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1. Executive Summary 

This documents surveys state-of-the-art Models of Computations (MoCs) used for the 

design of Cyber-Physical Systems (CPS), and it outlines the main characteristics of 

MoCs used for CPS design by presenting: 

• the properties of their semantics (analyzability, decidability, reconfigurability, 

expressiveness, determinism, ...),  

• the kind of algorithm it supports (data-driven, control-driven, …), 

• the level of abstraction it captures (system-of-systems, system, component, …) 

• the type of implementation it translates into (hardware, software, distributed, …). 

The objective of this document is to give enough information to CPS designers to choose 

the MoC that best suit their needs.  

As an example of this document utility, a study of most suitable MoCs for designing key 

features of the CERBERO use-cases is presented. Based on this study, we identify lacks 

in current MoCs semantics and we define a set of new MoC features needed to support 

the design of CERBERO use-cases, which will be developed during the project. Those 

features will advance state of the art and will allow these MoCs to be more effectively 

adopted in the CPS context. 

1.1. Structure of Document 

Section 2 of this document defines the notions of abstraction and models, which serve as 

a basis to the concept of Models of Computation. Section 3 introduces a set of properties 

of MoCs that are then used in Section 4 to characterize and compare state of the art MoCs 

commonly used for the design of CPSs. Finally, Section 5 presents the expected 

CERBERO innovations in the domain of MoCs for the modeling of CPS. 

1.2. Related Documents 

• D2.7 - CERBERO Technical Requirements 

o D3.5 contributes to satisfy D2.7 requirements. Details are given in 

Section 1.3. 

• D3.4 - KPI Modeling 

o The KPIs can be used to represent the system properties, which can be 

verified and guaranteed with varying degrees of ease depending of the 

selection of the Model of Computation. 

• D3.6 - Cross-layer Modelling Methodology for CPS 

o The models of computation described in this document are used to 

represent one aspect of the CPS, the behavior. This is a key foundation in 

the cross-layer modelling methodology. 

• D5.6 - CERBERO Framework Components 

o D5.6 gives more details on the MoCs supported by the tools that are 

components of the CERBERO framework. 
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1.3. Related CERBERO Requirements 

Deliverable D2.7 of the CERBERO project defines a list of CERBERO Technical 

Requirements (CTRs) the project should achieve. Each of them is referenced with a 

unique identifier ranging from 0001 to 0020. MoC exploration and innovation are carried 

out following the requirements in Table 1-1. 

 

CTR 

id 
CTR Description Link with the D3.5 document on Models of 

Computation 

0001 CERBERO framework SHOULD increase 

the level of abstraction at least by one for 

HW/SW co-design and for System Level 

Design. 

Innovations on MoCs help raising the abstraction 

level for the designer 

0002 CERBERO framework SHOULD 

provide interoperability between cross-

layer tools and semantics at the same 

level of abstraction. 

Formalization of MoCs and homogeneity among 

partners foster tool interoperability 

0007 CERBERO framework SHALL define 

methodology and SHOULD provide 

library of reusable functional and non-

functional KPIs. 

Non-functional KPIs can be influenced in the 

MoCs using proposed Moldable Parameters 

0020 CERBERO framework SHALL provide 

methodology and tools for development of 

adaptive applications. 

Proposed innovations on MoCs improve the 

expressiveness and specify the semantic of PiSDF 

for designing adaptive applications 

Table 1-1: Links to CERBERO Technical Requirement 
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2. Models of computation 

This first section briefly defines the core concepts of abstraction, model, and model of 

computations.  

2.1. Abstraction 

In general, abstraction is a tradeoff between the level of details and the complexity 

adopted when describing or representing a thing (e.g., an idea, a system, a place, an 

object, a phenomenon, etc.). Two distinct representations used to describe the same thing, 

each adopting a different abstraction tradeoff (i.e., amount of details conveyed about it), 

can be compared relatively to each other using so-called levels of abstraction. 

• The lower level of abstraction gives a representation of the thing which is more 

detailed, thus giving a more precise and complete description.  

• The higher level of abstraction gives a representation of the thing where some 

details are voluntarily omitted to decrease the complexity of the description. This 

higher complexity generally translates into a smaller and/or less dense 

representation of the thing. 

2.2. Models 

A model is a mathematically grounded representation capturing predictable 

characteristics of a system. More precisely, a model consists of a set of elements that can 

be assembled respecting a set of rules to describe a system. For a valid representation 

built with a model, mathematical equations associated to the elements of the model make 

it possible to predict some characteristics of the modeled system. Models are commonly 

used in all scientific fields to represent evolution of physical, computing, chemical, 

financial, or social systems. 

For example, the symbol in Figure 1 – Bipolar Transistor Symbol and its associated 

equation in Figure 2 - Bipolar Transistor Equation are used to model and predict the 

voltage and current characteristics of a transistor within a model of an analog circuit. 

 

Figure 1 – Bipolar Transistor Symbol 

 

Figure 2 - Bipolar Transistor Equation 

In the context of cyber-physical systems (CPSs) engineering, several models adopting 

different levels of abstraction can be used to describe separated or nested aspects of a 

system. In particular the Models of Architecture (MoA) [Pelcat 2018] are used to 

describe the computing platform, often heterogeneous, including communication 

channels and memories. The application to be executed is modeled orthogonally using 

Models of Computation (MoC). More details on the use of heterogeneous models to 

describe a CPS are presented in D3.6. 
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2.3. Models of Computation 

A Model of Computation (MoC) is a set of operational elements that can be composed to 

describe the behavior of an application. The set of operational elements of a MoC and the 

set of relations that can be used to link these elements are called the semantics of a MoC.  

