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• Abstracting computational architecture to 
–Predict performance 

–Support current hardware evolutions 

Models of Architecture 



• Hardware Architectures are becoming 
–More complex 

–More heterogeneous 

–More High Performance embedded Computing 
(HPeC)  
• Embedded deep learning, near-sensor computing, fog 

computing, edge computing, many-cores, etc. 

• Real-time constraints, stream processing applications 

 

Motivation: architecture evolution 



• Let’s look at ARM-based HPeC 
–Let us consider 4 heterogeneous solutions 

• ARM = control path + some of the data path 

• in red: data path 
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• ARM big.LITTLE: Samsung Exynos 5422 
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• Let’s look at ARM-based HPeC 
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• Multi-ARM + GPGPU: Nvidia Jetson TX1 module 
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• Let’s look at ARM-based HPeC 
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• Multi-ARM + DSP: Texas Instruments Keystone II TCI6638K2K 
Motivation: HPeC architectures 
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• Let’s look at ARM-based HPeC 
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• Multi-ARM + FPGA: Xilinx Zynq Ultrascale + 
Motivation: HPeC architectures 

A53 A53 

A53 A53 

SCU 1MB 

More difficult to program (well) 
Linux SMP + HLS or HDL 

Control path 

1.5GHz 

Data path GPU 

 
FPGA 

 

R5 R5 

Switch 
fabric 

Not GPGPU 

Up to 
4MB 
1MFF 
0.5MLUT 

600MHz 



Motivation: HPeC architectures 

• Current trends 
–  FPGAs are gaining importance: what about flops? 

–  Adding video/image accelerators 
• Video Compression: H.264/AVC, H.265/HEVC, etc.  

•  AI: For tensor applications  reach 1Tops/W 

–RISC-V as an open HW competitor to ARM 



• Towards more complexity 
–More cores, hierarchies of clusters 

–Heteronegeneity, Interconnect complexity 

• Reminds intra-core modifications in XXth 
 

Motivation: architecture evolution 
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• But there are some differences between intra-
core and inter-core parallelism 
–At coarse grain, PEs communicate asynchronously 
– There is no (or less) centralized processing decision 
– There is no performance portability (nothing equivalent 

to C-to-VLIW compilers) 

• How can/should we manage this HW 
complexity? 
–Can we predict performance at design time? How? 

 

Motivation: architecture evolution 
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System Prototype 

System Design: Y-Chart 
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On MoC Side: Many Results 
• #EdwardALee, #ProgrammingParadigms 
• Discrete Event MoCs  
• Finite State Machines  imperative languages 
• Functional MoCs 
• Petri Nets 
• Dataflow MoCs SDF, CSDF, IDF, IBSDF, PSDF, 

SPDF, PiSDF, etc. 
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And they are not all here… 
Dataflow MoCs Case 

Feature SDF ADF IBSDF DSSF PSDF PiSDF SADF SPDF DPN KPN 

Expressivity Low Med. Turing complete 

Hierarchical X X X X 

Compositional X X X 

Reconfigurable X X X X X X 

Statically schedulable X X X X 

Decidable X X X X (X) (X) X (X) 

Variable rates X X X X X X X 

Non-determinism X X X 

SDF: Synchronous Dataflow 
ADF: Affine Dataflow 
IBSDF: Interface-Based Dataflow 
DSSF: Deterministic SDF with Shared Fifos 
PSDF: Parameterized SDF 

PiSDF Parameterized and Interfaced SDF 
SADF: Scenario-Aware Dataflow 
SPDF: Schedulable Parametric Dataflow 
DPN: Dataflow Process Network 
KPN: Kahn Process Network 



But Still a Lot to Do 
• on Real-Time Multicore systems especially 

• Usually, RT application specification = 
–Multiple tasks sharing resources 

–Activation periods or triggering events 

• Objective = keeping resources busy 
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MoCs are not sufficient 
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Problem: Predict System Quality 
• How to predict a system « quality » ? 
–Efficiently (simple procedure) 

–Early (from abstract models) 

–Accurately (with a good fidelity) 

–With reproducibility (same models = same 
prediction) 
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Model of Architecture 
• Definition 
–Model of a system Non-Functional Property 

–Application-independent 

–Abstract 

–Reproducible 

26 Maxime Pelcat  

Pelcat, M; Mercat, A; Desnos, K; Maggiani, L; Liu, Y; Heulot, J; Nezan, J-F; Hamidouche, W; 
Ménard, D; Bhattacharyya, S (2017) "Reproducible Evaluation of System Efficiency with a 
Model of Architecture: From Theory to Practice", IEEE  TCAD. 



Model of Architecture 

Maxime Pelcat  27 

Model Reproducible 
 

Application-
independent 

Abstract 
 

AADL 
   

MCA SHIM 
   

UML MARTE 
 /  

AAA 
   

CHARMED 
   

S-LAM 
   

MAPS 
   

LSLA 
   



NFP =  MoA(                                                  ) activity(                                 ) 

MoA depends on MoC 

Model of Architecture 
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LSLA: First MoA 
• LSLA = Linear System-Level Architecture 

Model 

• Motivated by the additive nature of energy 
consumption 
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System Objectives 
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Energy/Power Define Architecture 

0 20W 20kW 20MW 

Need a dissipator 

2W 7W 

Need a fan 

Embedded system 
Dedicated system 

or conventional system 

HPC 

HPeC 

influence 



LSLA Model of Architecture 
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LSLA Model of Architecture 

34 

Task1 
signal 

signal 
Task2 Task3 

Task4 

Task5 

1 

1 

1 

1 

1 

1 

1 

PE1 PE2 CN 

10x+1 

2x+0 3x+0 

16+12+22=50 

Maxime Pelcat  

SDF: Model of Computation 

Activity 

LSLA: Model of Architecture 



LSLA MoA for Energy Prediction 
• 86% of fidelity on octo-core ARM  
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LSLA MoA for Energy Prediction 
• The model is learnt from energy 

measurements 
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LSLA MoA for Energy Prediction 
• The model is learnt from energy 

measurements 
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LSLA: MoA, not MoHW 
• LSLA models HW + communication 

libraries + scheduler + Oss +… 

• LSLA models the service the platform 
offers to the applications 

• Top-down approach 
–Learning parameters from experiments 
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MoAs: Limits of LSLA 
• Energy    Linear model OK 
• Latency 

• Latency does not have an additive nature 
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Activity & MoA for Latency 

41 

Task1 
signal 

signal 
Task2 Task3 

Task4 

Task5 

1 

1 

1 

1 

1 

1 

1 

SDF 

a) 

b) 

Maxime Pelcat  

c) 



Activity & MoA for Latency 
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c) 

Activity & MoA for Latency 
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System Prototype 

Accuracy? No, Fidelity! 
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Current Activities 
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• Cross-layer Design of Reconfigurable 
Cyber-Physical Systems 

H2020 CERBERO 
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CERBERO System Adaptation 
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H2020 Cerbero Toolchain 
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GdR SOC2 
• Groupement de recherche SOC2 
–  Systems on a Chip, Connected Systems 

–  Industrial partner club 
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GdR SOC2 
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SAMOS XIX 
• 19th edition of SAMOS Conference 

• July 7-11, submission in March 
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Takeaway Message 
• MoAs can early predict performance/quality 
–Especially for HPeC systems 

• MoAs are not HW Models 
– They model HW + protocols + OS + … 

• MoAs are built/learnt top-down 
– They can and should be simple 

• The need for MoAs may rise 
–Due to Fog/Edge Computing complexity 
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Questions? 
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