

Information and Communication Technologies (ICT)

Programme

Project No: H2020-ICT-2016-1-732105

D3.5: Models of Computation

Lead Beneficiary: INSA

Workpackage: WP3

Date: 08/06/2018

Distribution - Confidentiality: [Public/Confidential]

Abstract:

This documents surveys state-of-the-art Models of Computation (MoC) used for the

design of Cyber-Physical Systems. The MoCs used within the CEBRERO Project are

specified and the planned innovations are presented in the last section of this document.

© 2018 CERBERO Consortium, All Rights Reserved.

Ref. Ares(2018)4047087 - 31/07/2018

H2020-ICT-2016-1-732105 - CERBERO

WP3 – D3.5: Models of Computation

Page 2 of 34

Disclaimer

This document may contain material that is copyright of certain CERBERO beneficiaries,

and may not be reproduced or copied without permission. All CERBERO consortium

partners have agreed to the full publication of this document. The commercial use of any

information contained in this document may require a license from the proprietor of that

information.

The CERBERO Consortium is the following:

Num. Beneficiary name Acronym Country

1 (Coord.) IBM Israel – Science and Technology LTD IBM IL

2 Università degli Studi di Sassari UniSS IT

3 Thales Alenia Space Espana, SA TASE ES

4 Università degli Studi di Cagliari UniCA IT

5
Institut National des Sciences Appliquees de

Rennes
INSA FR

6 Universidad Politecnica de Madrid UPM ES

7 Università della Svizzera Italiana USI CH

8 Abinsula SRL AI IT

9 Ambiesense LTD AS UK

10
Nederlandse Organisatie Voor Toegepast

Natuurwetenschappelijk Ondeerzoek TNO
TNO NL

11 Science and Technology S&T NL

12 Centro Ricerche FIAT CRF IT

For the CERBERO Consortium, please see the http://cerbero-h2020.eu web-site.

Except as otherwise expressly provided, the information in this document is provided by

CERBERO to members "as is" without warranty of any kind, expressed, implied or

statutory, including but not limited to any implied warranties of merchantability, fitness

for a particular purpose and non infringement of third party’s rights.

CERBERO shall not be liable for any direct, indirect, incidental, special or consequential

damages of any kind or nature whatsoever (including, without limitation, any damages

arising from loss of use or lost business, revenue, profits, data or goodwill) arising in

connection with any infringement claims by third parties or the specification, whether in

an action in contract, tort, strict liability, negligence, or any other theory, even if advised

of the possibility of such damages.

The technology disclosed herein may be protected by one or more patents, copyrights,

trademarks and/or trade secrets owned by or licensed to CERBERO Partners. The

partners reserve all rights with respect to such technology and related materials. Any use

of the protected technology and related material beyond the terms of the License without

the prior written consent of CERBERO is prohibited.

http://cerbero-h2020.eu/

H2020-ICT-2016-1-732105 - CERBERO

WP3 – D3.5: Models of Computation

Page 3 of 34

Document Authors

The following list of authors reflects the major contribution to the writing of the

document.

Name(s) Organization Acronym

Karol Desnos INSA

Maxime Pelcat INSA

Julio Oliveira TNO

Carlo Sau UNICA

Luca Pulina UNISS

Eduardo de la Torre UPM

Eduardo Juarez UPM

Pablo Muñoz S&T

Rubén Salvador UPM

Antoine Morvan INSA

Francesca Palumbo UNISS

Michael Masin IBM

The list of authors does not imply any claim of ownership on the Intellectual Properties described

in this document. The authors and the publishers make no expressed or implied warranty of any

kind and assume no responsibilities for errors or omissions. No liability is assumed for incidental

or consequential damages in connection with or arising out of the use of the information

contained in this document.

Document Revision History

Date Ver. Contributor (Beneficiary) Summary of main changes

2017.12.18 0.1 Karol Desnos (INSA) Table of content draft

2018.01.22 0.2 Karol Desnos (INSA) Table of content update

2018.02.12 0.3 Karol Desnos (INSA)

UPM, UNISS, UNICA

Plan list of surveyed MoC by

UPM, UNISS, UNICA

2018.02.20 0.4 Karol Desnos (INSA)

TNO

Plan list of surveyed MoC by

TNO. Paragraph template for

section 5.

H2020-ICT-2016-1-732105 - CERBERO

WP3 – D3.5: Models of Computation

Page 4 of 34

2018.03.08 0.5 Karol Desnos (INSA)

Maxime Pelcat (INSA)

Julio Oliveira (TNO)

Carlo Sau (UNICA)

Luca Pulina (UNISS)

Eduardo de la Torre (UPM)

Eduardo Juarez (UPM)

Pablo Muñoz (S&T)

Completion of section 4 & 5.

2018.03.21 0.5r Rubén Salvador (UPM) Review

2018.03.22 0.6 Antoine Morvan (INSA) Process review comments; add

links with D2.7 requirements;

insert and complete MoC

summary table.

2018.03.29 0.6r Francesca Palumbo (UNISS) Final review.

2018.03.29 0.7 Antoine Morvan (INSA) Process review comments.

2018.04.09 1.0 Francesca Palumbo (UNISS)

Antoine Morvan (INSA)

Final modifications.

2018.06.08 1.0r Michael Masin (IBM)

Antoine Morvan (INSA)

Revision from Michael; add

reference on MoA.

H2020-ICT-2016-1-732105 - CERBERO

WP3 – D3.5: Models of Computation

Page 5 of 34

Table of contents

1. Executive Summary ... 6
1.1. Structure of Document ... 6
1.2. Related Documents .. 6
1.3. Related CERBERO Requirements .. 7

2. Models of computation .. 8
2.1. Abstraction ... 8
2.2. Models .. 8
2.3. Models of Computation .. 9

3. Characterization of Models of Computation .. 10
3.1. Properties .. 10
3.2. Additional MoC Comparison Criteria ... 12

4. Surveyed Models of Computation ... 14
4.1. Synchronous Dataflow ... 14
4.2. Parameterized and Interfaced Synchronous Dataflow 16
4.3. Bulk Synchronous ... 17
4.4. Petri Networks ... Error! Bookmark not defined.
4.5. Kahn Process Networks .. 19
4.6. Dataflow Process Network ... 20
4.7. Register Transfer Level ... Error! Bookmark not defined.
4.8. Transition System ... Error! Bookmark not defined.
4.9. Discrete Event System ... 21
4.10. Situated Cognitive Engineering .. 23
4.11. Summary .. 25

5. CERBERO Innovation on Models of Computation for CPS 27
5.1. Dataflow Extension for Persistent State Representation 27
5.2. Non-Functional Properties Modelling in Dataflow ... 28
5.3. Moldable Parameters in Dataflow for Extended Design-Space Exploration 28

6. Conclusions ... 31

7. References ... 32

H2020-ICT-2016-1-732105 - CERBERO

WP3 – D3.5: Models of Computation

Page 6 of 34

1. Executive Summary

This documents surveys state-of-the-art Models of Computations (MoCs) used for the

design of Cyber-Physical Systems (CPS), and it outlines the main characteristics of

MoCs used for CPS design by presenting:

• the properties of their semantics (analyzability, decidability, reconfigurability,

expressiveness, determinism, ...),

• the kind of algorithm it supports (data-driven, control-driven, …),

• the level of abstraction it captures (system-of-systems, system, component, …)

• the type of implementation it translates into (hardware, software, distributed, …).

The objective of this document is to give enough information to CPS designers to choose

the MoC that best suit their needs.

As an example of this document utility, a study of most suitable MoCs for designing key

features of the CERBERO use-cases is presented. Based on this study, we identify lacks

in current MoCs semantics and we define a set of new MoC features needed to support

the design of CERBERO use-cases, which will be developed during the project. Those

features will advance state of the art and will allow these MoCs to be more effectively

adopted in the CPS context.