As presented in [Savage 1998], MoCs can be seen as an interface between the computer 

science and the mathematical domains. A MoC specifies a set of rules that control how 

systems described with the MoC are executed. Each element of the semantics of a MoC 

can be associated to a set of properties, such as timing properties or resource 

requirements. These rules and properties provide the theoretical framework that can be 

used to formally analyze the characteristics of applications described with a MoC. For 

example, using a mathematical analysis, it may be possible to prove that an application 

described with a given MoC will never get stuck in an unwanted state or that it will 

always run in a bounded execution time. Section 3 of this document describes a set of 

properties that are commonly supported by existing MoCs, which are themselves 

described in Section 4. A more extensive introduction to CPS modelling with MoCs can 

be found in [Lee 2017]. 
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3. Characterization of Models of Computation 

Since the introduction of modern computing systems in mid-1900s, a plethora of MoCs 

have been proposed by the scientific community. Very often, a new MoC is introduced to 

allow the specification of applications or systems that exhibit a set of characteristics 

whose specification was impossible or difficult to achieve with previously existing 

MoCs. 

When designing a system, it is important to identify its required and desired properties. 

Once these have been identified, the designer can select the MoC whose semantics will 

make it easier to express, verify and guarantee those properties by construction. 

The objective of this section is to give a definition of the properties used to characterize 

and compare the MoCs presented in Section 4. 

3.1. Properties 

This section lists a set of commonly used properties utilized to compare the system 

characteristics supported by different MoCs. 

Analyzability 

The analyzability of a MoC evaluates the availability of analysis and synthesis algorithms 

that can be used to characterize applications modeled with this MoC. For example, in the 

synchronous dataflow MoC, analysis algorithms can be applied at compile-time to 

compute the worst-case latency or the maximum memory requirements of a design. 

Conciseness 

The conciseness (or succinctness) of a MoC captures its ability to express complex 

system behaviors with a limited description size. This relative property is useful for 

comparing MoCs with equivalent expressiveness. Indeed, conciseness is often a desired 

feature for system developers as the design of an identical application with two MoCs (of 

identical expressiveness) will lead to a smaller design with the more concise MoC. 

Compositionality 

A modular MoC is compositional if the analyzable properties of a module described with 

this MoC are independent from the internal specification of the submodules that compose 

it [Ostroff 1995]. For example, in a compositional MoC, if each submodule used in the 

design is (independently) deadlock free, then the whole design combining these 

submodules will be deadlock-free by construction. 

Decidability 

A MoC is decidable if the schedulability of applications described with this model can be 

proved statically (i.e. at compile time) [Bhattacharyya 2006]. Hence, using a decidable 

MoC makes it possible to guarantee at compile-time that a system will never reach a 

deadlock state and that its execution will require a finite amount of memory. A non-

decidable MoC does not mean that applications will not be schedulable, only that their 

schedulability can only be verified “on the fly” at runtime. Decidability is often obtained 

as a trade-off for a limited expressiveness of the MoC. 
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Determinism 

A MoC is deterministic if the output of an algorithm only depends on its inputs, but not 

on external factors such as time or randomness. If determinism is a desired feature for 

most control and streaming applications, non-determinism may also be needed to 

describe applications reacting to unpredictable inputs. 

Expressiveness 

The expressiveness, of a MoC evaluates the complexity of application behaviors that can 

be described with this MoC. For example, the expressivity of the Dataflow Process 

Network (DPN) MoC has been proven to be equivalent to a Turing machine. The 

specialization of a MoC restricts the expressivity of this MoC to increase its 

analyzability, or to give it new properties such as determinism or decidability. 

Expressivity is often mistaken for conciseness. For example, the Cyclo-Static Dataflow 

(CSDF) MoC is often said to be more expressive than the Synchronous Dataflow MoC 

but meaning instead that it has a better conciseness. 

Modularity 

In a modular (or hierarchical) MoC, a system description can be broken into several 

independent modules. The modules that are combined to create a system can be (re-)used 

either in different systems specification or instantiated several times in the same. The 

modules themselves can be described using the same MoC as the top-level system 

description or can encapsulate other compatible MoCs. 

Parallelism 

In a parallel MoC, several independent elements of a system description may “activate” 

concurrently and independently from each other, each causing a change in the current 

state of the system. In a sequential (i.e. non-parallel MoC), all changes of the system state 

can be broken down to a sequence of actions triggered one after another, according to the 

system semantics.  

Reconfigurability 

A MoC is reconfigurable if the behavior of entire parts of a system description can be 

modified dynamically, to fulfill future execution goals for a foreseeable amount of time. 

Reconfiguration is used to dynamically adapt the behavior of a system to its environment, 

notably by enabling or disabling parts of the system, by modifying its functional behavior 

(e.g. its computations, QoS, …), or by modifying its non-functional properties (e.g. 

exposed parallelism, energy consumption, …).  

Predictability 

The predictability property is related to the reconfigurability property of a MoC. This 

property evaluates the amount of time between a reconfiguration of a part of the system, 

and the beginning of activity in the reconfigured part. The more predictable a MoC is, the 

more the time that can be used by a runtime manager to react and perform an 

optimization of the reconfigured part before using it.  
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3.2. Additional MoC Comparison Criteria 

This section introduces a few other criteria that can be used to compare MoCs. These 

comparison criteria denote different classes of applications that a MoC can be used to 

represent. Unlike the properties presented in the Section 3.1, which capture properties 

supported (or not) by MoCs, this section introduces more subjective comparison criteria. 

Indeed, if some MoCs seem more suitable to implement a given class of applications, 

using them to implement another class may still be possible, but less practical or less 

common. 

Algorithms Computation Classification 

Algorithms described with a MoC can be classified into several classes depending on the 

type of involved computation: 

• Stream-based: A continuous stream of data is steadily processed and produced 

by the described algorithm. The amount and nature of the computation do not 

vary depending on the data. 

• Data-driven: The amount and nature of the computation do not vary depending 

on the data. Contrary to stream-based algorithms, data does not necessarily arrive 

continuously. 

