

Horizon 2020 European Union Funding for Research & Innovation

Models of Architecture

Maxime Pelcat INSA Rennes, IETR, Institut Pascal Nokia Bell Labs 2018

This work has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 732105: CERBERO.

INSA Rennes – IETR VAADER

- Abstracting computational architecture to
 - -Predict performance
 - -Support current hardware evolutions

Motivation: architecture evolution

- Hardware Architectures are becoming
 - -More complex
 - -More heterogeneous
 - -More High Performance embedded Computing (HPeC)
 - Embedded deep learning, near-sensor computing, fog computing, edge computing, many-cores, etc.
 - Real-time constraints, stream processing applications

- Let's look at ARM-based HPeC
 - -Let us consider 4 heterogeneous solutions
 - ARM = control path + some of the data path
 - in red: data path

Multi-ARM FPGA Multi-ARM GPGPU Multi-ARM DSP

Let's look at ARM-based HPeC

• ARM big.LITTLE: Samsung Exynos 5422

Let's look at ARM-based HPeC

• Multi-ARM + GPGPU: Nvidia Jetson TX1 module

Let's look at ARM-based HPeC

• Multi-ARM + DSP: Texas Instruments Keystone II TCI6638K2K

Difficult to program (well) Linux SMP + Open Event Machine 160 Gflops <15W

Let's look at ARM-based HPeC

• Multi-ARM + FPGA: Xilinx Zynq Ultrascale +

More difficult to program (well) Linux SMP + HLS or HDL

- Current trends
 - FPGAs are gaining importance: what about flops?
 - Adding video/image accelerators
 - Video Compression: H.264/AVC, H.265/HEVC, etc.
 - AI: For tensor applications \rightarrow reach 1Tops/W
 - -RISC-V as an open HW competitor to ARM

Motivation: architecture evolution

- Towards more complexity
 - -More cores, hierarchies of clusters
 - -Heteronegeneity, Interconnect complexity
- Reminds intra-core modifications in XXth

Motivation: architecture evolution

- But there are some differences between intracore and inter-core parallelism
 - At coarse grain, PEs communicate asynchronously
 - There is no (or less) centralized processing decision
 - There is no performance portability (nothing equivalent to C-to-VLIW compilers)
- How can/should we manage this HW complexity?

- Can we predict performance at design time? How?

System Objectives

Peak Power

Unit Cost

CERBER

Maxime Pelcat

System Design: Y-Chart

Horizon 2020 European Union Funding for Research & Innovation

Maxime Pelcat

Model-Based Design

On MoC Side: Many Results

- #EdwardALee, #ProgrammingParadigms
- Discrete Event MoCs
- Finite State Machines \rightarrow imperative languages
- Functional MoCs
- Petri Nets
- Dataflow MoCs SDF, CSDF, IDF, IBSDF, PSDF, SPDF, PISDF, etc.
 PREESM

Dataflow MoCs Case

And they are not all here...

Feature	SDF	ADF	IBSDF	DSSF	PSDF	PiSDF	SADF	SPDF	DPN	KPN
Expressivity	Low Med.			ed.	Turing complete					
Hierarchical			Х	X	Х	Х				
Compositional			X	X		Х				
Reconfigurable					Х	X	Х	Χ	Χ	Χ
Statically schedulable	Х	Х	X	X						
Decidable	Х	Х	Х	X	(X)	(X)	Х	(X)		
Variable rates		Х			Х	Х	Х	Χ	Χ	Χ
Non-determinism							Х	Х	Х	

SDF: Synchronous Dataflow ADF: Affine Dataflow IBSDF: Interface-Based Dataflow DSSF: Deterministic SDF with Shared Fifos PSDF: Parameterized SDF

PiSDF Parameterized and Interfaced SDF SADF: Scenario-Aware Dataflow SPDF: Schedulable Parametric Dataflow DPN: Dataflow Process Network KPN: Kahn Process Network

