
CPS Week 2018
Tutorial on Design of adaptive and secure CPS
April 10-13, 2018

Where All Projects Start: Requirements
Michael Masin, IBM Research - Haifa

Luca Pulina, Università degli Studi di Sassari



CPS Week 2018
Tutorial on Design of adaptive and secure CPS
April 10-13, 2018

Where All Projects Start: Requirements
Michael Masin, IBM Research - Haifa

Luca Pulina, Università degli Studi di Sassari



3

❑ Model Based Engineering Background

❑ PORTALS

oArchitecture

o Interaction

oScenarios

oDemo

❑ Requirements Formalization and Verification

Outline



4

Waterfall Model (from 1950s)

Start of Systems Engineering



5

V model (1980s)

Systems Engineering today



6

Model Based Engineering (< 10 years)

MBE



7

Continuous Model Based Engineering

MBE
CMBE: Models create models



8

❑ to create tools to assist requirements engineers in incrementally 
raising the formalization level of system requirements, and

❑ to use formalized requirements to
oprovide feedback on the quality of the requirements (e.g., identifying 

omissions and contradictions), and

o create downstream artifacts (e.g., models, monitors, tests, code)

❑Yishai A. Feldman and Henry Broodney, 2016, “A Cognitive Journey 
for Requirements Engineering”, 26th Annual INCOSE International 
Symposium.

PORTALS – research project



9

PORTALS Architecture

Formalized 
Requirements

Engineering

Knowledge

Base

Restricted 
Input

Free Input,
Watson Parser

Requirement 
Analytics

IoT
Automation

Asset-
Management 

Automation

H
e
a
v
ie

r

L
ig

h
te

r



10

Personas and Interactions

Node-RED
Doors 

NG
PORTALS Rhapsody

Optimization

Requirements

Engineer
Systems

Engineer

Hybrid Simulation

Compose

requirements

Feedback on 

consistency
Make 

design 
decisions

Traceability

Reason about

requirements
and models

Generate

Artifacts



11

Personas and Interactions

Node-RED
Doors 

NG
PORTALS Rhapsody

Optimization

Requirements

Engineer
Systems

Engineer

Hybrid Simulation

Compose

requirements

Feedback on 

consistency
Make 

design 
decisions

Traceability

Reason about

requirements
and models

Generate

Artifacts

Project 

Manager

Project 

planning 
and 

control



12

Scenario 1: IBM IoT Safer Workplace

if "an employee" falls then "the system" shall send 
[an abstract entity] "an SMS" (direction) 

"manager" of "the employee's" 

1. Requirement in DOORS

2. Paraphrase by PORTALS

3. Process Model

4. Implementation

in Node-RED



13

Engineering Knowledge Base:
ServicesActionsEvents Devices / Systems

▪ WorkRight

Fall 
Detection

R
a
d

a
r

A
c
c
e

le
ro

m
e

te
r

Overexertion
H

e
a
rt

 R
a
te

B
o

d
y
 T

e
m

p
e

ra
tu

re

S
w

e
a
t 
&

 T
e

a
rs

iPhone

Accelerometer

Orientation

Vibration

Send SMS

Device ID

Owner ID

TI SensorTag

Device ID

Accelerometer

Temperature

Fev er Smart

Device ID

Temperature

Send SMS
Send 
SMS

Send 
Mail

Vibrate

Device ID 

To
Person

Employee

To
Manager



14

Scenario 2: IoT Pump

if "vibration" of "the pump's" is greater than 100 
Hz (duration) 2 min then "?" shall send [a role 

entity] "a technician" (duration) 24 hr; (direction) 

"the pump" 

1. Requirement in DOORS

2. Paraphrase by PORTALS

3. Process Model

4. Implementation

in Node-RED



15

Engineering Knowledge Base:
ServicesActionsEvents Devices / Systems

▪ Pump
Check Bound

E
le

c
tr

ic
 

T
h

re
s

h
o
ld

D
u

ra
ti

o
n

F
re

q
u

e
n

c
y
 

Pump

Device ID

Accelerometer

Location

Send SMS
Send 
SMS

Send 
Role

Send 
Mail

Device ID 

To
Location

Acceleration

To
Vibration

Check Range

E
le

c
tr

ic
 

T
h

re
s

h
o
ld

D
u

ra
ti

o
n

F
re

q
u

e
n

c
y
 



16

Demo for Scenarios 1 and 2



17

❑ The weight of the Doors Management System shall not exceed 500 
kg.