• Control Driven: The amount and nature of the computation depend on the 

processed data. 

• Event Driven: Computations are triggered by events on the frontier of the system 

(i.e. by sensors, users, communication network, …).  

Captured Algorithms Granularities 

MoCs with different levels of abstractions are inherently suitable for representing 

behaviors of diverse granularities: 

• Function: The modeled algorithm captures computations that are building blocks 

used to assemble an algorithm with a higher granularity. 

• Component: The modeled algorithm serves a well-specified purpose with clear 

input and output interfaces and constraints. 

• System: The modeled algorithm represents a collection of components with 

diverse objectives but running locally on a unique computing system. 

• System-of-systems: The modeled algorithm consists of several independent 

“systems”, each existing and evolving independently from the others but 

exchanging information among them through communication channels. 

Implementation Types 

A MoC is a theoretical representation used to describe the behavior of an application. 

Implementing a MoC consists in translating this theoretical behavior into an “executable” 

description. Different types of implementations can be more or less suitable to implement 

each MoC: 

• Hardware: Algorithms described with this type of MoC can be efficiently 

translated into logical gates, signals, and registers on an ASIC or an FPGA. 
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• Software: Algorithms described with this type of MoC can be efficiently 

translated into a sequence of instructions executed on a processor that manipulates 

data stored in a memory space. 

• Distributed: Algorithms described with this type of MoC can be efficiently 

implemented by splitting them into several parts executed on separate Hardware 

or Software components, each storing a part of the system state and executing a 

part of the computations in parallel. 

• Heterogeneous: Algorithms described with this type of MoC can be efficiently 

translated into a mix of hardware and software implementations. 



H2020-ICT-2016-1-732105 - CERBERO 

WP3 – D3.5: Models of Computation 

Page 14 of 34 

4. Surveyed Models of Computation 

Using key characteristics of MoCs defined in Section 3, this section briefly introduces 

state-of-the-art Models of Computations used to specify Cyber-Physical Systems. 

Starting from MoC for hardware description, we increase the level of abstraction and 

expressiveness of models up to the system requirements level.  

4.1. Register Transfer Level  

MoC brief description 

The Register Transfer Level (RTL) models are intended for detailing the behavior and the 

structure of hardware. Hardware Description Languages (HDLs), such as VHDL or 

Verilog are mature and standardized languages that support this model of computation. 

They are parallel languages with modular representations (structure decomposition) and 

explicit parallelism at behavioral level. This, combined with the event-driven 

characteristics that are used to reflect the behavior of the system at clock cycle level, 

make these models very precise though too low-level for simulating large systems or 

systems of systems. 

They can be used as design-entry level specification for relatively small to medium size 

hardware modules. Also, with the availability of High Level Synthesis (HLS) tools and 

the profusion of back-end tools to produce RTL from higher abstraction levels or other 

MoCs, this language is being relegated as a requirement for HW fabrication, but not as a 

conventional entry point. 

RTL synthesizers are tools that transform RTL into netlists of logic gates. They are 

mature, commercially available, in cases customer dependent tools that take an RTL 

specification as an entry point and produce a netlist or, even further, a bitstream to be 

downloaded into reconfigurable devices such as FPGAs. 

MoC properties  

This model is the best representative for HW targets. They are modular and composable 

(with hierarchical description of components) due to the capability of modelling 

structure, as well as analyzable because of their property for describing behavior or 

functionality. The event-driven specification at clock-cycle level makes it predictable and 

deterministic (except for some rarely used constructs that are not common for synthesis—

oriented products). RTL-level in HDLs contains the synthesizable constructs, while 

HDLs at higher levels of abstraction (not time-specific) are not considered RTL 

Relationship with other MoCs  

HLS tools provide transformations from C/C++/System-C/OpenCL specifications as well 

as for several dataflow-oriented MoCs, provided the availability of back-end tools that 

transform these models into RTL.  

MoC Usage 

RTL is clearly targeted for HW fabrics. These fabrics are useful to accelerate 

performance while providing reasonable energy consumption when dealing with data 

intensive applications. In the context of heterogeneous computing, more control-intensive 
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tasks will be more likely to be used in SW, while compute intensive tasks will be favored 

towards HW implementations.  

MoC Support 

HDLs supporting RTL are very mature and so they account with basic tools such as 

synthesizers, simulators, physical mapping tools (i.e. the layout for an ASIC or the 

bitstream for an FPGA). They also account with accurate models for estimating power 

consumption, as well as some indirect reliability indicators such as code coverage tools, 

assertion-based verification, etc. In CERBERO, HW-oriented targets ARTICo3 and MDC 

will rely on RTL and conventional synthesis to obtain a suitable bitstream, while JIT 

composition will rely on pre-synthesized blocks (represented as bitstreams) that, by 

composing them dynamically will produce a module with a required new functionality. 

4.2. Synchronous Dataflow 

MoC brief description 

The Synchronous Dataflow [Lee 1987] MoC models an application as a directed graph of 

computational entities, called actors, that exchange data through a network of First-In 

First-Out queues (FIFOs). Each time an actor is executed, or fired, it consumes and 

produces a fixed quantum of data, called data token, on the FIFOs to which it is 

connected. An example of SDF graph is given in Figure 3 - Example of Synchronous 

Dataflow Graph. 

 
Figure 3 - Example of Synchronous Dataflow Graph 

MoC properties  

Synchronous Dataflow is a parallel and decidable MoC that exhibits one of the greatest 

degrees of analyzability among dataflow MoCs. Coupled with the determinism of the 

MoC, its analyzability makes it possible to prove algorithms deadlock freeness and 

boundedness at compile time and is often used to guarantee real-time properties (e.g. 

throughput, latency, worst-case execution time) of applications modeled with it. This 

great analyzability comes at the expense of a limited expressiveness of the MoC, because 

of the absence of any reconfiguration semantics in the MoC. The original MoC described 

in [Lee 1987] is not modular.  

