CPS Week 2018 Tutorial on Design of adaptive and secure CPS April 10-13, 2018

Where All Projects Start: Requirements

Michael Masin, IBM Research - Haifa Luca Pulina, Università degli Studi di Sassari

Horizon 2020 European Union funding for Research & Innovation CPS Week 2018 Tutorial on Design of adaptive and secure CPS April 10-13, 2018

Should Where All Projects Start: Requirements

Michael Masin, IBM Research - Haifa Luca Pulina, Università degli Studi di Sassari

Horizon 2020 European Union funding for Research & Innovation

Outline

Model Based Engineering Background

- D PORTALS
 - \circ Architecture
 - \circ Interaction
 - $\circ\,\text{Scenarios}$
 - \circ Demo

C Requirements Formalization and Verification

Waterfall Model (from 1950s)

Start of Systems Engineering

CERBERC

V model (1980s)

Model Based Engineering (< 10 years)

CERBERO

Continuous Model Based Engineering

CERBERO

to create tools to assist requirements engineers in incrementally raising the formalization level of system requirements, and

□ to use formalized requirements to

- provide feedback on the quality of the requirements (e.g., identifying omissions and contradictions), and
- o create downstream artifacts (e.g., models, monitors, tests, code)
- Yishai A. Feldman and Henry Broodney, 2016, "A Cognitive Journey for Requirements Engineering", 26th Annual INCOSE International Symposium.

PORTALS Architecture

Personas and Interactions

Personas and Interactions

Scenario 1: IBM IoT Safer Workplace

If an employee falls, the system shall send an SMS to the employee's manager.

2. Paraphrase by PORTALS

if "an employee" falls then "the system" shall send [an abstract entity] "an SMS" (direction) Requirement

Engineering Knowledge Base:

Scenario 2: IoT Pump

If the pump's vibration exceeds 100 Hertz for two minutes, a technician shall be sent to the pump within 24 hours.

2. Paraphrase by PORTALS

if "vibration" of "the pump's" is greater than 100 Hz (duration) 2 min then "?" shall send [a role entity] "a technician" (duration) 24 hr; (direction) "the pump"

Engineering Knowledge Base:

Events	Devices / Systems	Actions	Services
Check Bound Threshold Duration Frequency Check Range	Pump Image: Accelerometer Image: Location Image: Device ID	Send Role	Device ID To Location \mathbf{D} Acceleration To Vibration $f(x)$
Electric Threshold Duration Frequency			

PORTALS: Enhanced Requirements IBM Research - Haifa

Yishai Feldman Vladimir Lipets Aviad Sela Evgeny Shindin

□ The weight of the Doors Management System shall not exceed 500 kg.

- □ The target mass of the locking system shall not exceed 260 kg.
- □ The target mass of the latching system shall not exceed 250 kg.
- □ The volume of the Doors Management System shall not exceed 1000 ft³.
- □ The volume of the latching system shall not exceed 30 m³.
- □ The volume of the latching system shall not exceed 35 m³.

<u>File E</u> dit <u>V</u> iew Hi <u>s</u> tory <u>B</u> ookmarks <u>T</u> ools <u>F</u>	<u>t</u> elp			
💿 Project: DMS Scenario (Manu 🗙 🧿 Proj	ject: PORTA	LS Demo 2 - R.	🗙 🥑 Edit User - Server Adminis	trat 🗙 Apache Jena Fuseki - inspect data 🔀 🕂
• A https://painless.haifa.ibm.com:10443/rm/we	b#action=c	om.ibm.rdm.we	b.pages.showProject 🔻 C	arch 🗘 🖻 🐥 🎓 ★ 🖃 🚍
Requirements Management (/im)				× <u>–</u>
🏠 💽 PORTALS Demo 2				Yishai Feldman 🔉 🕆 🋱 🕆 😧 🗠
Project Dashboard Artifacts ~ Collections ~ Mo	odules 🗸	Reports 🗸		💼 🕶 Search Artifacts 🔍
Rrtifacts 🖓				管 📽 🗇 🖟 🗞
📔 Create New Requirements Specifica ⁻ 🗢		∎ - ID	Name	Primary Text
Views		678	📄 DMS-019	The weight of the Doors Management System shall not exceed 500 kg.
		679	📄 DMS-039	The target mass of the latching system shall not exceed 250 kg.
🖃 🗁 PORTALS Demo 2		680	🔝 DMS-040	The target mass of the locking system shall not exceed 260 kg.
🗁 01 Requirements		681	DMSX-1	
🗁 02 Reference				The volume of the Doors Management System shall not exceed 1000 ft3.
😬 🛩 Module Template		682	DMSX-2	The volume of the latching system shall not exceed 30 m3.
		683	DMSX-3	The volume of the latching system shall not exceed 35 m3.

