
1

Multi-Grain Reconfiguration for Advanced

Adaptivity in Cyber-Physical Systems

This tutorial shows how to generate a multi-grain reconfigurable system.

The used tools are:

1. the Multi-Dataflow composer (MDC) tool (http://sites.unica.it/rpct/);

2. the ARTICo3 framework (more info here)

Adopted Use-Case

Edge detection application involving two different algorithms: Sobel and Roberts. Both

algorithms consider the convolution of two kernels with a grayscale image (see Fig. 1), in

order to highlight the high-frequency variations due to the horizontal and vertical edges.

a b

Figure 1: Computation of the convolution of kernels (x and y) of the Sobel (a) and Roberts

(b) operators with an input image (A).

Figure 2 illustrates the single networks for Sobel (a) and Roberts (b) algorithms.

http://sites.unica.it/rpct/
http://www.mdpi.com/1424-8220/18/6/1877

2

a

b

Figure 2: Dataflow description of the single networks for the Sobel (a) and Roberts (b)

operators and for the multi-dataflow reconfigurable system (c).

The single networks and HDL component libraries have been created using CAPH tool

(http://caph.univ-bpclermont.fr). CAPH is a framework for the specification, simulation and

implementation of stream processing applications based on a dynamic Dataflow MoC (ref).

Dataflow-to-Hardware

Launch MDC executable, placed in folder MDC_CPS.

Import Project: File → Import… → General → Existing Project into Workspace

Browse to: MDC_CPS/MDC_input/Tutorial_EdgeDetection (OK → Finish)

Merging Process

To Run the MDC Merging Process

Create a new run configuration: Run > Run configurations…, right click on Orcc

compilation then select New.

Name: chose a name for the configuration

Project: select Tutorial_EdgeDetection project

Backend

Select a backend: MDC

Output Folder: “MDC_CPS/MDC_output/baseline”.

http://caph.univ-bpclermont.fr/
https://www.researchgate.net/publication/278698706_CAPH_A_language_for_implementing_stream-processing_applications_on_FPGAs

3

Options:

Tick “List of Networks to be Compiled and Merged”

Number of Networks: 2

XDF List of Files: select the two input dataflow networks edgeDetection.roberts and

edgeDetection.sobel

Merging Algorithm: EMPIRIC

Tick “Generate RVC-CAL multi-dataflow”. And Run.

This step merges the two input dataflow networks, through the selected datapath merging

algorithm. Click on Run.

Refresh the project folder to visualize the output folder with the generated multi-dataflow. In

the generated networks you can notice as actors are shared, and functionalities of the two

input networks are guaranteed by the insertion of the switching boxes.

4

HDL Generation

Open again the configuration window: Run > Run configurations...

Choose previous configuration.

Options:

Deselect “Generate RVC-CAL multi-dataflow”

Select “Generate HDL multi-dataflow”.

Protocol file: “MDC_CPS/MDC_input/protocol/protocol_CAPH.xml”

HDL component library: “MDC_CPS/MDC_input/HDL_compLib”

The HDL component library must contain all the necessary HDL files. If a specific library is

needed, files should be put in: Component_Library_Folder/lib/libName folder. Please pay

attention that libName folder name has to match the library name!

Output folder

Output folder contains one folder and two files:

1. HDL: includes all the necessary files to create simulate and synthesize our CGR

accelerator.

It contains also two files:

1. configNetID.txt - reports the ID value associated to each input dataflow.

2. report.txt - reports:

a. the number of actors of each input network

b. number of merged networks,

c. number of actors

d. number of original actors

e. number sbox actors

f. number of shared actors

MDC CGR IP Generation

Open again the configuration window: Run > Run configurations...

Duplicate baseline configuration.

Backend:

Output folder: “MDC_CPS/MDC_output/coprocessor”.

Options:

The previous settings for Protocol file and HDL component library are still valid.

Tick Generate Accelerator IP

Processor-Coprocessor Coupling: MEMORY-MAPPED

5

Host Processor: ARM

Tick on: Adopt DMA

Board Part: em.avnet.com:zed:part0:1.0

Partname: xc7z020clg484-1

Select Apply and choose Run.

Output folder

Output folder contains two folders:

2. Mm_accelerator:

a. hdl: includes all the necessary files to create the Custom IP in Vivado.

b. bd: include the necessary file to properly import the Custom IP in a top

project.

c. drivers: include the .c and .h files necessary to easily communicate with

accelerator from the host processor.