1.1. Structure of Document

Section 2 of this document defines the notions of abstraction and models, which serve as

a basis to the concept of Models of Computation. Section 3 introduces a set of properties

of MoCs that are then used in Section 4 to characterize and compare state of the art MoCs

commonly used for the design of CPSs. Finally, Section 5 presents the expected

CERBERO innovations in the domain of MoCs for the modeling of CPS.

1.2. Related Documents

• D2.7 - CERBERO Technical Requirements

o D3.5 contributes to satisfy D2.7 requirements. Details are given in

Section 1.3.

• D3.4 - KPI Modeling

o The KPIs can be used to represent the system properties, which can be

verified and guaranteed with varying degrees of ease depending of the

selection of the Model of Computation.

• D3.6 - Cross-layer Modelling Methodology for CPS

o The models of computation described in this document are used to

represent one aspect of the CPS, the behavior. This is a key foundation in

the cross-layer modelling methodology.

• D5.6 - CERBERO Framework Components

o D5.6 gives more details on the MoCs supported by the tools that are

components of the CERBERO framework.

H2020-ICT-2016-1-732105 - CERBERO

WP3 – D3.5: Models of Computation

Page 7 of 34

1.3. Related CERBERO Requirements

Deliverable D2.7 of the CERBERO project defines a list of CERBERO Technical

Requirements (CTRs) the project should achieve. Each of them is referenced with a

unique identifier ranging from 0001 to 0020. MoC exploration and innovation are carried

out following the requirements in Table 1-1.

CTR

id
CTR Description Link with the D3.5 document on Models of

Computation

0001 CERBERO framework SHOULD increase

the level of abstraction at least by one for

HW/SW co-design and for System Level

Design.

Innovations on MoCs help raising the abstraction

level for the designer

0002 CERBERO framework SHOULD

provide interoperability between cross-

layer tools and semantics at the same

level of abstraction.

Formalization of MoCs and homogeneity among

partners foster tool interoperability

0007 CERBERO framework SHALL define

methodology and SHOULD provide

library of reusable functional and non-

functional KPIs.

Non-functional KPIs can be influenced in the

MoCs using proposed Moldable Parameters

0020 CERBERO framework SHALL provide

methodology and tools for development of

adaptive applications.

Proposed innovations on MoCs improve the

expressiveness and specify the semantic of PiSDF

for designing adaptive applications

Table 1-1: Links to CERBERO Technical Requirement

H2020-ICT-2016-1-732105 - CERBERO

WP3 – D3.5: Models of Computation

Page 8 of 34

2. Models of computation

This first section briefly defines the core concepts of abstraction, model, and model of

computations.

2.1. Abstraction

In general, abstraction is a tradeoff between the level of details and the complexity

adopted when describing or representing a thing (e.g., an idea, a system, a place, an

object, a phenomenon, etc.). Two distinct representations used to describe the same thing,

each adopting a different abstraction tradeoff (i.e., amount of details conveyed about it),

can be compared relatively to each other using so-called levels of abstraction.

• The lower level of abstraction gives a representation of the thing which is more

detailed, thus giving a more precise and complete description.

• The higher level of abstraction gives a representation of the thing where some

details are voluntarily omitted to decrease the complexity of the description. This

higher complexity generally translates into a smaller and/or less dense

representation of the thing.

2.2. Models

A model is a mathematically grounded representation capturing predictable

characteristics of a system. More precisely, a model consists of a set of elements that can

be assembled respecting a set of rules to describe a system. For a valid representation

built with a model, mathematical equations associated to the elements of the model make

it possible to predict some characteristics of the modeled system. Models are commonly

used in all scientific fields to represent evolution of physical, computing, chemical,

financial, or social systems.

For example, the symbol in Figure 1 – Bipolar Transistor Symbol and its associated

equation in Figure 2 - Bipolar Transistor Equation are used to model and predict the

voltage and current characteristics of a transistor within a model of an analog circuit.

Figure 1 – Bipolar Transistor Symbol

Figure 2 - Bipolar Transistor Equation

In the context of cyber-physical systems (CPSs) engineering, several models adopting

different levels of abstraction can be used to describe separated or nested aspects of a

system. In particular the Models of Architecture (MoA) [Pelcat 2018] are used to

describe the computing platform, often heterogeneous, including communication

channels and memories. The application to be executed is modeled orthogonally using

Models of Computation (MoC). More details on the use of heterogeneous models to

describe a CPS are presented in D3.6.

H2020-ICT-2016-1-732105 - CERBERO

WP3 – D3.5: Models of Computation

Page 9 of 34

2.3. Models of Computation

A Model of Computation (MoC) is a set of operational elements that can be composed to

describe the behavior of an application. The set of operational elements of a MoC and the

set of relations that can be used to link these elements are called the semantics of a MoC.

As presented in [Savage 1998], MoCs can be seen as an interface between the computer

science and the mathematical domains. A MoC specifies a set of rules that control how

systems described with the MoC are executed. Each element of the semantics of a MoC

can be associated to a set of properties, such as timing properties or resource

requirements. These rules and properties provide the theoretical framework that can be

used to formally analyze the characteristics of applications described with a MoC. For

example, using a mathematical analysis, it may be possible to prove that an application

described with a given MoC will never get stuck in an unwanted state or that it will

always run in a bounded execution time. Section 3 of this document describes a set of

properties that are commonly supported by existing MoCs, which are themselves

described in Section 4. A more extensive introduction to CPS modelling with MoCs can

be found in [Lee 2017].

H2020-ICT-2016-1-732105 - CERBERO

WP3 – D3.5: Models of Computation

Page 10 of 34

3. Characterization of Models of Computation

Since the introduction of modern computing systems in mid-1900s, a plethora of MoCs

have been proposed by the scientific community. Very often, a new MoC is introduced to

allow the specification of applications or systems that exhibit a set of characteristics

whose specification was impossible or difficult to achieve with previously existing

MoCs.

When designing a system, it is important to identify its required and desired properties.

Once these have been identified, the designer can select the MoC whose semantics will

make it easier to express, verify and guarantee those properties by construction.

The objective of this section is to give a definition of the properties used to characterize

and compare the MoCs presented in Section 4.

3.1. Properties

This section lists a set of commonly used properties utilized to compare the system

characteristics supported by different MoCs.

Analyzability

The analyzability of a MoC evaluates the availability of analysis and synthesis algorithms

that can be used to characterize applications modeled with this MoC. For example, in the

synchronous dataflow MoC, analysis algorithms can be applied at compile-time to

compute the worst-case latency or the maximum memory requirements of a design.

Conciseness

The conciseness (or succinctness) of a MoC captures its ability to express complex

system behaviors with a limited description size. This relative property is useful for

comparing MoCs with equivalent expressiveness. Indeed, conciseness is often a desired

feature for system developers as the design of an identical application with two MoCs (of

identical expressiveness) will lead to a smaller design with the more concise MoC.

Compositionality

A modular MoC is compositional if the analyzable properties of a module described with

this MoC are independent from the internal specification of the submodules that compose

it [Ostroff 1995]. For example, in a compositional MoC, if each submodule used in the

design is (independently) deadlock free, then the whole design combining these

submodules will be deadlock-free by construction.

Decidability

A MoC is decidable if the schedulability of applications described with this model can be

proved statically (i.e. at compile time) [Bhattacharyya 2006]. Hence, using a decidable

MoC makes it possible to guarantee at compile-time that a system will never reach a

deadlock state and that its execution will require a finite amount of memory. A non-

decidable MoC does not mean that applications will not be schedulable, only that their

schedulability can only be verified “on the fly” at runtime. Decidability is often obtained

as a trade-off for a limited expressiveness of the MoC.

H2020-ICT-2016-1-732105 - CERBERO

WP3 – D3.5: Models of Computation

Page 11 of 34

Determinism

A MoC is deterministic if the output of an algorithm only depends on its inputs, but not

on external factors such as time or randomness. If determinism is a desired feature for

most control and streaming applications, non-determinism may also be needed to

describe applications reacting to unpredictable inputs.

