), suppose a second tool models links between tasks

as communication channels – called channel – in their internal metamodel. Also, this tool

attributes throughput and noise model to the channel to make its analysis possible. Such

information – as well as the new classification – can be attributed to the same instance

node without any prejudice or modification for the other tool. It can also be performed

without knowledge of other tools.

The conception and implementation of the CERBERO Intermediate format is still a work

on-going and CERBERO is still experimenting with different use cases that demonstrate

the adequacy of this technique to share modelling information between tools.

In summary, the CERBERO project innovates with a different way to store and share model

information and metamodels between tools – the CERBERO Intermediate Format. The

principles of CIF are:

• Separation of model content information from model structure/schema information

H2020-ICT-2016-1-732105 - CERBERO

WP3 – 3.6: Cross-layer Modelling Methodology for CPSs

Page 37 of 52

• Enable modelling tools to read/enrich a model information without (or with

minimal) knowledge on the other tools schema/metamodels.

4.1.4 Modelling Key Performance Indicators

A KPI is a quantitative, relevant measure – as for example total power consumption,

reliability, system availability, computational performance, etc. – that can be

calculated/evaluated over a given system model. The use of KPIs is a common practice in

the design evaluation and DSE of CPSs (for a grounding discussion see Section 3.1.4).

Despite its importance, designers mainly define KPIs in an ad-hoc manner, and there

is no extensive work on formalizing KPIs as well defined and structured models. Such

lack of formalism hinders much of the potential that KPIs could offer to a design process

– such as automating parts of the evaluation and analytically understanding the properties

of a KPI. CERBERO intends to change that following a seminal approach introduced

recently in [MASIN ET AL., 2013].

The evaluation of any KPI out of its system model implies that designers must determine

a way to calculate them. And such calculation mostly can be expressed by means of a

certain mathematical structure, or as we call an algebra. For example, the total energy

consumption of a machine(system) is often evaluated by summing up (synchronously) the

energy consumed by each of its integrating components(sub-systems). Such operation

could be expressed mathematically as:

𝐸𝑡𝑜𝑡𝑎𝑙(𝑡) = ∑ 𝐸𝑖(𝑡),

𝑖∈𝑆

where S is the set of components of the machine. Notice that this calculation defines a

certain mathematical structure: it is a summation over a property present (or measurable)

in each element of a set.

Now, consider as well the total monetary cost of a machine(system). Such KPI is often

expressed as:

𝐶𝑡𝑜𝑡𝑎𝑙(𝑡) = ∑ 𝐶𝑖(𝑡),

𝑖∈𝑆

and as such it presents the same mathematical structure as the energy consumption defined

in the first example. One could argue that both KPIs could be calculated by following the

same set of operations but applied on a different set of components of the system and/or a

different set of their properties. It turns out that many other KPIs, in different systems, are

often defined with the same underlying structure. Take for example the total weight of a

system, the total availability time (of sequential services), total volume of accumulated

liquid (in a system of hydraulic tanks), etc.

Like the KPI family exemplified above, it is possible to identify many others that are

recurrently used when designing complex systems. Examples of other common families of

KPIs are:

• The KPI is a maximum value within a set of properties (values);

• The KPI is a minimum value within a set of properties (values);

• The KPI is an average value within a set of properties (values);

• The KPI is a weighted sum over a set of component’s properties;

H2020-ICT-2016-1-732105 - CERBERO

WP3 – 3.6: Cross-layer Modelling Methodology for CPSs

Page 38 of 52

• The KPI is a weighted sum over paths in a network graph – e.g. network

throughput.

KPIs can be much more complex than the summation algebra presented as example above.

Some will require considering relationships between components, network topology, and

even dynamic aspects (dependent on time). Despite its complexity, the calculation of a KPI

falls always into some definable algebra, and often exhibiting a well know calculation

structure. CERBERO uses this fact to model KPIs in a more formal way. In other words,

CERBERO proposes ways to formally model and classify KPIs according to the

mathematical structure they exhibit (or need) in their calculations. This methodology

is extensively discussed in the deliverable [CERBERO_D3.4].

There are many advantages in describing KPIs in a formal way:

• It enables automated KPI evaluation for many KPI families, where the designer

just needs to specify part of the data set in the system model over which the

evaluation should happen.

• Analysis over a certain KPI family already exposes some properties of the system,

even when no KPI evaluation is done. For example, additive KPIs such as the ones

discussed previously cannot decrease in value when new components are added to

the system (given that there can be no negative property value).