Relationship with other MoCs  

The SDF MoC belongs to the family of dataflow models of computation. As one of the 

dataflow MoCs with the most restrictive semantics, SDF behavior can be expressed in 

most dataflow models. 
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As demonstrated in [Klikpo 2016], the MoC implemented in Labview® is equivalent to 

the SDF MoC. 

There exist several dataflow MoCs with an equivalent expressiveness with the SDF MoC: 

• The Cyclo-Static Dataflow [Bilsen 1996] and Affine Dataflow [Bouakaz 2012] 

MoCs which have a greater conciseness than the SDF MoC while retaining all its 

analyzability, by specifying sequences of production and consumption rates 

instead of scalar values. 

• The Interface-Based SDF [Piat 2009] and Deterministic SDF with Shared FIFO 

[Tripakis 2013] MoCs which are two modular and compositional extensions of 

the SDF MoC. 

MoC Usage 

Synchronous Dataflow is mainly used to describe stream-based and data-driven 

algorithms, mostly at function and component levels. The SDF MoC is suitable for all 

kinds of implementations. 

MoC Support 

The SDF MoC is natively supported in the following tools: Ptolemy II [Davis 1999], 

SDF3 [Stuijk 2006], PREESM [Pelcat 2014], MDC [Palumbo 2017], LIDE [Shen 2011].  

4.3. Parameterized and Interfaced Synchronous Dataflow 

MoC brief description 

The Parameterized and Interfaced Synchronous Dataflow (PiSDF) is the result of 

applying the Parameterized and Interfaced dataflow Meta-Modeling methodology 

[Desnos 2013] to the SDF MoC. PiSDF adds parameterization and interfaced hierarchy to 

the SDF MoC. The PiSDF MoC models an application as a directed graph. Besides actors 

and FIFOs (see section 4.1), parameters, hierarchical interfaces and parameter 

dependencies can also be vertices of the graph.  

Parameters are employed to configure and modify dataflow specifications. Parameters 

can influence (1) the functionality of an actor, (2) the production/consumption rates of 

actor ports, (3) the value of another parameter and (4) a delay of a FIFO. Hierarchical 

interfaces convey data tokens or parameter values between levels of hierarchy. 

Hierarchical interfaced actors, or simply, hierarchical actors, are univocally linked to 

PiSDF subgraphs. Parameter dependencies propagate parameter values to other elements 

of the graph. 

Actors, hierarchical or non-hierarchical, can have two types of ports: data ports and 

configuration ports. Data ports exchange data and configuration ports parameters. 

Parameters are connected to configuration ports through parameter dependencies. Both 

types of ports can be declared as input or output ports. An actor with an output 

configuration port is named a configuration actor. Firing of configuration actors 

dynamically produces values that set configurable parameters. The firing is only 

permitted at specific instants of time during a graph execution. 

There are two types of parameters in a PiSDF MoC: configurable parameters and locally 

static parameters. Configurable parameters can be modified in each graph iteration, i.e. at 

run-time. Locally static parameters can only be modified at design-time. Parameter 



H2020-ICT-2016-1-732105 - CERBERO 

WP3 – D3.5: Models of Computation 

Page 17 of 34 

values passed through input configuration interfaces of hierarchical actors always become 

locally static parameters of hierarchical (sub)graphs. 

Output configuration ports are always connected to configurable parameters. A change in 

a configurable parameter is the result of a change in either an output configuration port of 

an actor or another configurable parameter the former depends upon.  

MoC properties  

PiSDF inherits the properties of SDF (see section 4.1) and adds the modularity and 

reconfigurability properties, with the advantage of keeping the analyzability of SDF. As 

the reconfiguration semantics is included into PiSDF, its expressiveness is greater than 

that of SDF. Besides modularity, reconfigurability is extremely handy in the context of 

cyber-physical systems, which is why in the CERBERO project we intend to use and 

extend PiSDF (see Section 5). 

Relationship with other MoCs  

The PiSDF MoC is related to the Interface-Based SDF [Piat 2009], from which it inherits 

the compositional hierarchy mechanism. The PiSDF MoC has the same expressiveness, 

but a better conciseness, as the Parameterized SDF MoC [Bhattacharya 2001] 

MoC Usage 

PiSDF is mainly used to describe stream-based, data-driven and control-driven 

algorithms (with a reduced number of configurable parameters in practice), mostly at 

functional and component levels. The PiSDF MoC is suitable for implementations in 

heterogeneous systems [Heulot 2014]. 

MoC Support 

The SDF MoC is natively supported in the tool PREESM [Pelcat 2014], and the Spider 

runtime [Heulot 2014] is used to support the reconfiguration of graphs during execution. 

The tools MDC [Palumbo 2017] and ARTICo³ will support this MoC and integrate with 

PREESM and Spider. The objective is to offer new scheduling and mapping choices to 

the runtime manager when dealing with reconfigurable hardware, i.e. hardware and 

software implementations for an actor. The decisions will be driven by on-the-fly 

readings of performance indicators using the Performance API (PAPI). 

4.4. Bulk Synchronous  

MoC brief description 

The Bulk Synchronous Parallel (BSP) MoC has been introduced by Valiant in 

[Valiant 1990]. This MoC is well suited to some types of highly parallel architectures 

such as GPU architectures, which makes it a very popular MoC. Figure 4 - Example of a 

Bulk Synchronous Model shows an example of an application representation using the 

BSP MoC. 
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Figure 4 - Example of a Bulk Synchronous Model 

BSP divides an application into several phases called supersteps. A BSP computation is 

composed of a set of components (we will call them agents). Each agent has its own 

memory. An agent can access the memory of another agent through a remote access 

(message) via a so-called router. The computation execution happens in a series of 

supersteps consisting of processing efforts, remote accesses and a global synchronization. 