Expressiveness

The expressiveness, of a MoC evaluates the complexity of application behaviors that can

be described with this MoC. For example, the expressivity of the Dataflow Process

Network (DPN) MoC has been proven to be equivalent to a Turing machine. The

specialization of a MoC restricts the expressivity of this MoC to increase its

analyzability, or to give it new properties such as determinism or decidability.

Expressivity is often mistaken for conciseness. For example, the Cyclo-Static Dataflow

(CSDF) MoC is often said to be more expressive than the Synchronous Dataflow MoC

but meaning instead that it has a better conciseness.

Modularity

In a modular (or hierarchical) MoC, a system description can be broken into several

independent modules. The modules that are combined to create a system can be (re-)used

either in different systems specification or instantiated several times in the same. The

modules themselves can be described using the same MoC as the top-level system

description or can encapsulate other compatible MoCs.

Parallelism

In a parallel MoC, several independent elements of a system description may “activate”

concurrently and independently from each other, each causing a change in the current

state of the system. In a sequential (i.e. non-parallel MoC), all changes of the system state

can be broken down to a sequence of actions triggered one after another, according to the

system semantics.

Reconfigurability

A MoC is reconfigurable if the behavior of entire parts of a system description can be

modified dynamically, to fulfill future execution goals for a foreseeable amount of time.

Reconfiguration is used to dynamically adapt the behavior of a system to its environment,

notably by enabling or disabling parts of the system, by modifying its functional behavior

(e.g. its computations, QoS, …), or by modifying its non-functional properties (e.g.

exposed parallelism, energy consumption, …).

Predictability

The predictability property is related to the reconfigurability property of a MoC. This

property evaluates the amount of time between a reconfiguration of a part of the system,

and the beginning of activity in the reconfigured part. The more predictable a MoC is, the

more the time that can be used by a runtime manager to react and perform an

optimization of the reconfigured part before using it.

H2020-ICT-2016-1-732105 - CERBERO

WP3 – D3.5: Models of Computation

Page 12 of 34

3.2. Additional MoC Comparison Criteria

This section introduces a few other criteria that can be used to compare MoCs. These

comparison criteria denote different classes of applications that a MoC can be used to

represent. Unlike the properties presented in the Section 3.1, which capture properties

supported (or not) by MoCs, this section introduces more subjective comparison criteria.

Indeed, if some MoCs seem more suitable to implement a given class of applications,

using them to implement another class may still be possible, but less practical or less

common.

Algorithms Computation Classification

Algorithms described with a MoC can be classified into several classes depending on the

type of involved computation:

• Stream-based: A continuous stream of data is steadily processed and produced

by the described algorithm. The amount and nature of the computation do not

vary depending on the data.

• Data-driven: The amount and nature of the computation do not vary depending

on the data. Contrary to stream-based algorithms, data does not necessarily arrive

continuously.

• Control Driven: The amount and nature of the computation depend on the

processed data.

• Event Driven: Computations are triggered by events on the frontier of the system

(i.e. by sensors, users, communication network, …).

Captured Algorithms Granularities

MoCs with different levels of abstractions are inherently suitable for representing

behaviors of diverse granularities:

• Function: The modeled algorithm captures computations that are building blocks

used to assemble an algorithm with a higher granularity.

• Component: The modeled algorithm serves a well-specified purpose with clear

input and output interfaces and constraints.

• System: The modeled algorithm represents a collection of components with

diverse objectives but running locally on a unique computing system.

• System-of-systems: The modeled algorithm consists of several independent

“systems”, each existing and evolving independently from the others but

exchanging information among them through communication channels.

Implementation Types

A MoC is a theoretical representation used to describe the behavior of an application.

Implementing a MoC consists in translating this theoretical behavior into an “executable”

description. Different types of implementations can be more or less suitable to implement

each MoC:

• Hardware: Algorithms described with this type of MoC can be efficiently

translated into logical gates, signals, and registers on an ASIC or an FPGA.

H2020-ICT-2016-1-732105 - CERBERO

WP3 – D3.5: Models of Computation

Page 13 of 34

• Software: Algorithms described with this type of MoC can be efficiently

translated into a sequence of instructions executed on a processor that manipulates

data stored in a memory space.

• Distributed: Algorithms described with this type of MoC can be efficiently

implemented by splitting them into several parts executed on separate Hardware

or Software components, each storing a part of the system state and executing a

part of the computations in parallel.

• Heterogeneous: Algorithms described with this type of MoC can be efficiently

translated into a mix of hardware and software implementations.

H2020-ICT-2016-1-732105 - CERBERO

WP3 – D3.5: Models of Computation

Page 14 of 34

4. Surveyed Models of Computation

Using key characteristics of MoCs defined in Section 3, this section briefly introduces

state-of-the-art Models of Computations used to specify Cyber-Physical Systems.

Starting from MoC for hardware description, we increase the level of abstraction and

expressiveness of models up to the system requirements level.

4.1. Register Transfer Level

MoC brief description

The Register Transfer Level (RTL) models are intended for detailing the behavior and the

structure of hardware. Hardware Description Languages (HDLs), such as VHDL or

Verilog are mature and standardized languages that support this model of computation.

They are parallel languages with modular representations (structure decomposition) and

explicit parallelism at behavioral level. This, combined with the event-driven

characteristics that are used to reflect the behavior of the system at clock cycle level,

make these models very precise though too low-level for simulating large systems or

systems of systems.

They can be used as design-entry level specification for relatively small to medium size

hardware modules. Also, with the availability of High Level Synthesis (HLS) tools and

the profusion of back-end tools to produce RTL from higher abstraction levels or other

MoCs, this language is being relegated as a requirement for HW fabrication, but not as a

conventional entry point.

RTL synthesizers are tools that transform RTL into netlists of logic gates. They are

mature, commercially available, in cases customer dependent tools that take an RTL

specification as an entry point and produce a netlist or, even further, a bitstream to be

downloaded into reconfigurable devices such as FPGAs.

MoC properties

This model is the best representative for HW targets. They are modular and composable

(with hierarchical description of components) due to the capability of modelling

structure, as well as analyzable because of their property for describing behavior or

functionality. The event-driven specification at clock-cycle level makes it predictable and

deterministic (except for some rarely used constructs that are not common for synthesis—

oriented products). RTL-level in HDLs contains the synthesizable constructs, while

HDLs at higher levels of abstraction (not time-specific) are not considered RTL

Relationship with other MoCs

HLS tools provide transformations from C/C++/System-C/OpenCL specifications as well

as for several dataflow-oriented MoCs, provided the availability of back-end tools that

transform these models into RTL.

MoC Usage

RTL is clearly targeted for HW fabrics. These fabrics are useful to accelerate

performance while providing reasonable energy consumption when dealing with data

intensive applications. In the context of heterogeneous computing, more control-intensive

H2020-ICT-2016-1-732105 - CERBERO

WP3 – D3.5: Models of Computation

Page 15 of 34

tasks will be more likely to be used in SW, while compute intensive tasks will be favored

towards HW implementations.

MoC Support

HDLs supporting RTL are very mature and so they account with basic tools such as

synthesizers, simulators, physical mapping tools (i.e. the layout for an ASIC or the

bitstream for an FPGA). They also account with accurate models for estimating power

consumption, as well as some indirect reliability indicators such as code coverage tools,

assertion-based verification, etc. In CERBERO, HW-oriented targets ARTICo3 and MDC

will rely on RTL and conventional synthesis to obtain a suitable bitstream, while JIT

composition will rely on pre-synthesized blocks (represented as bitstreams) that, by

composing them dynamically will produce a module with a required new functionality.

4.2. Synchronous Dataflow

MoC brief description

The Synchronous Dataflow [Lee 1987] MoC models an application as a directed graph of

computational entities, called actors, that exchange data through a network of First-In

First-Out queues (FIFOs). Each time an actor is executed, or fired, it consumes and

produces a fixed quantum of data, called data token, on the FIFOs to which it is

connected. An example of SDF graph is given in Figure 3 - Example of Synchronous

Dataflow Graph.