Engineering Knowledge Base:

CERBER

Requirements Analysis

Requirements Analysis

Requirement Conflicts
 Conflicts Inconsistent volume requirements for Latching System, values are 30 m³3, 35 m³ The weight budget for system Doors Management System, 500 kg, is exceeded by budgets for subsystems (Latching System = 250 kg, Locking System = 260 kg) The target mass of the locking system shall not exceed 260 kg The target mass of the latching system shall not exceed 250 kg The target mass of the latching system shall not exceed 250 kg Avolume budget requirement for subsystem Locking System was not found, budget for containing system (Doors Management System) is 1000 ft⁴3 The volume budget for system Doors Management System, 1000 ft⁴3, is exceeded by budgets for subsystems (Latching System = 30 m⁴3)
Run

Requirements Analysis

	x
Requirement Conflicts	
 Conflicts Inconsistent volume requirements for Latching System; values are 30 mr3, 35 mr3 The weight budget for system Doors Management System, soo kg, is exceeded by budgets for subsystems (Latching System = 250 kg; Locking System = 260 kg) "The target mass of the locking system shall not exceed 260 kg "The weight of the Doors Management System" shall be less than or equal to 260 kg "The weight" of "the Doors Management System" shall be less than or equal to 260 kg "The target mass of the latching system shall not exceed 200 kg "The target mass of the latching system shall not exceed 200 kg "The target mass of "the latching system" shall be less than or equal to 250 kg "The target mass" of "the latching system" shall be less than or equal to 250 kg The target mass" of "the latching system Locking System was not found; budget for containing system (Doors Management System) is 1000 ftr3 A volume budget for system Doors Management System, 1000 ftr3, is exceeded by budgets for subsystems (Latching System = 30 mr3) 	
<u>R</u> un E <u>x</u>	<u>"</u> it

- In the context of adaptive CPSs, checking the consistency of requirements is an indisputable, yet challenging task.
- Requirements written in natural language call for time-consuming and error-prone manual reviews, BUT
- enabling automated consistency verification often requires overburdening formalizations.
- Given the increasing pervasiveness of CPSs, their stringent time-tomarket and product budget constraints, practical solutions to enable automated verification of requirements are in order.

Goal: (Semi) Automatic Translation from Natural Language Specification to Formal Specification.

Desiderata: Unambiguous language with high expressiveness, that can be automatically translated in some logic and then used for verification/validation.

Expressiveness vs Unambiguity!

Actually...

Property Specification Patterns (PSPs) offer a viable path towards this goal.

- PSP: collection of parameterizable, high-level, formalism-independent specification abstractions, originally developed to capture recurring solutions to the needs of requirement engineering.
- Each pattern can be directly encoded in a formal specification language, such as linear time temporal logic (LTL), computational tree logic (CTL), or graphical interval logic (GIL).
- Because of their features, PSPs may ease the burden of formalizing requirements, yet enable their verification using current state-of-the-art automated reasoning tools (e.g., for LTL).

Modal temporal logic with *modalities* referring to time

 One can encode formulae about the future of **paths**, e.g., a condition will eventually be true, a condition will be true until another fact becomes true, etc.

Syntax:

- □ LTL is built up from a finite set of propositional variables *AP*, the logical operators ¬ and ∨, and the temporal modal operators **X** (next) and **U** (until).
- □ the set of LTL formulas over *AP* is inductively defined as follows: \circ if $p \in AP$ then p is an LTL formula;
 - \circ if ψ and ϕ are LTL formulas then $\neg \psi$, $\phi \lor \psi$, **X** ψ , and ϕ **U** ψ are LTL formulas.
 - Additional temporal operators: **G** (globally), **F** (eventually), **R** (release)