MoC properties  

Bulk Synchronous Parallel is a decidable MoC which fosters execution parallelism. 

However, the processing of each core is modeled independently and statically divided 

into supersteps. Consequently, the conciseness, expressiveness and reconfigurability are 

limited. The size of supersteps offers a tradeoff between synchronization overhead and 

potential parallelism. BSP also provides a time performance evaluation for a superstep, 

giving the MoC some properties of a Model of Architecture (MoA) [Pelcat 2018]. 

Relationship with other MoCs  

With respect to dataflow MoCs, including modularity and compositionality and well 

suited for application specification, BSP may be used as an intermediate representation 

for generating code for a parallel platform, limiting the backend complexity to a simpler 

support of a superstep at the cost of regular global synchronizations. As an example of a 

recent BSP study, Kapre et al. [Kapre 2017] discuss the pros and cons of using BSP 

versus SDF over OpenCL pipes on an FPGA. 

MoC Usage 

The BSP MoC can be used in PREESM or other SDF-based tools for both stream 

processing and batch processing. It needs a relatively large parallelism in the platform to 

be relevant. 

MoC Support 

• Bulk synchronous parallel ML [Loulergue 2005]. 
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4.5. Kahn Process Networks 

MoC brief description 

Process Networks – also called Kahn Process Networks (KPN) after G. Kahn who first 

introduced them in his thesis [Kahn 1974] – is a MoC for describing signal processing 

systems where infinite streams of data are incrementally transformed by processes 

executing in sequence or parallel. 

Process Networks are directed graphs where nodes represent computing processes and 

arcs are infinite message queues that connect these processes. Writing to a channel is 

non-blocking but reading is blocking. It cannot be waiting for data on one or another 

input channel. 

It was proposed for modeling distributed systems but has proven its convenience for 

modeling signal processing systems as well. As pointed out by Edward Lee in [Lee 

1995], this MoC does not require multitasking or parallelism and usually neither infinite 

queues; it is in fact usually more efficient than comparable methods in functional 

languages. 

MoC properties  

Processes in a KPN produce data elements that are placed in a communication channel 

and consumed by the destination process. Communication channels are the only way 

processes may exchange information. KPN systems are deterministic because the history 

of tokens produced/consumed does not depend on execution order. As discussed by 

[Parks 1995], it is not possible to tell in a finite time whether an arbitrary Process 

Network will halt in its streaming of data. Such behavior is related to two properties: 

termination and boundness. These properties are undecidable in finite time for the 

general case but, under some restrictions, we can study and classify PN before execution. 

Also, they are compositional. 

Relationship with other MoCs  

KPNs are a generalization of the Dataflow models described in section 4.1.  

MoC Usage 

Process Networks have found many applications in modeling embedded systems as it is 

typical for embedded systems to be designed to operate infinitely with limited resources. 

MoC Support 

Commercial systems like SPW from Alta Group of Cadence, COSSAP from Synopsys, 

the DSP Station from Mentor Graphics, Hypersignal from Hyperception or Simulink by 

Mathworks and research software tools like Khoros from the University of New Mexico 

and Ptolemy from the Univ. of California at Berkeley, are all based on variants of the PN 

model. Departing from the original Process Networks by Kahn, several more specific 

models have been derived.  

In CERBERO, KPNs are the underlying semantics of the communication between tasks 

in the DynAA simulation tool of TNO. 
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4.6. Dataflow Process Network  

MoC brief description 

The Dataflow Process Network (DPN) [Lee 1995], also known as Dynamic Dataflow 

Model (DDF) is a MoC where data processing nodes, named actors, communicate 

through unidirectional unbounded FIFO channels. Actors are provided with a set of firing 

rules specifying the amount of data (tokens) required on the input channels to trigger the 

processing (fire). The firing of an actor consumes tokens from the input channels and 

produces tokens to the output ones. Figure 5 - Example of Dataflow Process Network 

Graph depicts an example of a DPN graph. 

 
Figure 5 - Example of Dataflow Process Network Graph 

MoC properties  

DPN is the most expressive dataflow MoCs: it is Turing-complete, meaning that it can 

describe any deterministic or non-deterministic algorithm. This high degree of 

expressiveness comes at the price of analyzability, since depending on the specific case, a 

DPN could be very hard to analyze (e.g. for graphs modeling non-deterministic 

algorithms). Due to its non-deterministic nature, the DPN MoC exhibits also non-

decidability and a restricted parallelism with respect to less expressive MoCs (such as 

SDF). 

Relationship with other MoCs  

Being the most expressive MoC among dataflow ones, a DPN can describe all other more 

restrictive dataflow MoCs, such as: 

• SDF and PiSDF, obtained by limiting firing rules to one per actor and to fix its 

token rates; 

• Kahn Process Network (KPN) by removing non-determinism behavior: action 

firings must be deterministic (output tokens depend only on input tokens without 

side effects) and the set of firing rules for each actor has to be sequential (they can 

be tested in a pre-defined order using only blocking reads [Lee 1995]). 

DPNs can also be translated or expressed by means of other MoCs with the same or an 

enhanced expressiveness, such as a generalized PNs [Dimitrov 2017]. 

D
a

b
c

e

A a

B b

C c

Ee

Rules {a, b, c}:

R₁ = {[*],  , [T]}
R₂ = { , [*], [F]}

[*] = at least one token
 = don’t care

[T] = boolean true
[F] = boolean false
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MoC Usage 

DPNs are usually adopted for streaming applications with intensive computation, task 

parallelism and data locality, such as audio and video coding. The DPN MoC can 

describe any kind of application [Lee 1995]. 

MoC Support 

The DPN MoC is supported by several frameworks and tools: Orcc [Yviquel 2013], 

CAPH [Serot 2014], MDC [Palumbo 2017], LIDE [Shen 2011]. 