• Complex KPI calculations can be defined based formal mathematical methods,

e.g. process algebras. Moreover, the description of KPI families are not limited to

be done by using mathematical expressions or set of equations. It can also be

formally described as a set of procedures, algorithms, combination of other KPIs,

etc.

• Improved DSE can be achieved for certain KPI families due to their mathematical

properties. For example, some KPI families can be strictly linear, or monotonic, or

continuous-by-parts, etc.

• Combining formal models of KPIs with the CERBERO intermediate format

(see Section 4.1.3) yields a powerful KPI evaluation tool. The algebras defined for

many usable KPI families map directly into traversal operations over property

graphs such the one used to implement CIF. This combination further eases

automation of the KPI evaluation.

• Last, but not least, a formal approach to KPIs eases the change of KPIs in

adaptive processes. During system adaptation, KPIs are often calculated to decide

how the system should change. But the KPIs used themselves may change

depending on what is the actual system state and how the system wants to adapt

(dynamic system goal).

The CERBERO methodology to model and analyze KPI is discussed in detail in the

CERBERO deliverable D3.4 [CERBERO_D3.4].

H2020-ICT-2016-1-732105 - CERBERO

WP3 – 3.6: Cross-layer Modelling Methodology for CPSs

Page 39 of 52

4.2 CERBERO novelties on modelling for reconfiguration and self-

adaptation

4.2.1 CERBERO novelties on modelling concurrent and distributed behavior

The CERBERO project has for objective to demonstrate the capacity of formal MoCs to

efficiently drive CPS design and self-adaptation. MoCs can capture essential properties of

an application that enable expressing concurrency, causality, event dependency, memory

locality, etc. And this regardless of the system architecture.

Separation between application (MoC) and architectural (MoA) concerns should not be

confused with software (SW) / hardware (HW) separation of concerns. The

software/hardware separation of concerns is often put forward in the term HW/SW co-

design [HA17]. Software and its languages are not necessarily architecture-agnostic

representations of an application and may integrate architecture-oriented features if the

performance is at stake. This is shown for instance by the differences existing between the

C++ and CUDA languages. While C++ builds an imperative, object-oriented code for a

processor with a rather centralized instruction decoding and execution, CUDA is tailored

to GPGPUs with a large set of cores. As a rule of thumb, software qualifies what may be

reconfigured in a system while hardware qualifies the static part of the system.

This separation is currently blurred by new hardware paradigms such as Dynamic and

Partial Reconfiguration (DPR) and Coarse Grain Reconfigurable substrates (CGR),

paradigms largely exploited within the CERBERO project.

By using a couple MoC – MoA, the CERBERO project provides new features to the system

designer such as:

• Self-adaptation with runtime scheduling benefiting from internal knowledge of

application concurrency and architecture parallelism,

• Application-awareness with application parameters crossing the boundary between

the applicative layer and the system management layer,

• Hardware reconfiguration at two different levels of granularity (CGR and DPR),

• Software reconfiguration over multiple processing elements with shared or

distributed memory,

• Full data-driven execution where processing elements and sub-systems can be

asynchronous and processing is triggered by the arrival of data.

The choice of these systems features is motivated by the recent evolutions of CPS

embedded platforms. Platforms such as the Xilinx Zynq Ultrascale+, Qualcomm

Snapdragon 845, Intel Arria 10 SoC or Samsung Exynos 9 all integrate a variety of

processing elements, often exposing reconfigurable hardware or hardware acceleration IPs.

The CERBERO exploited MoCs are detailed in Deliverable D3.5 [CERBERO_D3.5].

4.2.2 CERBERO novelties on modelling of uncertainty

Concurrency modelled by flexible MoC, such as PiSDF, can be combined with uncertainty

modelling techniques for better evaluation, analysis, and, consequentially, design of

H2020-ICT-2016-1-732105 - CERBERO

WP3 – 3.6: Cross-layer Modelling Methodology for CPSs

Page 40 of 52

reconfigurable and self-adaptive CPS that should address different operational conditions,

both in internal status and external environment.

The CERBERO exploited uncertainty modeling is detailed in Deliverable D4.4

[CERBERO_D4.4].

4.3 Model based design space exploration in CERBERO

As previous work to CERBERO, a team from IBM Research lab in Haifa, Israel has

developed an approach that promises to bestow the power of optimization onto Systems

Engineers [Broodney et al., 2012]. Such effort was realized in a software tool called AOW,

which is further extended within CERBERO.

