CPS Week 2018
Tutorial on Design of Adaptive and Secure CPS

April 10-13, 2018 CERBER

Hw/Sw Cyber-System Co-design and
Modelling

Dr. Rer. Nat. Julio A. De Oliveira Filho, TNO, Netherlands
Prof. Dr. Karol Desnos, INSA, France

European Union funding

| Horizon 2020
for Research & Innovation

Introduction

Text-book definitions for Cyber-Physical Systems :

* CPS are complex systems integrating:
— Computation processes
— Network of communication
— Physical entities (actuators and sensors, time, mechanics,
temperature ..., and you!)

3+

 CPSis an engineering discipline, focused on technology,
with a strong foundation in mathematical abstractions.

source: Berkeley CPS website, http://cyberphysicalsystems.org/

In this lecture

Source: Mathworks, INC

An eagle’s view on modelling
Cyber-physical Systems

Challenges on modelling CPS

Modelling at different abstraction
levels and with different views

A look behind the tools — model
automation

Who are we?

Julio Oliveira (Dr. Rer. Nat. , Brazilian)

Crazy about inventing new ways to describe, model, and analyze
multi-domain, complex, large scale cyber-physical systems.

Innovation researcher at TNO — The Netherlands

Karol Desnos (Dr. Associate Prof. , France)
Dataflow programming expert and freak designer of MPSoCs.

Associate Professor at INSA and researcher at IETR — France

First things first...

What are models ? And why !?!

Modeling as an engineering activity

Abstraction
(Simplification)

Description
(Specification)

Operational
(Executable)

Abstraction

Tradeoff between level of details and complexity.

Models for similar systems may take many forms.
— To capture different characteristics.
— To be more suitable for a different system size.

Molecules Ideal Gas Law

pressure moles temp.

\p’V - MFT !

volume gas constant*

*: Physicist way of saying magic number

Operational

Useful for drawing conclusions

Why models ?

Communication

Sustainabikity System
{e.g., smart grid)

Software

Simulation Tool

prediction tool, elc.)

(incl. constraint solver,

lic
Polky Makers
Physical Lllnl
(mnomlc. envir omunul social)
;;;;;;;;;;;;;;; Open Dah

t e

Analysis

Design

Validation

Source: INRIA

Why Models ?

Automation !

¥ —

designer

_

Analysis
report

System
Model

\ (xnan)

Java
code

Code J
Generator | ——p e

Target platform

-1 application

DaM.Mw

Q5Gi

VM

Checker /
Optimizer

_ section 3.4

Code
Generator
Simulator

Simulator
(DyNAA)

-
Simulator
scripts
(DyNAA
model)

Simulation
scenario

L-[1~+#

designer
\.
Simulation

results

Source: EU DEMANES project

Challenges

Challenges on modelling CPS

Why modeling CPS (SoS) is challenging?

Which abstraction?

medical

How to describe?

m <« 75 Operational?
sensing o AR - :\,_i\'

Complexity!

What we mean by complexity?

What we mean by complexity?

Mechanical

r_(Structure
=S . , rumen((C R
' " Machlne

Interaction

Aerodynamics

\ Propulsion
System

f“n‘w)‘

Communications

Source: INRIA

All so far, in a nutshell

N Abstraction
requires

1 Description

Operational

MOdeling complex

[Due to multiple views]

[Communication between stakeholders]

one base | Analysis |

(I Decision making]

[CPS, SoS, Hw/Sw systems]

: l Implementation I

Tame complexity

Mission of Modeling Engineer { Obtain a modeling methodology for CPS / SoS

Facing the challenges |

Some ideas on taming
modelling complexity

Integrative Multi-view
modelling

Approach 1: Model for the task in hand

7. Procedure

This section describes the steps to be followed by the user in the Oracle Application with
detail screen shots. After successful log in into the Oracle Application the user has to
follow the following navigation to create a manual/standalone invoice in the system.

Prerequisite: Before navigating to the application the user should have following: User
2 Acceptance
» Original copy of the vendor invoice. E;gfneering Testing
» Copy of the manual PO/WO.
» Certificate of completion/ Proof of receipt of goods. \ /
System System
\ Engineering Testing
Wswpmodal mEX]
Bl Eok Gew gmiston Fgmet Todk e
DEEE sBE (=@ |2 =r s[[Nand BB | System
Architecture - <
Engineering Testing
Subsystem
Design > gration
Testing
Coding (SW) s =
feady T S B = — / Fabrication (HW) P Unit Testing