4.7. Petri Networks 

MoC brief description 

Petri Nets (PNs) are one of the most important families of discrete event modeling 

formalisms. It was firstly introduced in the early 1960s by Carl Adam Petri as a bipartite 

weighted directed graph with two types of vertices called places (represented by circles) 

and transitions (represented by bars or rectangles). The ‘execution’ of a Petri Net can be 

seen as a game whose rules regulate the activation of transitions and transfer of 

information tokens between places. We refer to [Giua 2007] for a comprehensive system 

theory point of view on Petri Nets. 

 
Figure 6 - Petri Nets semantics. 

MoC properties  

Petri nets are both a graphical and mathematical formalism, which provide a useful 

visual tool both in the design and analysis phase. They build on a concise representation 

of systems with a very large state space. Indeed, they do not require representing 

explicitly all states of a dynamical system but only an initial one – the rest of the state 

space can be determined from the rules that govern the net evolution. 

Petri nets are modular and parallel; i.e., if a system is composed of several subsystems 

that interact among them, it is possible to represent each subsystem with a simple subnet 

and then combine the subnets to obtain a model of the whole system. 

The execution of Petri nets is non-deterministic. If multiple transitions are enabled at the 

same time in a PN model, any one of them can fire. Also, it is not guaranteed that an 

enabled transition fires. An enabled transition can fire immediately or after any amount of 
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time (provided it remains enabled), or not fire at all. A comprehensive overview on the 

properties of PNs can be found in [Seatzu 2013]. 

Relationship with other MoCs  

Many other models of computation may be derived from extending the rules of Petri 

Networks. For systems theory and the design of CPSs, the most important of these 

siblings are Hybrid Petri Nets, which represent both time- and event-driven components 

[Alla 1998]. Coloured Petri Nets [Kurt 1996] allows distinctions between the tokens and 

attribution of more sophisticated semantic rules to the firing of the transitions. Instead of 

extending the Petri net formalism, we can also look at restricting it. That yields another 

plethora of modeling formalisms that are important as well: state machines, marked 

graphs, and (extended) free choice networks. Each of which of these sub-classes modifies 

the basic properties of this MoC, for example, state machines are not parallel, and 

marked graphs are parallel and deterministic. 

 

MoC Usage 

Petri nets have been specifically designed to model systems with interacting components 

and as such are able to capture many characteristics of an event driven system, namely 

concurrency, asynchronous operations, deadlocks, conflicts, etc., [Cassandras 2008]. 

While they are not specifically designed for self-adaptive systems, Petri Nets can model 

self-adaptation on the system level. 

MoC Support 

PNs is the MoC rendered in the simulation engine of DynAA [Oliveira 2013], used in the 

CERBERO project. The University of Hamburg [Hamburg 2018] maintains a large 

database on academic and commercial tools that use PNs as a base. 

4.8. Discrete Event System 

MoC brief description 

Discrete Event Systems (DES) is a model of computation mainly used for modelling and 

simulation [Zeig 2000]. The discrete event formalization provides the basis for 

orchestrating the occurrence of events in time during the simulation of a (cyber) system. 

The principles of a DES MoC are: 

• The world is made of objects (things) and events; 

• Only objects can generate events and only objects react to events.  

• The state of the system can only be manipulated (modified) by objects upon the 

occurrence of an event, thus only in discrete points of time when an event occurs. 

 
Figure 7 - Example of Discrete Event System 
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In discrete-event models, components communicate via signals consisting of events 

placed on a time line. Events are processed in a chronological order.  

MoC properties  

Discrete event models are very practical to model and understand and have a huge 

(practical) application range. Nevertheless, most of the properties for such models of 

computation are not guaranteed in a broad aspect and fail to exist in extreme cases. For 

example, discrete events are not compositional, because some discrete event sources may 

eventually block future events in the timeline to occur – for example, sources that lead to 

a Zeno condition.  

Discrete event models often have to use a technique called superdense time that allows to 

model sequence of causally-related events (events that causes another events) to exist at 

the same time tag (instantaneous). This can lead to difficulties in proving or defining 

properties in the sense discussed earlier in this document. For example, the existence of 

real concurrency and determinism properties is dependent on how simultaneous events 

are chosen to fire. Choices that force a strict order become deterministic, but not 

concurrent (e.g. events concur on the same resource). On the other hand, if choices are 

random, the system becomes concurrent, but not deterministic. 

Imposing further restrictions to the way events are triggered, combined, and handled 

yields other MoCs– see for example PNs. 

Relationship with other MoCs  

Everything modelled by computer can be represented by DES. Consequentially, other 

MoCs discussed in this document can be related to DES. PNs, Process Networks, SDF, 

etc., and all others herein can be described using discrete event theories. In a sense, the 

discrete event MoC focuses specially in attributing rules for the execution of the 

simulators, trying to establish a base for how race conditions are to be solved. 

MoC Usage 

This MoC is well suited for modeling digital circuits, communication networks, business 

processes, queue systems, etc. 

MoC Support 

There is a huge number of simulators based on discrete events.  The most known ones are 

SimEvents [Mathworks], GoldSim [GoldSim], AnyLogic[AnyLogic], 

PtolemyII[Ptolemy]. 

In CERBERO, the tool DynAA developed by TNO is a modelling and analysis 

environment tightly coupled with a discrete event engine. 

4.9.  Situated Cognitive Engineering 

MoC brief description 

Situated Cognitive Engineering (sCE) is a knowledge-based multi-agent MoC developed 

to establish the required normative (policy-based) system behaviors concerning both 

planned (procedural) work and anomaly detection, re-planning and recovery processes. 

Using formal relations established between knowledge at distinct levels of abstraction, 
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reasoning rules are introduced that enable the system to navigate through these levels, 

providing the capability to inference high-level failures based on anomalous component 

status. Applications based on sCE are software implementations that can be easily 

distributed to assess CPSoS scenarios, typically in the form of an ePartner (see Error! 