Using AOW, the engineer can model the composition rules (a.k.a. architectural pattern,

template) of the required system. The functional requirements are modelled, including the

relations (data flow, energy flow, etc.) between them, and potential mappings to the

physical components are specified. The physical structure of the system represents the

composition rules. In the example in Figure 14, a Power Distribution System basic structure

is depicted. The block PDB represents a multitude of such blocks in a final architecture

and the connections in the diagram represent the structural requirements and constraints

for a correctly constructed system. This modelling approach is called “Concise Modelling”.

Figure 14: Example of a SysML diagram for design space exploration in CERBERO tool AOW. The

systems example is based on a power distribution plant

Optimization goals are specified in a special “objective” blocks. There is a possibility to

add constraints (textual) blocks as well. Systems Engineers can develop libraries of

reusable metrics in extended SysML Parametric Diagrams [Masin et al., 2013 and 2014].

In CERBERO, this module will be coupled with the new KPI models.

All the inputs above are used by the software to generate mathematical optimization

program in OPL language, to be run in the IBM ILog CPlex Optimization tool, which is

the market leading Linear Programming solver. Since the goals are multiple and usually

H2020-ICT-2016-1-732105 - CERBERO

WP3 – 3.6: Cross-layer Modelling Methodology for CPSs

Page 41 of 52

conflicting, the solution will propose several solutions along the efficient frontier, meaning

that for neither solution no goal can be improved without adversely affecting another.

Patent pending algorithms assure that the options provided are as diverse as possible, thus

offering the engineer a fresh, previously unseen, aspect on the architecture of the system.

The results of the optimization are back-annotated into the SysML tool for the engineer to

view.

The AOW modelling language (used in the tool) is built on top of standard SysML and

allows definition of different AOW concepts applying stereotypes to SysML elements.

These concepts include:

• viewpoints,

• mappings between viewpoints,

• integration features,

• optimization concepts such as constraints, goals and decision variables,

• metric libraries, i.e. model independent metric definitions that could be applied top

AOW model introducing set of constraints on potential system architecture,

• mappings between model elements and library metrics.

Viewpoints representing different levels of abstraction or different system concepts. AOW

currently supporting <functional>, <technical>, <geometrical> and <reliability>

viewpoints. Affiliation of the element to the specific viewpoint expressed by assigning to

this element corresponding stereotype. Mappings between different viewpoints expressing

by adding dependencies between corresponding parts. These dependencies should have

stereotype <mappedTo> (for mapping between functional and technical viewpoints) and

<allocatedTo> (for mapping between technical and geometrical viewpoints). Integration

features includes <catalog> stereotype applying to SysML block, that means that parts of

this block are tacking from some catalog represented by corresponding Excel table.

Another integration feature is an <inventory> stereotype, which is applied to SysML part

or link (dependency, flow or connector) indicates that such part or link represents a set of

parts or links given by the Excel table. Optimization constraints expressed by SysML

constraints with special stereotypes and multiplicities on parts and link ends. Decision

variables expressed by <optimized> stereotype that can be applied to the part or link

indicating that total number of these parts or links and actual type of these parts or links (in

case of <catalog> blocks) are determined by optimization, or, if applied to attribute

indicates that actual value of this attribute determined by optimization. Optimization goals

expressed by stereotype applied to <optimized> attribute, where value of such attribute is

equal to some metric or subject to some equality constraint.

Metric libraries include different types of metrics and expressed by special type of

parametric diagrams or by special textual language. One can distinguish 3 different types

of metrics. The first type determines a new sets, parameters and decision variables that

created during transformation of SysML model to optimization model. The second type

H2020-ICT-2016-1-732105 - CERBERO

WP3 – 3.6: Cross-layer Modelling Methodology for CPSs

Page 42 of 52

determines calculation of compound parameters that performed before the optimization

process start. The last type determines optimization constraints that defined by some

compound system metrics (such as energy flow for example). To apply a metric to the

model one should apply special stereotype to SysML part, link or attribute (for textual

metrics) or use AOW mapping UI (for diagram metrics).

Process of translation of AOW model to mathematical optimization model consist of

several steps. At the first step SysML model as well as Excel tables converted to CIF, the

CERBERO intermediate format. Next, models in CIF are going through a series of

transformations that combine Excel and SysML model, combine different viewpoints

according to rules defined in metric library and build option graph that represent all

possible system architectures. Afterwards, additional sets of elements are building

according to corresponding metric rules. It is important to note that parts having attributes

with same names combined into attribute sets. Attribute set represent classification by

property concept and can be used in metrics and SysML constraints. At the next step

calculation of the pre-optimization metrics performed. These defines all optimization

parameters. Finally, parts of the model in CIF are translated to OPL programming

language. These includes generation of decision variables, optimization constraints and

goals.