Figure 3 - Example of Synchronous Dataflow Graph

MoC properties

Synchronous Dataflow is a parallel and decidable MoC that exhibits one of the greatest

degrees of analyzability among dataflow MoCs. Coupled with the determinism of the

MoC, its analyzability makes it possible to prove algorithms deadlock freeness and

boundedness at compile time and is often used to guarantee real-time properties (e.g.

throughput, latency, worst-case execution time) of applications modeled with it. This

great analyzability comes at the expense of a limited expressiveness of the MoC, because

of the absence of any reconfiguration semantics in the MoC. The original MoC described

in [Lee 1987] is not modular.

Relationship with other MoCs

The SDF MoC belongs to the family of dataflow models of computation. As one of the

dataflow MoCs with the most restrictive semantics, SDF behavior can be expressed in

most dataflow models.

H2020-ICT-2016-1-732105 - CERBERO

WP3 – D3.5: Models of Computation

Page 16 of 34

As demonstrated in [Klikpo 2016], the MoC implemented in Labview® is equivalent to

the SDF MoC.

There exist several dataflow MoCs with an equivalent expressiveness with the SDF MoC:

• The Cyclo-Static Dataflow [Bilsen 1996] and Affine Dataflow [Bouakaz 2012]

MoCs which have a greater conciseness than the SDF MoC while retaining all its

analyzability, by specifying sequences of production and consumption rates

instead of scalar values.

• The Interface-Based SDF [Piat 2009] and Deterministic SDF with Shared FIFO

[Tripakis 2013] MoCs which are two modular and compositional extensions of

the SDF MoC.

MoC Usage

Synchronous Dataflow is mainly used to describe stream-based and data-driven

algorithms, mostly at function and component levels. The SDF MoC is suitable for all

kinds of implementations.

MoC Support

The SDF MoC is natively supported in the following tools: Ptolemy II [Davis 1999],

SDF3 [Stuijk 2006], PREESM [Pelcat 2014], MDC [Palumbo 2017], LIDE [Shen 2011].

4.3. Parameterized and Interfaced Synchronous Dataflow

MoC brief description

The Parameterized and Interfaced Synchronous Dataflow (PiSDF) is the result of

applying the Parameterized and Interfaced dataflow Meta-Modeling methodology

[Desnos 2013] to the SDF MoC. PiSDF adds parameterization and interfaced hierarchy to

the SDF MoC. The PiSDF MoC models an application as a directed graph. Besides actors

and FIFOs (see section 4.1), parameters, hierarchical interfaces and parameter

dependencies can also be vertices of the graph.

Parameters are employed to configure and modify dataflow specifications. Parameters

can influence (1) the functionality of an actor, (2) the production/consumption rates of

actor ports, (3) the value of another parameter and (4) a delay of a FIFO. Hierarchical

interfaces convey data tokens or parameter values between levels of hierarchy.

Hierarchical interfaced actors, or simply, hierarchical actors, are univocally linked to

PiSDF subgraphs. Parameter dependencies propagate parameter values to other elements

of the graph.

Actors, hierarchical or non-hierarchical, can have two types of ports: data ports and

configuration ports. Data ports exchange data and configuration ports parameters.

Parameters are connected to configuration ports through parameter dependencies. Both

types of ports can be declared as input or output ports. An actor with an output

configuration port is named a configuration actor. Firing of configuration actors

dynamically produces values that set configurable parameters. The firing is only

permitted at specific instants of time during a graph execution.

There are two types of parameters in a PiSDF MoC: configurable parameters and locally

static parameters. Configurable parameters can be modified in each graph iteration, i.e. at

run-time. Locally static parameters can only be modified at design-time. Parameter

H2020-ICT-2016-1-732105 - CERBERO

WP3 – D3.5: Models of Computation

Page 17 of 34

values passed through input configuration interfaces of hierarchical actors always become

locally static parameters of hierarchical (sub)graphs.

Output configuration ports are always connected to configurable parameters. A change in

a configurable parameter is the result of a change in either an output configuration port of

an actor or another configurable parameter the former depends upon.

MoC properties

PiSDF inherits the properties of SDF (see section 4.1) and adds the modularity and

reconfigurability properties, with the advantage of keeping the analyzability of SDF. As

the reconfiguration semantics is included into PiSDF, its expressiveness is greater than

that of SDF. Besides modularity, reconfigurability is extremely handy in the context of

cyber-physical systems, which is why in the CERBERO project we intend to use and

extend PiSDF (see Section 5).

Relationship with other MoCs

The PiSDF MoC is related to the Interface-Based SDF [Piat 2009], from which it inherits

the compositional hierarchy mechanism. The PiSDF MoC has the same expressiveness,

but a better conciseness, as the Parameterized SDF MoC [Bhattacharya 2001]

MoC Usage

PiSDF is mainly used to describe stream-based, data-driven and control-driven

algorithms (with a reduced number of configurable parameters in practice), mostly at

functional and component levels. The PiSDF MoC is suitable for implementations in

heterogeneous systems [Heulot 2014].

MoC Support

The SDF MoC is natively supported in the tool PREESM [Pelcat 2014], and the Spider

runtime [Heulot 2014] is used to support the reconfiguration of graphs during execution.

The tools MDC [Palumbo 2017] and ARTICo³ will support this MoC and integrate with

PREESM and Spider. The objective is to offer new scheduling and mapping choices to

the runtime manager when dealing with reconfigurable hardware, i.e. hardware and

software implementations for an actor. The decisions will be driven by on-the-fly

readings of performance indicators using the Performance API (PAPI).

4.4. Bulk Synchronous

MoC brief description

The Bulk Synchronous Parallel (BSP) MoC has been introduced by Valiant in

[Valiant 1990]. This MoC is well suited to some types of highly parallel architectures

such as GPU architectures, which makes it a very popular MoC. Figure 4 - Example of a

Bulk Synchronous Model shows an example of an application representation using the

BSP MoC.

H2020-ICT-2016-1-732105 - CERBERO

WP3 – D3.5: Models of Computation

Page 18 of 34

Figure 4 - Example of a Bulk Synchronous Model

BSP divides an application into several phases called supersteps. A BSP computation is

composed of a set of components (we will call them agents). Each agent has its own

memory. An agent can access the memory of another agent through a remote access

(message) via a so-called router. The computation execution happens in a series of

supersteps consisting of processing efforts, remote accesses and a global synchronization.

MoC properties

Bulk Synchronous Parallel is a decidable MoC which fosters execution parallelism.

However, the processing of each core is modeled independently and statically divided

into supersteps. Consequently, the conciseness, expressiveness and reconfigurability are

limited. The size of supersteps offers a tradeoff between synchronization overhead and

potential parallelism. BSP also provides a time performance evaluation for a superstep,

giving the MoC some properties of a Model of Architecture (MoA) [Pelcat 2018].

Relationship with other MoCs

With respect to dataflow MoCs, including modularity and compositionality and well

suited for application specification, BSP may be used as an intermediate representation

for generating code for a parallel platform, limiting the backend complexity to a simpler

support of a superstep at the cost of regular global synchronizations. As an example of a

recent BSP study, Kapre et al. [Kapre 2017] discuss the pros and cons of using BSP

versus SDF over OpenCL pipes on an FPGA.

MoC Usage

The BSP MoC can be used in PREESM or other SDF-based tools for both stream

processing and batch processing. It needs a relatively large parallelism in the platform to

be relevant.

MoC Support

• Bulk synchronous parallel ML [Loulergue 2005].

H2020-ICT-2016-1-732105 - CERBERO

WP3 – D3.5: Models of Computation

Page 19 of 34

4.5. Kahn Process Networks

MoC brief description

Process Networks – also called Kahn Process Networks (KPN) after G. Kahn who first

introduced them in his thesis [Kahn 1974] – is a MoC for describing signal processing

systems where infinite streams of data are incrementally transformed by processes

executing in sequence or parallel.

Process Networks are directed graphs where nodes represent computing processes and

arcs are infinite message queues that connect these processes. Writing to a channel is

non-blocking but reading is blocking. It cannot be waiting for data on one or another

input channel.