But Still a Lot to Do

- on Real-Time Multicore systems especially
- Usually, RT application specification =

-Multiple tasks sharing resources

-Activation periods or triggering events

Objective = keeping resources busy

T3

T2

T1

MoCs are not sufficient

Problem: Predict System Quality

- How to predict a system « quality » ?
 - -Efficiently (simple procedure)
 - -Early (from abstract models)
 - -Accurately (with a good fidelity)
 - -With reproducibility (same models = same prediction)

Definition

- -Model of a system Non-Functional Property
- -Application-independent
- -Abstract
- -Reproducible

Pelcat, M; Mercat, A; Desnos, K; Maggiani, L; Liu, Y; Heulot, J; Nezan, J-F; Hamidouche, W; Ménard, D; Bhattacharyya, S (2017) "Reproducible Evaluation of System Efficiency with a Model of Architecture: From Theory to Practice", IEEE TCAD.

	Model	Reproducible	Application- independent	Abstract		
	AADL		×	×		
	MCA SHIM	×	×	×		
	UML MARTE	×		×		
	AAA	×		×		
	CHARMED	×		×		
	S-LAM	×		×		
	MAPS	×		×		
	LSLA					
INS	Horizon 20	27				

for Research & Innovation

One and always the same quality evaluation

LSLA: First MoA

- LSLA = Linear System-Level Architecture
 Model
- Motivated by the additive nature of energy consumption

System Objectives

Peak Power

S

Unit Cost

Maxime Pelcat

CERBER

Energy/Power Define Architecture

LSLA Model of Architecture

LSLA Model of Architecture

LSLA MoA for Energy Prediction

86% of fidelity on octo-core ARM ^(*)

LSLA MoA for Energy Prediction

• The model is learnt from energy

measurements

LSLA MoA for Energy Prediction

• The model is **learnt** from energy

measurements

LSLA: MoA, not MoHW

- LSLA models HW + communication
 libraries + scheduler + Oss +...
- LSLA models the service the platform offers to the applications
- Top-down approach
 - -Learning parameters from experiments

System Objectives

for Research & Innovation

Peak Power

T°C

MoAs: Limits of LSLA

- Energy Linear model OK
 Latency
- Latency does not have an additive nature

Activity & MoA for Latency

Activity & MoA for Latency

$\Sigma \rightarrow 12 + 12 + 11 = 35$ a) b) $\Sigma \rightarrow 8+6+11=25$ max(35,25)=35 2x+0 3x+0 **PE1** PE2 CN **MaxPlus** 10x+1 Horizon 2020 European Union Funding for Research & Innovation

Activity & MoA for Latency

 $\Sigma \rightarrow 24$

Accuracy? No, Fidelity!

Maxime Pelcat

Current Activities

H2020 CERBERO

Cross-layer Design of Reconfigurable

Cyber-Physical Systems

CERBERO System Adaptation

H2020 Cerbero Toolchain

GdR SOC2

- Groupement de recherche SOC2
 - Systems on a Chip, Connected Systems
 - Industrial partner club

GdR SOC2

SAMOS XIX

- 19th edition of SAMOS Conference
- July 7-11, submission in March

Horizon 2020 European Union Funding CERBER

Takeaway Message

MoAs can early predict performance/quality

- Especially for HPeC systems

MoAs are not HW Models

- They model HW + protocols + OS + ...

- MoAs are built/learnt top-down
 - They can and should be simple
- The need for MoAs may rise
 - Due to Fog/Edge Computing complexity

Questions?

www.cerbero-h2020.eu

Pelcat, M; Mercat, A; Desnos, K; Maggiani, L; Liu, Y; Heulot, J; Nezan, J-F; Hamidouche, W; Ménard, D; Bhattacharyya, S (2017) "Reproducible Evaluation of System Efficiency with a Model of Architecture: From Theory to Practice", IEEE TCAD.