CERBERO modelling methodology will extend AOW modelling paradigm in a several

directions:

1. The set of AOW viewpoints and mappings will modified and extended to allow

modelling of CPS aspects in straightforward and concise way.

2. Modelling language will extend to provide capabilities that allow definition of

various aspects related to system and environment uncertainty. Namely, this will

include ability to define: probability distributions, scenarios, uncertainty sources,

system properties affected by these sources, chance constraints, adjustable and non-

adjustable decision. CERBERO methodology will also enable translation of

uncertain system and environment aspects mentioned above into computationally

tractable mathematical optimization problems utilizing state of the art robust and

stochastic optimization methods. As a starting point for developing such

methodology we consider [Shindin et al, 2014]

3. CERBERO methodology will extend AOW modelling language to enable

definition of continuous dynamic system aspects, including related decision

variables, constraints and objectives for mathematical optimization problems. This

will also include automatic translation of corresponding continuous aspects of the

system into state of the art CLP problems that can be solved by efficient algorithms.

H2020-ICT-2016-1-732105 - CERBERO

WP3 – 3.6: Cross-layer Modelling Methodology for CPSs

Page 43 of 52

5 Implementing the CERBERO modelling approach

In the CERBERO project, research for the modelling methodology flows directly into the

tools: research in each innovative topic is adopted by at least one of the tools in the

CERBERO framework. By adopting the new modelling technique into a tool allows to

immediately address issues such as the feasibility and automation of the technique in a

modelling environment.

Moreover, the validation of each modelling aspect is re-enforced using the tool in use cases.

During the presentation of results for each use case, CERBERO will also include the

validation results over using a certain modelling technique or innovations discussed in

Section 4.

In Table 3, we summarize per modelling innovation discussed in this document (Section

4), the tools where the modelling technique is absorbed and operationalized and the use

case where the modelling aspect will be validated. All the topics mentioned in the table are

mature in their research and the incorporation of them in the respective tool is already

started. It must be noticed as well that there is a noticeable predominance from the tools

AOW and DynAA in the table. This is clear to understand: these two tools are based around

a complete modelling framework, including modelling language and GUI. For example,

AOW uses SysML and uses IBM Rational Rose as graphical front-end. Other tools’

primary focus is mainly on manipulating the model – analysis, code generation,

verification, etc. – and as such, only the modelling techniques related to their use are

incorporated. Further, each tool is also coded with a color to help in their quick

identification.

Table 3: Per modelling aspect in CERBERO, the tools where they are incorporated and the use cases

where they are validated.

 Space

Exploration

Smart

Travelling

Ocean

Monitoring

Modelling complex systems

Models of

Architecture

SPIDER

Uses MoAs to

quickly

evaluate online

options for the

deployment of

an application

(HW/SW

partitioning).

Multi-view

modelling

SPIDER

Uses

combinations

of hardware

and software

DynAA

System simulation fully built

on combinations of multi-view

models: functional,

H2020-ICT-2016-1-732105 - CERBERO

WP3 – 3.6: Cross-layer Modelling Methodology for CPSs

Page 44 of 52

model

viewpoints.

concurrency, physical,

network, and mapping.

 AOW

Optimization combining

functional, physical, and

constraints view.

Tool

interoperability

via CERBERO

intermediate

format

 DynAA

Exchange of

model

information

with AOW.

PREESM

(Intended

work)

Exchange of

model

information

with Spyder

and Gaph.

AOW

Exchange of

model

information

with DynAA.

CIF – CERBERO Intermediate Format

library

This tool is an external library and API especially

created within the CERBERO project to facilitate

the adoption of the proposed intermediate format

by other tools. This API is now used by DynAA

and AOW (see above), but its use by other tools

in the CERBERO framework is planned for the

second half of the project.