It was proposed for modeling distributed systems but has proven its convenience for

modeling signal processing systems as well. As pointed out by Edward Lee in [Lee

1995], this MoC does not require multitasking or parallelism and usually neither infinite

queues; it is in fact usually more efficient than comparable methods in functional

languages.

MoC properties

Processes in a KPN produce data elements that are placed in a communication channel

and consumed by the destination process. Communication channels are the only way

processes may exchange information. KPN systems are deterministic because the history

of tokens produced/consumed does not depend on execution order. As discussed by

[Parks 1995], it is not possible to tell in a finite time whether an arbitrary Process

Network will halt in its streaming of data. Such behavior is related to two properties:

termination and boundness. These properties are undecidable in finite time for the

general case but, under some restrictions, we can study and classify PN before execution.

Also, they are compositional.

Relationship with other MoCs

KPNs are a generalization of the Dataflow models described in section 4.1.

MoC Usage

Process Networks have found many applications in modeling embedded systems as it is

typical for embedded systems to be designed to operate infinitely with limited resources.

MoC Support

Commercial systems like SPW from Alta Group of Cadence, COSSAP from Synopsys,

the DSP Station from Mentor Graphics, Hypersignal from Hyperception or Simulink by

Mathworks and research software tools like Khoros from the University of New Mexico

and Ptolemy from the Univ. of California at Berkeley, are all based on variants of the PN

model. Departing from the original Process Networks by Kahn, several more specific

models have been derived.

In CERBERO, KPNs are the underlying semantics of the communication between tasks

in the DynAA simulation tool of TNO.

H2020-ICT-2016-1-732105 - CERBERO

WP3 – D3.5: Models of Computation

Page 20 of 34

4.6. Dataflow Process Network

MoC brief description

The Dataflow Process Network (DPN) [Lee 1995], also known as Dynamic Dataflow

Model (DDF) is a MoC where data processing nodes, named actors, communicate

through unidirectional unbounded FIFO channels. Actors are provided with a set of firing

rules specifying the amount of data (tokens) required on the input channels to trigger the

processing (fire). The firing of an actor consumes tokens from the input channels and

produces tokens to the output ones. Figure 5 - Example of Dataflow Process Network

Graph depicts an example of a DPN graph.

Figure 5 - Example of Dataflow Process Network Graph

MoC properties

DPN is the most expressive dataflow MoCs: it is Turing-complete, meaning that it can

describe any deterministic or non-deterministic algorithm. This high degree of

expressiveness comes at the price of analyzability, since depending on the specific case, a

DPN could be very hard to analyze (e.g. for graphs modeling non-deterministic

algorithms). Due to its non-deterministic nature, the DPN MoC exhibits also non-

decidability and a restricted parallelism with respect to less expressive MoCs (such as

SDF).

Relationship with other MoCs

Being the most expressive MoC among dataflow ones, a DPN can describe all other more

restrictive dataflow MoCs, such as:

• SDF and PiSDF, obtained by limiting firing rules to one per actor and to fix its

token rates;

• Kahn Process Network (KPN) by removing non-determinism behavior: action

firings must be deterministic (output tokens depend only on input tokens without

side effects) and the set of firing rules for each actor has to be sequential (they can

be tested in a pre-defined order using only blocking reads [Lee 1995]).

DPNs can also be translated or expressed by means of other MoCs with the same or an

enhanced expressiveness, such as a generalized PNs [Dimitrov 2017].

D
a

b
c

e

A a

B b

C c

Ee

Rules {a, b, c}:

R₁ = {[*], , [T]}
R₂ = { , [*], [F]}

[*] = at least one token
 = don’t care

[T] = boolean true
[F] = boolean false

H2020-ICT-2016-1-732105 - CERBERO

WP3 – D3.5: Models of Computation

Page 21 of 34

MoC Usage

DPNs are usually adopted for streaming applications with intensive computation, task

parallelism and data locality, such as audio and video coding. The DPN MoC can

describe any kind of application [Lee 1995].

MoC Support

The DPN MoC is supported by several frameworks and tools: Orcc [Yviquel 2013],

CAPH [Serot 2014], MDC [Palumbo 2017], LIDE [Shen 2011].

4.7. Petri Networks

MoC brief description

Petri Nets (PNs) are one of the most important families of discrete event modeling

formalisms. It was firstly introduced in the early 1960s by Carl Adam Petri as a bipartite

weighted directed graph with two types of vertices called places (represented by circles)

and transitions (represented by bars or rectangles). The ‘execution’ of a Petri Net can be

seen as a game whose rules regulate the activation of transitions and transfer of

information tokens between places. We refer to [Giua 2007] for a comprehensive system

theory point of view on Petri Nets.

Figure 6 - Petri Nets semantics.

MoC properties

Petri nets are both a graphical and mathematical formalism, which provide a useful

visual tool both in the design and analysis phase. They build on a concise representation

of systems with a very large state space. Indeed, they do not require representing

explicitly all states of a dynamical system but only an initial one – the rest of the state

space can be determined from the rules that govern the net evolution.

Petri nets are modular and parallel; i.e., if a system is composed of several subsystems

that interact among them, it is possible to represent each subsystem with a simple subnet

and then combine the subnets to obtain a model of the whole system.

The execution of Petri nets is non-deterministic. If multiple transitions are enabled at the

same time in a PN model, any one of them can fire. Also, it is not guaranteed that an

enabled transition fires. An enabled transition can fire immediately or after any amount of

H2020-ICT-2016-1-732105 - CERBERO

WP3 – D3.5: Models of Computation

Page 22 of 34

time (provided it remains enabled), or not fire at all. A comprehensive overview on the

properties of PNs can be found in [Seatzu 2013].

Relationship with other MoCs

Many other models of computation may be derived from extending the rules of Petri

Networks. For systems theory and the design of CPSs, the most important of these

siblings are Hybrid Petri Nets, which represent both time- and event-driven components

[Alla 1998]. Coloured Petri Nets [Kurt 1996] allows distinctions between the tokens and

attribution of more sophisticated semantic rules to the firing of the transitions. Instead of

extending the Petri net formalism, we can also look at restricting it. That yields another

plethora of modeling formalisms that are important as well: state machines, marked

graphs, and (extended) free choice networks. Each of which of these sub-classes modifies

the basic properties of this MoC, for example, state machines are not parallel, and

marked graphs are parallel and deterministic.

MoC Usage

Petri nets have been specifically designed to model systems with interacting components

and as such are able to capture many characteristics of an event driven system, namely

concurrency, asynchronous operations, deadlocks, conflicts, etc., [Cassandras 2008].

While they are not specifically designed for self-adaptive systems, Petri Nets can model

self-adaptation on the system level.

MoC Support

PNs is the MoC rendered in the simulation engine of DynAA [Oliveira 2013], used in the

CERBERO project. The University of Hamburg [Hamburg 2018] maintains a large

database on academic and commercial tools that use PNs as a base.

4.8. Discrete Event System

MoC brief description

Discrete Event Systems (DES) is a model of computation mainly used for modelling and

simulation [Zeig 2000]. The discrete event formalization provides the basis for

orchestrating the occurrence of events in time during the simulation of a (cyber) system.

The principles of a DES MoC are:

• The world is made of objects (things) and events;

• Only objects can generate events and only objects react to events.

• The state of the system can only be manipulated (modified) by objects upon the

occurrence of an event, thus only in discrete points of time when an event occurs.

Figure 7 - Example of Discrete Event System

H2020-ICT-2016-1-732105 - CERBERO

WP3 – D3.5: Models of Computation

Page 23 of 34

In discrete-event models, components communicate via signals consisting of events

placed on a time line. Events are processed in a chronological order.

MoC properties

Discrete event models are very practical to model and understand and have a huge

(practical) application range. Nevertheless, most of the properties for such models of

computation are not guaranteed in a broad aspect and fail to exist in extreme cases. For

example, discrete events are not compositional, because some discrete event sources may

eventually block future events in the timeline to occur – for example, sources that lead to

a Zeno condition.