<?php
namespace SampleApp\Common;
;lass Sarvicelocator implements RegistrableInterface

array();

protected §_

.
* Set the specified resource

.y

ublic function set(skey, AbstractResource %
)) {
ource

SQur

S.>_resources
esources[skey]

if (risset(st
Sihis

Model for the task in hand fails

Moore’s Law

100M // 1000M 5 Fatal Error E

o oM 100M E
} Develo, t = L

;. /pf:d.,c':,"v’fg o & NET_SendPacket ERROR: NO ERROR
a / 12p £ : . .
£ 100k ; —m E
© o —
; Al §
S 10K 100K)
RS 10K ©

Introduction of errors :

Major problem for the development Human failure or mis-interpretation

productivity
e
g ° o E° |
»'9;%,09‘%) ool o ‘\:7 .;9
o b B Almost
Loviter | impossible to
s g Qe optimize at
LA D system level
A S
mn

NOx

Approach 2: Model transformation

A model transformation is an
automated way of modifying and
creating models.

(Best) Example: Compilers

Fle Analyse View Help

Instructions @® C+F
|8048094: push ebp
8048095: mov ebp, esp int32_t ged(jAE32Ltargl. int32_t arg2) {
8048097: sub esp, Ox18 int32 t eaxl -
|B0480%a: cmp [ebp + Oxc]:32, Ox0 i
|B04B0%e: jnz 0x80480a5 if (arg2 = 0) |
|B0480a0: mov eax, [ebp + 0x8]:32 eaxl = gedlargz, 2rgl o arg2)

| 80480a3:

mp

1 80480as5: mav.

80480a8: mov
| B0D4B0aa: sar
|80480ad: idiv
180480b0: mov
| 80480b2: mov
|1 80480b6: mov
|80480b9: mov
1 80480bc: call
180480c1: leave
| B04B0c2: ret

Line 6, Column 27

0x80480c1
sax. [ebp + Ox

eax, edx

[esp + 0x4]:32, eax
eax, [ebp + Oxc]i32
[espl:32, eax
0x8048054

Assembly Code

I else {)
eaxl = argl

- return eaxl:

Source Code

Model transformation and the design process

| Horizontal Model Transformations >

— Model generation
/'L\ >

System Design Nt System V&V
Model € I\ Model

\ Refine Back-Annotation Use f
Design Model generation Formal

rules i >
Architecture — ?|Architecture V&v| methods

Design " e o
Model <€ < ‘,
! Refine Back-Annotation n f
se

Design Model generation Forinal

rules Component _D_) Component mathods

Design V&V
Model <_<_)_ Model
1 Back-Annotation 1
Design
fles Code Test
Generation Generation
v v

Design + V&V Artifacts
(Source code, Glue code,
Config. Tables, Test Cases, Monitors,

Fault Trees, etc.)

Main challenge

SUOIEWIIOSUBI] [POIA [BIIIIDA

| Foundations of
model transformations

Source: Daniel Varro, CSMR2012

Approach 3: Multi-aspect modeling

A system aspect, or system view, is a way to
look at or describe a system as a
whole. Each system aspect has its own
associated semantic domain and can provide
an exhaustive description of the system, but
only from that particular point of view.

Map/Schedule v
] Compile/Execute ™ o

Multi-aspect examples

Examples

“AADL

UML 20 —
4
14+ UML 1.4
4 industrialization
U M L 1 A St S :
1 revision wex "'"] A L
s |
OMG Acceptance, Nov 1997 —-—-—---=-=-- UML 1.1 ==
Final submission to OMG, Sep ‘97 1 i
First submission to OMG, Jan 97 ; standardization
UML partners - UML10
t
Web - June 96 ———————————» ML 0.9
OOPSLA 95 —— e Unified Method 0.8
Other methods omT OOSE ,
Methods Source: Emertxe Ltd

war!

Advantages of multi-aspect modeling

Deal with one aspect at a time

. —l Tame complexity] Every aspect contributes to one system model

Interdisciplinary design trade-offs

Multi aspect modeling

== —[Co-modeling]' Tooling profits from multi-domain information

Increased (re)usability of models

More flexible evaluation of design alternatives

CERBER

Explicit (formal?) interdependency between aspects

Challenges ‘ Neoteric (new + isoteric) views

An example from CERBERO 1/3

remoteDataAcq: TaskGroup | | cotectSensorData: Task

Task aspect s oa) >8] .r

sensorData

- 1

N

Behavior aspect A gz &

getSensorValue: Algorithm

sendSens
is) mSize = 4 [B] rsh e
Is)