Modelling of

Key

Performance

Indicators

SPIDER

KPIs for

execution time,

latency, energy

consumption

DynAA

KPIs for

system

response time

(to use),

battery

lifetime, user

satisfaction

PREESM

KPIs for

energy

consumption,

throughput,

chip area,

reconfiguration

time

AOW

KPIs for

(monetary)

cost, network

communication

and energy

H2020-ICT-2016-1-732105 - CERBERO

WP3 – 3.6: Cross-layer Modelling Methodology for CPSs

Page 45 of 52

Artico3

KPIs for

energy

consumption,

throughput,

chip area,

reconfiguration

time

Modelling concurrent systems

Models of

Computation

SPIDER

Demonstrates

usage of

Synchronous

data flow and

Bulk

Synchronous

models

MECA

Demonstrates

the Situated

Cognitive

Engineering

MoC

PREESM

Demonstrates

usage of

PiSDF models

of computation

DynAA

Demonstrates

uses of discrete

events, petri

nets, and

process

networks

models

Artico3 and

MDC

Demonstrates

register

transfer and

synchronous

data flow

models of

computation

Design Space Exploration

Advanced

Modelling

Techniques for

Design Space

Exploration

 AOW

Incorporates

advanced

optimizers that

can deal with

uncertainty in

the modelled

environment.

Incorporates

also advanced

H2020-ICT-2016-1-732105 - CERBERO

WP3 – 3.6: Cross-layer Modelling Methodology for CPSs

Page 46 of 52

modelling

techniques to

describe

combinatorial

problems as

hybrid fluid-

dynamics

models – this

eases the

optimization

algorithm.

DynAA

Demonstrates

simulation-

based design

space

exploration.

Modelling for

simulation

purposes

include

behavioral and

descriptive

semantics.

H2020-ICT-2016-1-732105 - CERBERO

WP3 – 3.6: Cross-layer Modelling Methodology for CPSs

Page 47 of 52

6 References

[ADEL09] Adela del-Rio-Ortega, Manuel Resinas; Towards Modelling and

Tracing Key Performance Indicators in Business Processes, Actas de

los Talleres de las Jornadas de Ingeniería del Software y Bases de

Datos, Vol. 3, 2009

[ANDERSON - NASH,

1987]

Anderson, E.J., Nash, P. Linear Programming in Infinite Dimensional

Spaces. Wiley-Interscience, Chichester, 1987

[ANDERSON, 1978] Anderson, E.J. A Continuous Model for Job-Shop Scheduling. Ph.D.

Thesis, University of Cambridge, Cambridge, 1978

[ANDERSON, 1981] Anderson, E.J. A new continuous model for job-shop scheduling. Int.

J. Syst. Sci. 12, 1469–1475, 1981

[BEALE, 1955] E. M. L. Beale. On Minimizing A Convex Function Subject to Linear

Inequalities. Journal of the Royal Statistical Society. Series B

(Methodological) Vol. 17, No. 2 (1955), pp. 173-184

[BELLMAN, 1953] Bellman, R.: Bottleneck problems and dynamic programming. Proc.

Natl. Acad. Sci. 39, 947–951, 1953

[BEN-TAL – EL

GHAOUI –

NEMIROVSKI, 2009]

Ben-Tal A., El Ghaoui, L. and Nemirovski, A. Robust Optimization.

Princeton Series in Applied Mathematics, Princeton University Press,

2009.

[BERTSIMAS ET AL,

2015]

Bertsimas, D., Nasrabadi, E., Paschalidis, I. C. (2015). Robust Fluid

Processing Networks, IEEE Transactions on Automatic Control, 60

(3), pp. 715 – 728.

[BIRGE-

LOUVEAUX,1997]

Birge, J. R. and Louveaux, F. Introduction to Stochastic

Programming. Springer Series in Operations Research, Springer-

Verlag, New York, NY, 1997.

[BROODNEY ET AL.,

2012]

Broodney, H., Dotan, D., Greenberg, L., and M. Masin, 2012,

“Generic Approach for Systems Design Optimization in MBSE”,

INCOSE 2012.

[BROODNEY ET AL.,

2014]

Broodney, H., Masin M., Shany, U., Shindin, E., Kalawsky, R.,

Joannou, D., Tian, T., and Sanduka, I., “Leveraging Domain

Expertise in Architectural Exploration”, CSDM 2014.