Discrete event models often have to use a technique called superdense time that allows to

model sequence of causally-related events (events that causes another events) to exist at

the same time tag (instantaneous). This can lead to difficulties in proving or defining

properties in the sense discussed earlier in this document. For example, the existence of

real concurrency and determinism properties is dependent on how simultaneous events

are chosen to fire. Choices that force a strict order become deterministic, but not

concurrent (e.g. events concur on the same resource). On the other hand, if choices are

random, the system becomes concurrent, but not deterministic.

Imposing further restrictions to the way events are triggered, combined, and handled

yields other MoCs– see for example PNs.

Relationship with other MoCs

Everything modelled by computer can be represented by DES. Consequentially, other

MoCs discussed in this document can be related to DES. PNs, Process Networks, SDF,

etc., and all others herein can be described using discrete event theories. In a sense, the

discrete event MoC focuses specially in attributing rules for the execution of the

simulators, trying to establish a base for how race conditions are to be solved.

MoC Usage

This MoC is well suited for modeling digital circuits, communication networks, business

processes, queue systems, etc.

MoC Support

There is a huge number of simulators based on discrete events. The most known ones are

SimEvents [Mathworks], GoldSim [GoldSim], AnyLogic[AnyLogic],

PtolemyII[Ptolemy].

In CERBERO, the tool DynAA developed by TNO is a modelling and analysis

environment tightly coupled with a discrete event engine.

4.9. Situated Cognitive Engineering

MoC brief description

Situated Cognitive Engineering (sCE) is a knowledge-based multi-agent MoC developed

to establish the required normative (policy-based) system behaviors concerning both

planned (procedural) work and anomaly detection, re-planning and recovery processes.

Using formal relations established between knowledge at distinct levels of abstraction,

H2020-ICT-2016-1-732105 - CERBERO

WP3 – D3.5: Models of Computation

Page 24 of 34

reasoning rules are introduced that enable the system to navigate through these levels,

providing the capability to inference high-level failures based on anomalous component

status. Applications based on sCE are software implementations that can be easily

distributed to assess CPSoS scenarios, typically in the form of an ePartner (see Error!

Reference source not found.).

Figure 8 - sCE monitoring and decision process

MoC properties

sCE [Bosse 2017] is a concise way to represent the safety constraints that a system

should exhibit during execution. Situated cognitive engineering provides a deterministic

and expressive way to define the conditions to check and the required actions to return to

a nominal state when unforeseen events occur. Each condition could be considered as a

module that can be executed in parallel and interacts with the rest of the conditions by

sharing information through a database. As well, each module can interact with external

systems to provide reconfigurability and modularity (in an event-driven schema), at

component system and system-of-systems levels by exploiting decision-making

processes.

Relationship with other MoC

N/A

MoC Usage

sCE is used to define safety constraints that shall hold during the execution of a system,

providing support to monitoring, diagnosis and decision-making to overcome anomalous

states of the controlled system. It is possible to deploy reasoning rules from the

component level to system-of-systems in distributed applications.

MoC Support

sCE is supported in the MECA-HEART tool [MECA 2015].

H2020-ICT-2016-1-732105 - CERBERO

WP3 – D3.5: Models of Computation

Page 25 of 34

4.10. Transition System

MoC brief description

Transition systems are used as models to describe the behavior of systems. They are

usually represented as directed graphs where nodes represent states (that describe some

information about a system at a certain moment of its behavior), and edges model

transitions (state changes). In particular, Kripke structures (see, e.g., [Clarke 1999]) are

traditionally used for the interpretation of temporal logics such as the Linear Temporal

Logic (LTL) in automata-based LTL model checking [Vardi 1986]. This approach is

based on the fact that each LTL formula (representing a property to be checked) can be

represented by a non-deterministic Buchi automaton and check the if such formula holds

in the transition system.

MoC properties

The product transition systems obtained for automaton-based LTL model checking is a

decidable (for finite systems) and deterministic MoC.

Relationship with other MoC

N/A

MoC Usage

This MoC is mainly used for control-driven and event-driven representations at the

component and/or system level.

MoC Support

The most noticeable tool implementing this MoC is the model checker SPIN [Holzmann

1997] and it will be used within the CERBERO framework by the Verification Tool

(VT).

4.11. Summary

Following is a table that summarizes the MoCs and their properties.

H2020-ICT-2016-1-732105 - CERBERO

WP3 – D3.5: Models of Computation

Page 26 of 34

MoCs

Analyzability

Conciseness

Com
positionality

Decidability

Determ
inism

Expressiveness

M
odular

Parallelism

Predictability

Reconfigurability

RTL + ++ + ++ ++ +

SDF ++ + + + - -- + --

Cyclo-Static ++ ++

Interface-Based SDF ++ + +

Deterministic SDFwith

Shared FIFO
++ +

PiSDF ++ ++ + + + ++ + + +

BSP - + + - + ++ -

KPN + - + +

DPN - - + ++ -

PN + + - ++ + + +

DES - ++ - +++ ++ ++ - +

SCE + + + + +

TS + +

Table 4-1: SDF: Synchronous Dataflow; PiSDF: Parameterized and Interfaced

Synchronous Dataflow; BSP: Bulk Synchronous Parallel; PN: Petri Networks; DPN:

Dataflow Process Network; RTL: Register Transfer Level; TS: Transition System; KPN:

Kahn Process Networks; DES: Discrete Event System; sCE: Situated Cognitive

Engineering. Non-bold MoCs are those inherited from their parent (first bold one above).

Blank cells indicate a MoC has no specific traits for the property.

H2020-ICT-2016-1-732105 - CERBERO

WP3 – D3.5: Models of Computation

Page 27 of 34

5. CERBERO Innovation on Models of Computation for CPS

Given the characteristic properties of the MoCs presented in Section 3 and the list of

them surveyed in Section 4, this section presents the envisioned contributions of the

CERBERO project to the model of computations domain. The main motivation behind

these contributions is to support the specification of key aspects of CPSs.

5.1. Dataflow Extension for Persistent State Representation

Main contributors: INSA, UPM

Motivations

In synchronous dataflow MoCs, as for example in the SDF, PiSDF models presented in

Section 4, the semantics is dedicated to the processing of infinite streams of data. To this

purpose, the semantics of these dataflow MoCs has been tailored to capture in a concise

form the data-parallelism and determinism of algorithms executed infinitely repeatedly,

with numerous and entangled data dependencies.

Despite the many advantages of the semantics of SDF models, these cannot currently be

used to represent concisely and unambiguously the persistence or the sporadic

initialization of data within algorithms. In CPSs, where computing systems must

continuously adapt their behavior to the physical environment enclosing them, these

persistent data are needed to capture the adaptive state of algorithms, which may be

sporadically updated to fit them to an evolution of their working environment. An

example of such persistent data is the coefficients encoding the learning ability of the

neurons in on-line machine learning algorithms.

Envisioned Contribution

Within CERBERO, an extension of the SDF models semantics is envisioned to support

the specification of both persistent and sporadically updated data in described algorithms.

This contribution will extend the existing semantics of dataflow by building on an

existing element called delay. While improving the expressiveness and conciseness of the

MoCs, this extended semantics will preserve the analyzability, the compositionality, and

the data parallelism of the synchronous dataflow models.

Use in CERBERO

This extension of the dataflow model is suitable for the modelling of any CPS system.

With an implementation of this contribution within PREESM & Spider, its use within

CERBERO will be demonstrated with an implementation of a reinforcement learning

algorithm that is applicable to any control system, such as the robotic arm of the Space

Exploration Use-Case.

H2020-ICT-2016-1-732105 - CERBERO

WP3 – D3.5: Models of Computation

Page 28 of 34

5.2. Non-Functional Properties Modelling in Dataflow

Main contributor: INSA, UPM

Motivations

Synchronous dataflow MoCs focus on the functional modelling of applications. To this

purpose, the semantics of these dataflow models is dedicated to the representation of

untimed computational and data transfer aspects of algorithms, independently from any

implementation consideration. Although this implementation-independence principle

grants the dataflow MoCs a great portability, it prevents them from being used for

specifying non-functional properties of modeled algorithms, such as real-time properties

that are critical for the design of constrained CPSs.