❑ The target mass of the locking system shall not exceed 260 kg.

❑ The target mass of the latching system shall not exceed 250 kg.

❑ The volume of the Doors Management System shall not exceed 
1000 ft3.

❑ The volume of the latching system shall not exceed 30 m3.

❑ The volume of the latching system shall not exceed 35 m3.

Scenario 3: Door Management System 



18



19

Engineering Knowledge Base:



21

Requirements Analysis

SERENE Analysis
Conflicting values in 
similar requirements Subsystem budgets 

exceed system budget

Missing budget for a 
subsystem Conflict due to different units 

(cf. Mars Climate Orbiter)



22

Requirements Analysis

Conflicting Requirements



23

Requirements Analysis

Paraphrased Requirements



24



25

In the context of adaptive CPSs, checking the consistency of 
requirements is an indisputable, yet challenging task.

❑Requirements written in natural language call for time-consuming 
and error-prone manual reviews, BUT

❑ enabling automated consistency verification often requires 
overburdening formalizations. 

Given the increasing pervasiveness of CPSs, their stringent time-to-
market and product budget constraints, practical solutions to enable 
automated verification of requirements are in order.

Requirements Formalization and Verification



26

Goal: (Semi) Automatic Translation from Natural Language 
Specification to Formal Specification.

Desiderata: Unambiguous language with high expressiveness, that can 
be automatically translated in some logic and then used for 
verification/validation.

Expressiveness vs Unambiguity!

Formal Specification



27

Property Specification Patterns (PSPs) offer a viable path towards this goal.

❑ PSP: collection of parameterizable, high-level, formalism-independent 
specification abstractions, originally developed to capture recurring 
solutions to the needs of requirement engineering.

❑ Each pattern can be directly encoded in a formal specification language, 
such as linear time temporal logic (LTL), computational tree logic (CTL), or 
graphical interval logic (GIL).

❑ Because of their features, PSPs may ease the burden of formalizing 
requirements, yet enable their verification using current state-of-the-art 
automated reasoning tools (e.g., for LTL).

Actually...



28

Modal temporal logic with modalities referring to time
o One can encode formulae about the future of paths, e.g., a condition will 

eventually be true, a condition will be true until another fact becomes true, etc.

Syntax:

❑ LTL is built up from a finite set of propositional variables AP, the logical 
operators ¬ and ∨, and the temporal modal operators X (next) and U 
(until).

❑ the set of LTL formulas over AP is inductively defined as follows:
o if p ∈ AP then p is an LTL formula;

o if ψ and φ are LTL formulas then ¬ψ, φ ∨ψ, X ψ, and φ U ψ are LTL formulas.

❑Additional temporal operators: G (globally), F (eventually), R (release)

Linear Temporal Logic (LTL)

https://en.wikipedia.org/wiki/Propositional_variable
https://en.wikipedia.org/wiki/Logical_connective
https://en.wikipedia.org/wiki/Temporal_logic
https://en.wikipedia.org/wiki/Modal_operator


29

Linear Temporal Logic (LTL) - Semantics



30

❑PSPs are meant to describe the essential structure of system's 
behaviours and provide expressions of such behaviors in a range of 
common formalisms.

❑A pattern is comprised of a 

oname;

oan informal statement describing the behaviour captured by the pattern;

oa (structured English) statement that should be used to express requirements.

Property Specification Patterns (PSPs)



31

Property Specification Patterns (PSPs)

The LTL mappings corresponding to
different declinations of the
pattern are also given, where
capital letters (P, Q, R, ...) stands
for Boolean states/events.