[CAFE13] Daniel Chaves Cafe, Filipe Vinci dos Santos, Cecile Hardebolle,

Christophe Jacuet, and Frederic Boulanger. Multi-paradigm

semantics for simulating SysML models using SystemC-AMS. In FDL

2013. IEEE, 2013

[CANC15] Daniela Cancila, Hadi Zaatiti, Roberto Passerone. Cyber-Physical

System and Contract-Based Design: A Three Dimensional View. In

WESE, 2015

[CERBERO17] CERBERO EU Project, Online: http://www.cerbero-h2020.eu

[CERBERO_D2.7] CERBERO EU Project, Deliverable D2.7 – CERBERO

Requirements, Online: http://www.cerbero-h2020.eu

http://www.cerbero-h2020.eu/
http://www.cerbero-h2020.eu/

H2020-ICT-2016-1-732105 - CERBERO

WP3 – 3.6: Cross-layer Modelling Methodology for CPSs

Page 48 of 52

[CERBERO_D3.4] CERBERO EU Project, Deliverable D3.4 – Key Performance

Indicators, Online

[CERBERO_D3.5] CERBERO EU Project, Deliverable D3.5 – Models of Computations,

Online: http://www.cerbero-h2020.eu

[CHANG97] W. T Chang, S. Ha, and E. A Lee. Heterogeneous simulation - mixing

discrete-event models with dataflow. The Journal of VLSI Signal

Processing, 15(1):127–144, 1997.

[CHARNES-COOPER-

SYMONDS,1958]

A. Charnes, W. W. Cooper, G. H. Symonds. Cost Horizons and

Certainty Equivalents: An Approach to Stochastic Programming of

Heating Oil. Management Science - Management , vol. 4, no. 3, pp.

235-263, 1958

[CPLEX] IBM ILOG CPLEX Optimization Studio, http://www-

01.ibm.com/software/integration/optimization/cplex-optimization-

studio

[DANTZIG, 1955] G. B. Dantzig. Linear Programming Under Uncertainty. Management

science, 1:197-206, 1955

[EMF] Eclipse.org, Eclipse Modelling Framework, Online:

https://www.eclipse.org/modelling/emf/

[ERMOLIEV-

WETS,1988]

Yu. Ermoliev and R. J.-B. Wets (eds.): Numerical Techniques for

Stochastic Optimization Problems. Springer, Berlin, 1988.

[FEILER12] Peter Feiler, David Gluch; Model-Based Engineering with AADL: An

Introduction to the SAE Architecture Language, Addison Wesley,

ISBN-13 978-0134208893, 2012

[FMI14] FMI development group. Functional mock-up interface for model

exchange and co-simulation, 2.0. https://www.fmi-standard.org,

2014.

[GME] WEBGME.org; Web GME, Online: https://webgme.org/

[GUROBI] http://www.gurobi.com

[HA17] Soonhoi Ha, Jürgen Teich (Eds.), Handbook of Hardware/Software

Codesign, Springer, 2017.

[HANEVELD-VAN

DER VLERK,1999].

Klein Haneveld, W. K. and Van der Vlerk, M. H. Stochastic Integer

Programming: General Models and Algorithms. Annals of Operations

Research, 85, 39–57, 1999.

[HEEDS MDO] http://www.redcedartech.com/products/heeds_mdo

[INTOCPS] Integrated Toolchain for Model-based design of Cyber-physical

Systems, Online: http://projects.au.dk/into-cps/

[IOSO] http://iosotech.com/product.htm

[ISIGHT] http://www.3ds.com/products/simulia/portfolio/isight-simulia-

execution-engine/overview/

[ISOIEC] ISO/IEC; International standard ISO/IEC numbers 10746-1, 10746-

2, 10746-3, and 10746-4, 1996-1998

http://www.cerbero-h2020.eu/
https://www.eclipse.org/modeling/emf/
https://www.fmi-standard.org/
https://webgme.org/
http://www.redcedartech.com/products/heeds_mdo
http://projects.au.dk/into-cps/
http://iosotech.com/product.htm
http://www.3ds.com/products/simulia/portfolio/isight-simulia-execution-engine/overview/
http://www.3ds.com/products/simulia/portfolio/isight-simulia-execution-engine/overview/

H2020-ICT-2016-1-732105 - CERBERO

WP3 – 3.6: Cross-layer Modelling Methodology for CPSs

Page 49 of 52

[KARSAI10] G. Karsai, F. Massacci, L. Osterweil, I. Schieferdecker; Evolving

Embedded Systems, Computer 43(5), Vol. 34, 2010

[KERN11] Heiko Kern, Axel Hummel, Stefan Kühne; Towards a comparative

analysis of meta-metamodels. Proceedings of the SPLASH

Workshops, 2011

[KIMEME] http://www.kimeme.com/products.php

[LEE98] Lee, E. A., & Sangiovanni-Vincentelli, A. (1998). A framework for

comparing models of computation. IEEE Transactions on computer-

aided design of integrated circuits and systems, 17(12), 1217-1229.