In state-of-the-art work on using synchronous dataflow MoCs for the specification of

real-time systems, this issue is generally alleviated by breaking the architecture-agnostic

principle of the model, as for example by associating an architecture-specific worst-case

execution time to actors of a dataflow graph. Analyses based on these execution times are

then used to predict the execution time of the application for the specific target.

Envisioned Contribution

An extension of the semantics of synchronous dataflow MoCs will be proposed within

CERBERO to support the specification of non-functional properties in dataflow graphs.

Unlike state-of-the-art work, the proposed semantics will be used to specify non-

functional property as a design constraint of the algorithm, independently from the

targeted architecture, thus retaining the portability of applications specified with the

MoC. Consequently, it will be the responsibility of the design space exploration (DSE)

tools and algorithms to simulate or profile the different components of the application, at

compile-time and at runtime, and make sure that the specified constraints hold for the

targeted system. Envisioned non-functional properties supported by the new semantics

are real-time properties (throughput, latency, response time to events), but also other key

performance indicators (KPIs) specified in D3.4, such as power and energy consumption.

Use in CERBERO

This extension of the dataflow MoC semantics will be implemented within the PREESM

and Spider tools and connected to the KPI specification within the CERBERO

Intermediate Format presented in D3.6. Papify implementation with MDC & ARTICo3

will enable the application profiling and energy monitoring on heterogeneous platforms,

thus providing a good support to enforce non-functional properties captured in the

extended dataflow model.

5.3. Moldable Parameters in Dataflow for Extended Design-Space

Exploration

Main contributors: INSA, IBM

Motivations

The DSE phase based on SDF MoCs mostly consists of mapping parallel actor

executions on the heterogeneous computational hardware resources of the targeted

H2020-ICT-2016-1-732105 - CERBERO

WP3 – D3.5: Models of Computation

Page 29 of 34

architecture, and the data transfers on the hardware means of storage and communication.

In those cases where the number of parallel actors to map largely exceeds the available

resources of the architecture, DSE optimization algorithms face an important increase in

the complexity of the mapping problem. In such cases, developers will often manually

update the model of their applications to adopt a coarser granularity of description. This

coarser granularity translates into less numerous but ‘larger’ actors to execute. As

illustrated in [Hascoet 2017], by carefully adjusting the granularity of the application

description, enough elements will be exposed to permit a fair distribution of work on the

available hardware resources, with a reasonable complexity exposed to the DSE

algorithms.

Envisioned Contribution

The adaptation of the granularity of the application exposed to the DSE algorithm is

generally left to the designer of the application. The objective of this contribution is to

extend the semantics of SDF models to support the specification of so-called moldable

parameters. A moldable parameter is a parameter associated to a range of acceptable

values, thus leaving the responsibility to the DSE algorithm to select the most appropriate

one in its optimization process. In general, moldable parameters are supposed to change

only the ‘organization’ (e.g. like the exposed degree of parallelism) of computations, but

not the output they produce. Hence, by specifying moldable parameters in SDFgraphs, it

will be possible for the designer to let the DSE algorithms automatically control the

parallelism and granularity of the application to obtain the best DSE solution in minimum

time.

Use in CERBERO

The moldable parameters will be integrated within PREESM during the CERBERO

Project. It is envisioned that DSE optimizations based on this extended semantics will be

provided through a connection to AOW.

5.4. Extension of PiSDF MoCs through polyhedral transformations

Main contributors: UPM

Motivations

Polyhedral transformations are a solid set of well-known techniques to extract parallelism

from nested loops. Despite the extensive literature available and research conducted, the

constraints imposed on the code to be analyzed, make the application of polyhedral

transformations difficult to be generalized. Briefly speaking, these limitations are mainly

related to dynamic behaviors such as those expressed with PiSDF MoC. Currently,

PiSDF related tools like PREESM consider each actor as a black box, so its contents are

transparent to the tool. As a result, several parallelization opportunities could be missed,

since it is up to the designer to explicitly consider this parallelization in the code

describing the actor.

Envisioned Contribution

The main objective with this extension is to expand the polyhedral model to support the

extraction of intra-actor available parallelism at run-time. This extraction will depend on

model parameter changes and can be considered as an adaptation process.

H2020-ICT-2016-1-732105 - CERBERO

WP3 – D3.5: Models of Computation

Page 30 of 34

Use in CERBERO

This extension will be first applied in PREESM, which is the PiSDF MoC used within the

CERBERO project.

H2020-ICT-2016-1-732105 - CERBERO

WP3 – D3.5: Models of Computation

Page 31 of 34

6. Conclusions

In this document we provided an overview on the state of the art (Section 4) and

innovative activities (Section 5) that we are doing in CERBERO in terms of Model of

Computations (MoCs). Table 4-1 provided a summary of the properties that the analyzed

MoCs offer to the designer.

Since CERBERO is following a model-based approach and models are key ingredients to

solve interoperability issues (as it will be deeply discussed in D3.6 that describe in detail

CERBERO modeling activities), we provide in Table 6-1 a summary MoCs behind the

tools of the CERBERO framework (where possible, for example the AOW tool does not

refer to a specific MoC for computational system components). Please note that we

indicate with (S) the already adopted/supported MoCs and with (P) models that are going

to be supported by the end of the CERBERO project. In D5.6 (the deliverable that

presents the tools composing the CERBERO framework) this mapping will be enriched

to make clear which tools, and indirectly which models, are used in the different use

cases.

Table 6-1 – CERBERO Tools to MoC Mapping. S: support, P: planned support within CERBERO duration

 SDF PiSDF PN KPN DPN RTL DES SCE TS

MECA S

VT S

DynAA S S S

AOW

PREES

M
S S

SPIDER S

PAPIFY P S

JIT HW S

ARTICo³ P S

MDC S P S S

H2020-ICT-2016-1-732105 - CERBERO

WP3 – D3.5: Models of Computation

Page 32 of 34

7. References

[Alla 1998] Alla, H., & David, R. (1998). Continuous and hybrid Petri nets. Journal of

Circuits, Systems, and Computers, 8(01), 159-188.

[AnyLogic] Online, https://www.anylogic.com/company/timeline/

[Bhattacharyya 2006] S.S. Bhattacharyya and W.S. Levine. Optimization of signal processing

software for control system implementation. In Computer Aided Control

System Design, 2006 IEEE International Conference on Control Applications,

2006 IEEE International Symposium on Intelligent Control, 2006 IEEE, pages

1562-1567. IEEE, 2006

[Bosse 2017] T. Bosse, L. Breebaart, J. Van Diggelen, M.A. Neerincx, J. Rosa and N.J.

Smets Developing ePartners for human-robot teams in space based on

ontologies and formal abstraction hierarchies, Int. J. Agent-Oriented Software

Engineering, Vol. 5, No. 4, 2017.

[Cassandras 2008] C. G. Cassandras and S. Lafortune. “Introduction to discrete event systems”.

Springer, 2008.

[CERBERO 2017] http://www.cerbero-h2020.eu

[Clarke 1999] Clarke, E. M., Grumberg, O., & Peled, D. (1999). Model checking. MIT press.

[Bilsen 1996] Bilsen, G., Engels, M., Lauwereins, R., & Peperstraete, J. (1996). Cyclo-static

dataflow. IEEE Transactions on signal processing, 44(2), 397-408.

[Bouakaz 2012] Bouakaz, A., Talpin, J. P., & Vitek, J. (2012, June). Affine data-flow graphs for

the synthesis of hard real-time applications. In Application of Concurrency to

System Design (ACSD), 2012 12th International Conference on (pp. 183-192).

IEEE.

[Davis 1999] Davis II, J., Goel, M., Hylands, C., Kienhuis, B., Lee, E. A., Liu, J., ... &

Smyth, N. (1999). Overview of the Ptolemy project (Vol. 99). ERL Technical

Report UCB/ERL.