X

p1 = (Int16) mappedTo.adcl getValue(); [~~~ " ‘@
) p1

An example from CERBERO 2/3

Physical aspect L
lan
wisn
pl: Processor mem: Memory wian: CommHw
nrCores =1 memSize =10e8 [B) protocol = Wifi my Witk Channel
ophModes = {Hib,On} opModes = {Off.On} nd: Gnode
powerNeeds = {0.01,0.1) [W] powerNeeds = {0,005} [W]
IOps = {0,1e6} {s] pandwidths = {0,1e6} [Bis]
FLOps = {0,1e5) [is]
oki: Ciock bati: Battery adci: ADC .
offsat =23 (s] capacity =25 [An] nrBis =12 I|\
rate =101 nominalotage = 12 ™M maxRange =50 ™M '
drifthodel = none chargeModel = none offset =2 [mv] f

An example from CERBERO 3/3

Mapping view

Putting it all together

CERBER

Using the models together to assess KPIs

uolndaxa |apow

task model

behavioural model feedback

physical model
+T P mapping

temporal behaviour
power requirement

.
dependability

<other performance indicators>

REQUIREMENTS

temporal behaviour
power requirement
dependability

<other perf. indicators>

Facing the challenges Il

Some ideas on taming
modelling complexity

CERBER Choosing an adEOIu?te Model of
Computation

Models of Computation

Model of Computation (MoC)
a.k.a. programming paradigm /"\ A MoC is not a language /!\

Definition:
* A set of operational elements that can be composed to describe the
behavior of an application.
- Semantics of the computation

Objective:
» Specify implementation-independent system behavior.
* Ease specification, implementation, verification of system properties.

How:
* MoCs act as the interface between computer science
& mathematical domain.

Differences to a programming language

Language

Definition:
* A set of textual/graphical symbols that can be assembled respecting
a well defined grammar to specify the behavior of a program
— Syntax of a the language

Objective:
* Ease system description and maximize developer productivity.
* Be developer-friendly: readability, reusability, modularity, ...

How:

e Languages are the interface between the programmer
& the Machine (through the compiler).

A Language implements one or several MoCs

Examples of models of computation |

A few MoCs FSM for drinking beer
Finite State Machine MoCs Pour beverage
Semantics

* States

* Transitions (possibly conditional)
Drink

Used for drop
* Sequential logic
e System-level behavior

Broken
 Communication protocols

[]
Be sad

drop

Property
* Non-deterministic, sequential

Examples of Models of Computation |l

A few MoCs
Petri Nets

Semantics
* Places
* Transitions & Arcs

Used for
e Synchronization protocols
* Parallel computations

Property
* Parallelism
* Liveness, Boundedness, Reachability

Examples of Models of Computation |l

A few MoCs
Discrete Event MoCs

Semantics

* Modules
 Signals

* Timed events
* Global clock

A e « A
Used for LB ' :
e Hardware Description I CI ! . e CI] =
e “System” Simulation t Time
Properties

* Timed, Non-deterministic (if badly used)

A few MoCs
Synchronous Dataflow

Semantics
* Actors & ports
* FIFO queues

Used for Properties
 Parallel computations * Liveness

* Stream processing * Boundedness
* Deterministic

e Untimed

C 1 D |1 1 E

'Q‘Q 'Cb O

Source: E. Lee and D. Messerschmitt, “Synchronous data flow”, Proceedings of the IEEE, 1987.

CERBER

MoC properties are important.

You need to know them to select the MoC suiting your needs

Feature SDF ADF IBSDF DSSF PSDF PiSDF SADF SPDF DPN KPN
Expressivity Low Med. Turing
Hierarchical X X X X
Compositional X X X
Reconfigurable X X X X X X
Statically schedulable X X X X
Decidable X X X X (X) (X) X (X)
Variable rates X X X X X X X
Non-determinism X X X

SDF: Synchronous Dataflow

ADF: Affine Dataflow

IBSDF: Interface-Based Dataflow

DSSF: Deterministic SDF with Shared Fifos
PSDF: Parameterized SDF

PiSDF Parameterized and Interfaced SDF

SADF: Scenario-Aware Dataflow

SPDF: Schedulable Parametric Dataflow

DPN: Dataflow Process Network

KPN: Kahn Process Network

Closing words

Modelling CPS is a
fascinating and
challenging area of
research

Complexity is the main
challenge

CERBERO contributes on
new techniques for
modelling complex
systems.

Thank you

Backup Slides

Some CERBERO contributions (on going work)

Challenges

Explicit (formal?) interdependency between aspects

| Research: Aspects can also be used to formalize the
|| dependency between other aspects.

Research: A (semantic) intermediary representation
layer as connection point between modeling aspects
(modeling languages)

4 Neoteric (new + isoteric) views

Research: How to model reconfigurability ?
Adaptivity ? Scalability and Cardinality ?

| Research: How to model key performance indicators in
a more formal way ?

41