[MASIN ET AL., 2013] Masin, M., Limonad, L., Sela, A., Boaz, D., Greenberg, L., Mashkif,

N., and R. Rinat, 2013, “Pluggable Analysis Viewpoints for Design

Space Exploration.” CSER 2013

[MASIN ET AL., 2014] Masin, M., Broodney, H., Brown, C., Limonad, L., Mashkif, N. and

A. Sela, 2014, “Reusable derivation of operational metrics for

architectural optimization”, CSER 2014.

[METAEDIT] MetaCase Inc.; MetaEdit* Domain-Specific Modelling (DSM)

environment, Online: https://www.metacase.com/products.html

[MILLER-WAGNER,

1965]

Miller, L.B. and Wagner, H., Chance-constrained programming with

joint constraints, Operations Research, 13, 930-945, 1965.

[MODEFRONTIER] http://www.modefrontier.com/

[MODELCENTER] http://www.phoenix-int.com/software/phx-modelcenter.php

[MORIN09] B. Morin, O. Barais, J.M. Jezequel, F.Fleurey, A.Solberg, Models at

runtime to support dynamic adaptation, Computer, IEEE Computer

Society, 2009

[NEMIROVKSI –

SHAPIRO, 2006]

Nemirovksi, A., Shapiro, A., Convex Approximations of Chance

Constrained Programs, SIAM Journal of Optimization, Vol. 17, No.

4, pp. 969–996, 2006.

[NEXUS] http://ichrome.eu/nexus/

[NORKIN-PFLUG-

RUSZCZYŃSKI,1998].

Norkin, V. I., Pflug, G. C. and Ruszczyński, A. A Branch and Bound

Method for Stochastic Global Optimization. Mathematical

Programming, 83, 425–450, 1998.

[OLIVEIRA13] Julio Oliveira, Zoltan Papp, Relja Djapic, Job Oostveen; Model-based

design of self-adapting networked signal processing systems, In

Proceedings of the Self-Adaptive and Self-Organizing Systems

Conference (SASO), 2013

[OMG07] O.M.Group: OMG Unified Modelling Language superstructure

Specification, 2007

[OMG12] OMG systems modelling language, version 1.3. Technical report,

OMG, 2012

[OPTIMUS] http://www.noesissolutions.com/Noesis/

[OPTIY] http://www.optiy.eu/

http://www.kimeme.com/products.php
http://www.modefrontier.com/
http://www.phoenix-int.com/software/phx-modelcenter.php
http://ichrome.eu/nexus/
http://www.noesissolutions.com/Noesis/
http://www.optiy.eu/

H2020-ICT-2016-1-732105 - CERBERO

WP3 – 3.6: Cross-layer Modelling Methodology for CPSs

Page 50 of 52

[PACELAB SUITE] http://www.pace.de/products/preliminary-design/pacelab-suite.html

[PACELAB SYSARC] http://www.pace.de/?id=40

[PARSONS] Jeffrey Parsons, Yair Wand; Emancipating Instances from the

Tyranny of Classes in Information Modelling, ACM Transactions on

Database Systems, Vol. 25, No. 2, 2000

[PELCAT13] Pelcat, M., Aridhi, S., Piat, J., & Nezan, J. F. (2013). Dataflow model

of computation. In Physical Layer Multi-Core Prototyping (pp. 53-

75). Springer, London.

[PELCAT17] Pelcat, M., Mercat, A., Desnos, K., Maggiani, L., Liu, Y., Heulot, J.,

Bhattacharyya, S. S. (2017); Reproducible Evaluation of System

Efficiency with a Model of Architecture: From Theory to Practice.

IEEE Transactions on Computer-Aided Design of Integrated Circuits

and Systems

[PELCAT18] Maxime Pelcat. Models of Architecture for DSP Systems. Springer.

Handbook of Signal Processing Systems, Third Edition, In press

[PRÉKOPA, 1970]. Prékopa, A., On probabilistic constrained programming, in:

Proceedings of the Princeton Symposium on Mathematical

Programming, Princeton University Press, Princeton, pp. 113-138,

1970.

[PTOL] https://ptolemy.eecs.berkeley.edu/index.htm

[PULLAN, 1993] Pullan, M.C.: An algorithm for a class of continuous linear programs.