[Desnos 2013] K. Desnos, M. Pelcat, J. F. Nezan, S. S. Bhattacharyya and S. Aridhi, "PiMM:

Parameterized and Interfaced dataflow Meta-Model for MPSoCs runtime

reconfiguration," 2013 International Conference on Embedded Computer

Systems: Architectures, Modeling, and Simulation (SAMOS), Agios

Konstantinos, 2013, pp. 41-48.

[Dimitrov 2017] D.G. Dimitrov, Generalized Net Representation of Dataflow Process Networks.

In Recent Contributions in Intelligent Systems, pp. 23-31, 2017.

[Goldsim] Online, https://www.goldsim.com/Web/Home/

[Giua 2007] Giua, Alessandro and Seatzu, Carla. "A systems theory view of petri nets".

Advances in Control Theory and Applications, pages 99-127, 2007.

[Hamburg 2018] Universität Hamburg, Petri Nets Tools Database, online.

https://www.informatik.uni-hamburg.de/TGI/PetriNets/tools/quick.html.

[Heulot 2014] Heulot, J., Pelcat, M., Desnos, K., Nezan, J. F., & Aridhi, S. (2014, September).

Spider: A synchronous parameterized and interfaced dataflow-based rtos for

multicore dsps. In Education and Research Conference (EDERC), 2014 6th

European Embedded Design in (pp. 167-171). IEEE.

[Holzmann 1997] Holzmann, G. J. (1997). The model checker SPIN. IEEE Transactions on

software engineering, 23(5), 279-295.

https://www.anylogic.com/company/timeline/
http://www.cerbero-h2020.eu/
https://www.goldsim.com/Web/Home/
https://www.informatik.uni-hamburg.de/TGI/PetriNets/tools/quick.html

H2020-ICT-2016-1-732105 - CERBERO

WP3 – D3.5: Models of Computation

Page 33 of 34

[Kahn 1974] Kahn, G. (1974). The semantics of a simple language for parallel programming.

Information Processing, pages 471-475.

[Kapre 2017] Kapre, N., & Patel, H. (2017, May). Applying Models of Computation to

OpenCL Pipes for FPGA Computing. In Proceedings of the 5th International

Workshop on OpenCL (p. 9). ACM.

[Kurt 1996] Jensen, Kurt (1996). Coloured Petri Nets (2 ed.). Berlin: Heidelberg. p. 234.

[Klikpo 2016] Klikpo, E. C., Khatib, J., & Munier-Kordon, A. (2016, April). Modeling multi-

periodic simulink systems by synchronous dataflow graphs. In Real-Time and

Embedded Technology and Applications Symposium (RTAS), 2016 IEEE (pp. 1-

10). IEEE

[Lee 1987] E.A. Lee and D.G. Messerschmitt. Synchronous dataflow. Proceedings of the

IEEE, 75(9):1235-1245, sept. 1987.

[Lee 1995] Lee, E. and Park, T. (1995). Dataflow Process Networks. In Proceedings of the

IEEE, volume 83, pages 773-799.

[Lee 2017] Edward A. Lee and Sanjit A. Seshia, “Introduction to Embedded Systems, A

Cyber-Physical Systems Approach”, Second Edition, MIT Press, ISBN 978-0-

262-53381-2, 2017.

[Loulergue 2005] Loulergue, F., Gava, F., & Billiet, D. (2005, May). Bulk synchronous parallel

ML: modular implementation and performance prediction. In International

Conference on Computational Science (pp. 1046-1054). Springer, Berlin,

Heidelberg.

[Mathworks] Online, www.mathworks.com

[MECA 2015] The MECA Consortium, MECA-HEART Design Document, Deliverable WP2-

D3a, MECA-HEART WP2-D3a – Design Document, 20 Feb 2015.

[Oliveira 2013] J. Oliveira et al. , Model-based design of self-adapting networked signal

processing systems, International Conference on Self-Adaptive and Self-

Organizing systems, 2013

[Ostroff 1995] J.S. Ostroff. Abstraction and composition of discrete real-time systems. Proc. of

CASE, pp 370-380, 1995.

[Palumbo 2017] F. Palumbo, C. Sau, T. Fanni, P. Meloni and L. Raffo, SS-design: Dataflow-

based design of coarse-grained: Reconfigurable platforms reconfigurable

platform composer tool project. In proceedings of the IEEE International

Workshop on Signal Processing Systems, 2016.

[Parks 1995] Parks, T. M. (1995). Bounded Schedule of Process Networks.

PhD thesis, University of California at Berkeley.

[Pelcat 2014] Pelcat, M., Desnos, K., Heulot, J., Guy, C., Nezan, J. F., & Aridhi, S. (2014,

September). Preesm: A dataflow-based rapid prototyping framework for

simplifying multicore dsp programming. In Education and Research Conference

(EDERC), 2014 6th European Embedded Design in (pp. 36-40). IEEE.

[Pelcat 2018] Pelcat, M., Models of Architecture for DSP Systems. Springer. Handbook of

Signal Processing Systems, Third Edition, In press. 〈hal-01660620〉

[Piat 2009] Piat, J., Bhattacharyya, S. S., & Raulet, M. (2009, October). Interface-based

hierarchy for synchronous data-flow graphs. In Signal Processing Systems,

2009. SiPS 2009. IEEE Workshop on (pp. 145-150). IEEE.

[PtolemyII] Online, http://ptolemy.eecs.berkeley.edu/ptolemyII/index.htm

[Savage 1998] Savage, J.E. Models of Computation, Volume 136, Addison-Wesley Readings,

http://www.mathworks.com/
https://hal.archives-ouvertes.fr/hal-01660620
http://ptolemy.eecs.berkeley.edu/ptolemyII/index.htm

H2020-ICT-2016-1-732105 - CERBERO

WP3 – D3.5: Models of Computation

Page 34 of 34

MA, 1998

[Seatzu 2013] Seatzu, Carla and Silva, Manuel and van Schuppen, Jan H, “Control of

discrete-event systems: automata and petri net perspectives” Lecture Notes in

Control and Information Sciences, Vol. 433, Springer, 2013.

[Serot 2014] J. Serot & F. Berry, High-Level Dataflow Programming for Reconfigurable

Computing. In Proceedings of the IEEE 26th International Symposium on

Computer Architecture and High Performance Computing Workshops, 2014.

[Shen 2011] Shen, C. C., Wang, L. H., Cho, I., Kim, S., Won, S., Plishker, W., &

Bhattacharyya, S. S. (2011). The DSPCAD lightweight dataflow environment:

Introduction to LIDE version 0.1.

[Stuijk 2006] Stuijk, S., Geilen, M., & Basten, T. (2006, June). Sdf^ 3: Sdf for free. In

Application of Concurrency to System Design, 2006. ACSD 2006. Sixth

International Conference on (pp. 276-278). IEEE.

[Tripakis 2013] Tripakis, S., Bui, D., Geilen, M., Rodiers, B., & Lee, E. A. (2013).

Compositionality in synchronous data flow: Modular code generation from

hierarchical sdf graphs. ACM Transactions on Embedded Computing Systems

(TECS), 12(3), 83.

[Valiant 1990] Leslie G Valiant, “A bridging model for parallel computation,”,

Communications of the ACM, vol. 33, no. 8, pp. 103–111, 1990

[Vardi 1986] Vardi, M. Y., & Wolper, P. (1986). An automata-theoretic approach to

automatic program verification. In Proceedings of the First Symposium on

Logic in Computer Science (pp. 322-331). IEEE Computer Society.

[Yviquel 2013] H. Yviquel, A. Lorence, K. Jerbi, A. Sanchez, G. Cocherel, and M. Raulet,

Orcc: Multimedia development made easy. In Proceedings of the 21st ACM

international conference on Multimedia, 2013.

[Zeig 2000] B. P. Zeigler, H. Praehofer, T. G. Kim. Theory of Modeling and Simulation,

Second Edition. Academic Press, 2000.