Reference source not found.). 

 
Figure 8 - sCE monitoring and decision process 

 

MoC properties  

sCE [Bosse 2017] is a concise way to represent the safety constraints that a system 

should exhibit during execution. Situated cognitive engineering provides a deterministic 

and expressive way to define the conditions to check and the required actions to return to 

a nominal state when unforeseen events occur. Each condition could be considered as a 

module that can be executed in parallel and interacts with the rest of the conditions by 

sharing information through a database. As well, each module can interact with external 

systems to provide reconfigurability and modularity (in an event-driven schema), at 

component system and system-of-systems levels by exploiting decision-making 

processes. 

Relationship with other MoC  

N/A 

MoC Usage 

sCE is used to define safety constraints that shall hold during the execution of a system, 

providing support to monitoring, diagnosis and decision-making to overcome anomalous 

states of the controlled system. It is possible to deploy reasoning rules from the 

component level to system-of-systems in distributed applications. 

MoC Support 

sCE is supported in the MECA-HEART tool [MECA 2015]. 
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4.10. Transition System 

MoC brief description 

Transition systems are used as models to describe the behavior of systems. They are 

usually represented as directed graphs where nodes represent states (that describe some 

information about a system at a certain moment of its behavior), and edges model 

transitions (state changes). In particular, Kripke structures (see, e.g., [Clarke 1999]) are 

traditionally used for the interpretation of temporal logics such as the Linear Temporal 

Logic (LTL) in automata-based LTL model checking [Vardi 1986]. This approach is 

based on the fact that each LTL formula (representing a property to be checked) can be 

represented by a non-deterministic Buchi automaton and check the if such formula holds 

in the transition system. 

MoC properties  

The product transition systems obtained for automaton-based LTL model checking is a 

decidable (for finite systems) and deterministic MoC. 

Relationship with other MoC  

N/A 

 

MoC Usage 

This MoC is mainly used for control-driven and event-driven representations at the 

component and/or system level. 

MoC Support  

The most noticeable tool implementing this MoC is the model checker SPIN [Holzmann 

1997] and it will be used within the CERBERO framework by the Verification Tool 

(VT). 

4.11.  Summary 

Following is a table that summarizes the MoCs and their properties. 
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MoCs

Analyzability

Conciseness

Com
positionality

Decidability

Determ
inism

Expressiveness

M
odular

Parallelism

Predictability

Reconfigurability

RTL + ++ + ++ ++ +

SDF ++ + + + - -- + --

Cyclo-Static ++ ++

Interface-Based SDF ++ + +

Deterministic SDFwith 

Shared FIFO
++ +

PiSDF ++ ++ + + + ++ + + +

BSP - + + - + ++ -

KPN + - + +

DPN - - + ++ -

PN + + - ++ + + +

DES - ++ - +++ ++ ++ - +

SCE + + + + +

TS + +

 

Table 4-1: SDF: Synchronous Dataflow; PiSDF: Parameterized and Interfaced 

Synchronous Dataflow; BSP: Bulk Synchronous Parallel; PN: Petri Networks; DPN: 

Dataflow Process Network; RTL: Register Transfer Level; TS: Transition System; KPN: 

Kahn Process Networks; DES: Discrete Event System; sCE: Situated Cognitive 

Engineering. Non-bold MoCs are those inherited from their parent (first bold one above). 

Blank cells indicate a MoC has no specific traits for the property. 
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5. CERBERO Innovation on Models of Computation for CPS 

Given the characteristic properties of the MoCs presented in Section 3 and the list of 

them surveyed in Section 4, this section presents the envisioned contributions of the 

CERBERO project to the model of computations domain. The main motivation behind 

these contributions is to support the specification of key aspects of CPSs. 

5.1. Dataflow Extension for Persistent State Representation 

Main contributors: INSA, UPM 

Motivations 

In synchronous dataflow MoCs, as for example in the SDF, PiSDF models presented in 

Section 4, the semantics is dedicated to the processing of infinite streams of data. To this 

purpose, the semantics of these dataflow MoCs has been tailored to capture in a concise 

form the data-parallelism and determinism of algorithms executed infinitely repeatedly, 

with numerous and entangled data dependencies.  

Despite the many advantages of the semantics of SDF models, these cannot currently be 

used to represent concisely and unambiguously the persistence or the sporadic 

initialization of data within algorithms. In CPSs, where computing systems must 

continuously adapt their behavior to the physical environment enclosing them, these 

persistent data are needed to capture the adaptive state of algorithms, which may be 

sporadically updated to fit them to an evolution of their working environment. An 

example of such persistent data is the coefficients encoding the learning ability of the 

neurons in on-line machine learning algorithms. 

Envisioned Contribution 

Within CERBERO, an extension of the SDF models semantics is envisioned to support 

the specification of both persistent and sporadically updated data in described algorithms. 

This contribution will extend the existing semantics of dataflow by building on an 

existing element called delay. While improving the expressiveness and conciseness of the 

MoCs, this extended semantics will preserve the analyzability, the compositionality, and 

the data parallelism of the synchronous dataflow models. 

Use in CERBERO 

This extension of the dataflow model is suitable for the modelling of any CPS system. 

With an implementation of this contribution within PREESM & Spider, its use within 

CERBERO will be demonstrated with an implementation of a reinforcement learning 

algorithm that is applicable to any control system, such as the robotic arm of the Space 

Exploration Use-Case. 
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5.2. Non-Functional Properties Modelling in Dataflow 

Main contributor: INSA, UPM 

Motivations 

Synchronous dataflow MoCs focus on the functional modelling of applications. To this 

purpose, the semantics of these dataflow models is dedicated to the representation of 

untimed computational and data transfer aspects of algorithms, independently from any 

implementation consideration. Although this implementation-independence principle 

grants the dataflow MoCs a great portability, it prevents them from being used for 

specifying non-functional properties of modeled algorithms, such as real-time properties 

that are critical for the design of constrained CPSs. 