SIAM J. Control Optim. 31, 1558–1577, 1993

[PULLAN, 1995] Pullan, M.C.: Forms of optimal solutions for separated continuous

linear programs. SIAM J. Control Optim. 33, 1952–1977, 1995

[PULLAN, 1996] Pullan, M.C.: A duality theory for separated continuous linear

programs. SIAM J. Control Optim. 34, 931–965, 1996

[PULLAN, 1997] Pullan, M.C.: Existence and duality theory for separated continuous

linear programs. Math. Model. Syst. 3, 219–245, 1997

[ROUB13] Ella Roubtsova, Vaughan Mitchell; Modelling and Validation of

KPIs, Proceedings of the Third International Symposium on Business

Modelling and Software Design, 2013

[SCHULTZ ET

AL,1998]

Schultz, R., Stougie, L. and Van der Vlerk, M. H. Solving Stochastic

Programs with Integer Recourse by Enumeration: a Framework Using

Gröbner Basis Reductions. Mathematical Programming, 83, 229–

252, 1998.

[SEI] Carnegie Mellon University, Software Engineering Institute – SEI

Insights, online: https://insights.sei.cmu.edu/sei_blog/2013/11/using-

v-models-for-testing.html

[SEN-SHERALI, 2006] Sen, S. and Sherali, H. Decomposition with branch-and-cut

approaches for two-stage stochastic mixed-integer programming.

Mathematical Programming, 106, 203-223, 2006.

http://www.pace.de/products/preliminary-design/pacelab-suite.html
http://www.pace.de/?id=40
https://ptolemy.eecs.berkeley.edu/index.htm
https://insights.sei.cmu.edu/sei_blog/2013/11/using-v-models-for-testing.html
https://insights.sei.cmu.edu/sei_blog/2013/11/using-v-models-for-testing.html

H2020-ICT-2016-1-732105 - CERBERO

WP3 – 3.6: Cross-layer Modelling Methodology for CPSs

Page 51 of 52

[SHAPIRO ET AL,

2003]

Verweij, B., Ahmed, S., Kleywegt, A., Nemhauser, G., and Shapiro,

A. The Sample Average Approximation method applied to stochastic

routing problems: A computational study. Computational

Optimization and Applications, 24(2-3), 289-333, 2003.

[SHINDIN ET AL,

2014]

Shindin, E., Boni, O. and M. Masin, 2014, “Robust optimization of

system design”, CSER 2014.

[SHINDIN-WEISS,

2014]

Shindin, E., Weiss, G. (2014) Symmetric Strong Duality for a Class

of Continuous Linear Program with Constant Coefficients. SIAM J

on Optimization, 24(3):1102-1121.

[SHINDIN-WEISS,

2015]

Shindin, E., Weiss, G. (2015) Structure of Solutions for Continuous

Linear Programs with Constant Coefficients SIAM J on Optimization,

25, pp. 1276-1297.

[SHINDIN-WEISS,

2017]

Shindin, E., Weiss, G. (2017) A simplex-type algorithm for

continuous linear programs with constant coefficients. (under

revision) arXiv preprint arXiv:1705.04959

[STRE06] T. Streichert, D. Koch, C.Haubelt, J.Teich, Modelling and design of

fault-tolerant and self-adaptive reconfigurable networked embedded

systems, EURASIP Journal of Embedded Systems, Vol.1, 2006

[SYSML] Object Management Group (OMG), Systems Modelling Language,

Online: http://www.omgsysml.org/

[UML] Object Management Group (OMG), Unified Modelling Language,

Online: https://www.omg.org/spec/UML/About-UML/

[VAN DER VLERK,

2009]

Van der Vlerk, M. H. Convex approximations for a class of mixed-

integer recourse models. Annals of Operations Research, 2009

[VANROY09] Van Roy, P. (2009). Programming paradigms for dummies: What

every programmer should know. New computational paradigms for

computer music, 104.

[VINC12] Alberto Sangiovanni-vincentelli, Werner Damm, Roberto Passerone.

Taming Dr. Frankenstein: Contract-Based Design for Cyber-

Physical Systems. In European Journal of Control, 2012

[VLAD12] Vladimir Dimitrieski, Milan Celikovic, Valdimir Ivancevic, and Ivan

Lukovic; A Comparison of Ecore and GOPPRR through an

Information System Meta Modelling Approach, EU Conference on

Modelling Foundations and Applications. 2012

[WAW15] Frank Wawrzik, William Chipman, Javier Moreno Molina, and

Christoph Grimm. Modelling and simulation of cyber-physical

systems with SICYPHOS. In DTIS, 2015

[WEISS, 2008] Weiss, G.: A simplex based algorithm to solve separated continuous

linear programs. Math. Program., Ser. A 115, 151–198, 2008

http://www.omgsysml.org/
https://www.omg.org/spec/UML/About-UML/

H2020-ICT-2016-1-732105 - CERBERO

WP3 – 3.6: Cross-layer Modelling Methodology for CPSs

Page 52 of 52