A complete list of patterns is 
available at 
http://patterns.projects.cs.ksu.edu



32

❑ The original formulation of PSPs caters for temporal structure over

Boolean variables: for most practical applications, such 
expressiveness is too restricted.

❑ Example: embedded controller for robotic manipulators (from 
CERBERO use case)
oWith original PSPs, requirements such as "The angle of joint1 shall never be 

greater than 170 degrees" cannot be expressed.

❑ Solution proposed in CERBERO: PSPs with Boolean and Constrained 
Numerical Signals (with sound translation to LTL).

Extending PSPs



33

Controller for a Robotic Manipulator
Let consider a set of requirements from the design 
of an embedded controller for a robotic 
manipulator:
• the controller should direct a properly 

initialized robotic arm to look for an object 
placed in a given position and move to such 
position in order to grab the object; 

• once grabbed, the object is to be moved into a 
bucket placed in a given position and released 
without touching the bucket.

• The robot must stop also in the case of an 
unintended collision with other objects or with 
the robot itself.

• collisions can be detected using torque 
estimation from sensors placed in the joints.

The manipulator is a 4 
degrees-of-freedom 
Trossen Robotics WidowX
Arm equipped with a 
gripper



34

❑Constrained numerical signals are used to represent requirements 
related to various parameters
oangle, speed, acceleration, and torque of the 4 joints, size of the object picked, 

and force exerted by the end-effector.

❑75 requirements in total.

Requirements

Globally, it is never the case that joint1_angle < -170 or joint1_angle > 170 holds.

…

Globally, it is always the case that if ef_idle holds, then ef_speed = 0 and ef_acc = 0 holds 

as well.

…

After state_init until state_scanning, it is never the case that state_moving_to_target

holds.

The complete list is available at https://github.com/SAGE-Lab/robot-arm-usecase



35

❑ The formal representation of all requirements is "glued" together.

❑ The resulting formula is checked with a Model Checker or Theorem 
Prover.

❑ If the formula is satisfiable, then the system can be realized.

❑Otherwise, inconsistency => Impossible to build a system that 
satisfy all the requirements!

Consistency checking



36

The ReqV tool

Avaliable at
https://github.com/SimoV8/ReqV-webapp
https://github.com/SimoV8/ReqV-backend

• ReqV (with NuSMV as 
back engine) checked 
automatically the 
requirements in about 37 
seconds.

https://github.com/SimoV8/ReqV-webapp


37

The ReqV tool



38

The ReqV tool



39

The ReqV tool



40

The ReqV tool



41

The ReqV tool



42

❑ Enabling the automated (formal) verification of requirements is one 
of the key aspects towards the development of safety- and security-
critical CPSs.

❑ The expressiveness of original PSPs is often too restricted for 
practical applications.

oHybrid systems? Probabilistic models? Real-time constraints?

❑Main issue: scalability!

Conclusions



43

❑ PSPs: Dwyer, Matthew B., George S. Avrunin, and James C. Corbett. "Patterns in property 
specifications for finite-state verification." Proceedings of the 21st international conference on 
Software engineering. ACM, 1999.

❑ LTL: Pnueli, Amir, and Zohar Manna. "The temporal logic of reactive and concurrent systems." 
Springer 16 (1992): 12.

❑ NuSMV model checker: Cimatti, A., Clarke, E., Giunchiglia, E., Giunchiglia, F., Pistore, M., Roveri, 
M., ... & Tacchella, A. (2002, July). Nusmv 2: An opensource tool for symbolic model checking. In 
International Conference on Computer Aided Verification (pp. 359-364). Springer.

❑ Model checking: Baier, Christel, Joost-Pieter Katoen, and Kim Guldstrand Larsen. Principles of 
model checking. MIT press, 2008.

❑ PSPs with boolean and constrained numerical signals: Narizzano, M., Pulina, L., Tacchella, A., & 
Vuotto, S. (2018, April). Consistency of Property Specification Patterns with Boolean and 
Constrained Numerical Signals. In NASA Formal Methods Symposium (pp. 383-398). Springer, 
Cham.

Some references