3. Scripts: contains two scripts:

a. generate_ip.tcl - uses inputs in mm_accelerator to create a project and

package a Custom IP.

b. generate_top.tcl - create a top project, where the IP is instantiated and

connected to Host Processor, using the necessary logic according to user

requirements.

By default, these scripts consider as root the folder where mm_accelerator and scripts folder

are saved.

If Vivado is launched in that folder, they don’t need any modification. If Vivado is launched in

a different folder (e.g. Windows users), the users should open the scripts and replace root

path “.” (set root ".") with were necessary folders are saved.

MDC Processor - Coprocessor System Generation

Open the terminal in the “MDC_CPS/MDC_output/coprocessor” folder.

Set Vivado Environment Variables: “source /opt/Xilinx/Vivado/2017.1/settings64.sh”

Launch Vivado typing “vivado”

6

Tools → Run tcl Script… and choose ./scripts/generate_ip.tcl.

Then, launch the generate_top.tcl script file at the same manner:

Tools → Run tcl Script… and choose ./scripts/generate_top.tcl.

At this point, the Processor-Coprocessor System is ready for the synthesis or simulation.

7

ARTICo3 Kernel Generation

To use the coarse-grain reconfigurable computing core generated by MDC it is necessary to

generate an ARTICo3 compliant kernel. An automatic script generates the required kernel

(CGR_accelerator.v) starting from the MDC generated mm_accelerator.v

Open the terminal in MDC_CPS folder

Type “source generateArticoKernel”

Enter input file path:

/home/embedded/Desktop/MDC_CPS/MDC_output/coprocessor/mm_accelerator/hdl

Enter output file path:

/home/embedded/Desktop/MDC_CPS/MDC_output/coprocessor/mm_accelerator/hdl

Enter number of inputs: 2

Enter number of outputs: 1

In the output folder is now present the ARTICo3 compliant cgr_accelerator.v

System Implementation

NOTE: additional information about ARTICo3 project requirements and kernel specification

can be found in /home/embedded/artico3/doc.

The ARTICo3 toolchain is required to build both FPGA configuration files (bitstreams) and

application executable for the ARM microprocessors (ELF). For this, a specific folder

structure is required.

Open a terminal (terminal #1) in /home/embedded/Desktop

Run mkdir –p tutorial/src/a3_cgr_accelerator/verilog (hardware components)

Run mkdir –p tutorial/src/application (software components)

Run touch tutorial/build.cfg (create ARTICo3 project configuration file)

Project Configuration

Open /home/embedded/Desktop/tutorial/build.cfg with a text editor (e.g., Geany).

Write general project settings:

[General]
Name = tutorial
TargetBoard = pynq,c
TargetPart = xc7z020clg400-1
ReferenceDesign = mdc
TargetOS = linux
TargetXil = vivado,2017.1

Write kernel-specific settings:

[A3Kernel@CGR_accelerator]
HwSource = verilog
MemBytes = 49152
MemBanks = 3

8

Regs = 4
RstPol = low

Save file and close.

Launch the ARTICo3 toolchain from a terminal (terminal #2):

cd /home/embedded/Desktop/tutorial

source /home/embedded/artico3/tools/settings.sh

a3dk

Check project info by executing the info command (terminal #2):

Hardware Components

Copy all files generated by MDC to the ARTICo3 project folders (terminal #1):

cp –rf

/home/embedded/Desktop/MDC_CPS/MDC_output/coprocessor/mm_accelerator/hdl/*

/home/embedded/Desktop/tutorial/src/a3_cgr_accelerator/verilog

Remove AXI compliant interface and simulation files (terminal #1):

cd /home/embedded/Desktop/tutorial/src/a3_cgr_accelerator/verilog

rm –rf mm_accelerator.v tb_mm_accelerator.v lib tb

Generate Vivado project with export_hw (terminal #2).

Check generated block diagram (terminal #1):

cd /home/embedded/Desktop/tutorial/build.hw

source /opt/Xilinx/Vivado/2017.1/settings64.sh

vivado myARTICo3.xpr

9

Open both block diagrams from Vivado (In Project Manager window: IP Integrator -> Open

Block Design).

[SKIP] Build Vivado project with build_hw (terminal #2).

Software Components

Write code in a text editor (e.g., Geany) as instructed and save it as

/home/embedded/Desktop/tutorial/src/application/main.c

Generate software project with export_sw (terminal #2).

Build software project with build_sw (terminal #2).