In state-of-the-art work on using synchronous dataflow MoCs for the specification of 

real-time systems, this issue is generally alleviated by breaking the architecture-agnostic 

principle of the model, as for example by associating an architecture-specific worst-case 

execution time to actors of a dataflow graph. Analyses based on these execution times are 

then used to predict the execution time of the application for the specific target. 

Envisioned Contribution 

An extension of the semantics of synchronous dataflow MoCs will be proposed within 

CERBERO to support the specification of non-functional properties in dataflow graphs. 

Unlike state-of-the-art work, the proposed semantics will be used to specify non-

functional property as a design constraint of the algorithm, independently from the 

targeted architecture, thus retaining the portability of applications specified with the 

MoC. Consequently, it will be the responsibility of the design space exploration (DSE) 

tools and algorithms to simulate or profile the different components of the application, at 

compile-time and at runtime, and make sure that the specified constraints hold for the 

targeted system. Envisioned non-functional properties supported by the new semantics 

are real-time properties (throughput, latency, response time to events), but also other key 

performance indicators (KPIs) specified in D3.4, such as power and energy consumption. 

Use in CERBERO  

This extension of the dataflow MoC semantics will be implemented within the PREESM 

and Spider tools and connected to the KPI specification within the CERBERO 

Intermediate Format presented in D3.6. Papify implementation with MDC & ARTICo3 

will enable the application profiling and energy monitoring on heterogeneous platforms, 

thus providing a good support to enforce non-functional properties captured in the 

extended dataflow model. 

5.3. Moldable Parameters in Dataflow for Extended Design-Space 

Exploration 

Main contributors: INSA, IBM 

Motivations 

The DSE phase based on SDF MoCs mostly consists of mapping parallel actor 

executions on the heterogeneous computational hardware resources of the targeted 
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architecture, and the data transfers on the hardware means of storage and communication. 

In those cases where the number of parallel actors to map largely exceeds the available 

resources of the architecture, DSE optimization algorithms face an important increase in 

the complexity of the mapping problem. In such cases, developers will often manually 

update the model of their applications to adopt a coarser granularity of description. This 

coarser granularity translates into less numerous but ‘larger’ actors to execute. As 

illustrated in [Hascoet 2017], by carefully adjusting the granularity of the application 

description, enough elements will be exposed to permit a fair distribution of work on the 

available hardware resources, with a reasonable complexity exposed to the DSE 

algorithms. 

Envisioned Contribution 

The adaptation of the granularity of the application exposed to the DSE algorithm is 

generally left to the designer of the application. The objective of this contribution is to 

extend the semantics of SDF models to support the specification of so-called moldable 

parameters. A moldable parameter is a parameter associated to a range of acceptable 

values, thus leaving the responsibility to the DSE algorithm to select the most appropriate 

one in its optimization process. In general, moldable parameters are supposed to change 

only the ‘organization’ (e.g. like the exposed degree of parallelism) of computations, but 

not the output they produce. Hence, by specifying moldable parameters in SDFgraphs, it 

will be possible for the designer to let the DSE algorithms automatically control the 

parallelism and granularity of the application to obtain the best DSE solution in minimum 

time. 

Use in CERBERO  

The moldable parameters will be integrated within PREESM during the CERBERO 

Project. It is envisioned that DSE optimizations based on this extended semantics will be 

provided through a connection to AOW. 

5.4. Extension of PiSDF MoCs through polyhedral transformations 

Main contributors: UPM 

Motivations 

Polyhedral transformations are a solid set of well-known techniques to extract parallelism 

from nested loops. Despite the extensive literature available and research conducted, the 

constraints imposed on the code to be analyzed, make the application of polyhedral 

transformations difficult to be generalized. Briefly speaking, these limitations are mainly 

related to dynamic behaviors such as those expressed with PiSDF MoC. Currently, 

PiSDF related tools like PREESM consider each actor as a black box, so its contents are 

transparent to the tool. As a result, several parallelization opportunities could be missed, 

since it is up to the designer to explicitly consider this parallelization in the code 

describing the actor.  

Envisioned Contribution 

The main objective with this extension is to expand the polyhedral model to support the 

extraction of intra-actor available parallelism at run-time. This extraction will depend on 

model parameter changes and can be considered as an adaptation process. 
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Use in CERBERO 

This extension will be first applied in PREESM, which is the PiSDF MoC used within the 

CERBERO project. 
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6. Conclusions 

In this document we provided an overview on the state of the art (Section 4) and 

innovative activities (Section 5) that we are doing in CERBERO in terms of Model of 

Computations (MoCs). Table 4-1 provided a summary of the properties that the analyzed 

MoCs offer to the designer.  

Since CERBERO is following a model-based approach and models are key ingredients to 

solve interoperability issues (as it will be deeply discussed in D3.6 that describe in detail 

CERBERO modeling activities), we provide in Table 6-1 a summary MoCs behind the 

tools of the CERBERO framework (where possible, for example the AOW tool does not 

refer to a specific MoC for computational system components). Please note that we 

indicate with (S) the already adopted/supported MoCs and with (P) models that are going 

to be supported by the end of the CERBERO project. In D5.6 (the deliverable that 

presents the tools composing the CERBERO framework) this mapping will be enriched 

to make clear which tools, and indirectly which models, are used in the different use 

cases. 

 

Table 6-1 – CERBERO Tools to MoC Mapping. S: support, P: planned support within CERBERO duration 

 SDF PiSDF PN KPN DPN RTL DES SCE TS 

MECA        S  

VT         S 

DynAA   S S   S   

AOW          

PREES

M 
S S   

     

SPIDER  S        

PAPIFY  P   S     

JIT HW      S    

ARTICo³  P    S    

MDC S P   S S    
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