Linear Temporal Logic (LTL) - Semantics

Textual	Symbolic	Explanation		D	iagrar	n	
Unary op	erators:						
$\mathbf{X} \phi$	$\bigcirc \phi$	ne X t: ϕ has to hold at the next state.	•—	→• φ	• •	→•	>
F ϕ	$\Diamond \phi$	F inally: ϕ eventually has to hold (somewhere on the subsequent path).	•—	→•	- →•	→•	>
${f G}\phi$	$\Box \phi$	G lobally: ϕ has to hold on the entire subsequent path.	$\dot{\phi}$	→• φ	- ,. φ	$\rightarrow \phi$, ø
Binary of	perators:						
ψυφ	$\psi \mathcal{U} \phi$	U ntil: ψ has to hold <i>at least</i> until ϕ becomes true, which must hold at the current or a future position.	$\dot{\psi}$	$\vec{\psi}$	••• ψ	$\rightarrow \phi$	>
ψRφ	ψRφ	R elease: ϕ has to be true until and including the point where ψ first becomes true; if ψ never becomes	$\dot{\phi}$	$\rightarrow \phi$	- , . φ	$\overrightarrow{\phi}, \psi$	>
φφ	φισφ	true, ϕ must remain true forever.	$\dot{\phi}$	→• φ	••• ¢	$\rightarrow \cdot \phi$,

Property Specification Patterns (PSPs)

- PSPs are meant to describe the essential structure of system's behaviours and provide expressions of such behaviors in a range of common formalisms.
- A pattern is comprised of a

o name;

 \circ an informal statement describing the behaviour captured by the pattern;

 \circ a (structured English) statement that should be used to express requirements.

Property Specification Patterns (PSPs)

The LTL mappings corresponding to different declinations of the pattern are also given, where

pattern are also given, where capital letters (P, Q, R, ...) stands for Boolean states/events.

A complete list of patterns is available at http://patterns.projects.cs.ksu.edu

Describe cause-effect relationships between a pair of events/states. An occurrence of the first, the cause, must be followed by an occurrence of the second, the effect. Also known as Follows and Leads-to.

Response

Structured English Grammar

It is always the case that if P holds, then S eventually holds.

LTL Mappings	
Globally	$\Box(P \to \Diamond S)$
Before R	$\Diamond R \to (P \to (\overline{R} \ \mathcal{U} \ (S \land \overline{R}))) \ \mathcal{U} \ R$
After Q	$\Box(Q \to \Box(P \to \Diamond S))$
Between Q and R	$\Box((Q \land \overline{R} \land \Diamond R) \to (P \to (\overline{R} \ \mathcal{U} \ (S \land \overline{R}))) \ \mathcal{U} \ R)$
After Q until R	$\Box(Q \wedge \overline{R} \to ((P \to (\overline{R} \ \mathcal{U} \ (S \wedge \overline{R}))) \ \mathcal{W} \ R)$
Example	

If the train is approaching, then the gate shall be closed.

□ The original formulation of PSPs caters for temporal structure over

Boolean variables: for most practical applications, such expressiveness is too restricted.

Example: embedded controller for robotic manipulators (from CERBERO use case)

 With original PSPs, requirements such as "The angle of joint1 shall never be greater than 170 degrees" cannot be expressed.

□ Solution proposed in CERBERO: PSPs with Boolean and Constrained Numerical Signals (with sound translation to LTL).

Controller for a Robotic Manipulator

- Let consider a set of requirements from the design of an embedded controller for a robotic manipulator:
- the controller should direct a properly initialized robotic arm to look for an object placed in a given position and move to such position in order to grab the object;
- once grabbed, the object is to be moved into a bucket placed in a given position and released without touching the bucket.
- The robot must stop also in the case of an unintended collision with other objects or with the robot itself.
- collisions can be detected using torque estimation from sensors placed in the joints.

The manipulator is a 4 degrees-of-freedom Trossen Robotics WidowX Arm equipped with a gripper

Constrained numerical signals are used to represent requirements related to various parameters

 o angle, speed, acceleration, and torque of the 4 joints, size of the object picked, and force exerted by the end-effector.

□ 75 requirements in total.

Globally, it is never the case that joint1_angle < -170 or joint1_angle > 170 holds. ... Globally, it is always the case that if ef_idle holds, then ef_speed = 0 and ef_acc = 0 holds as well.

After state_init until state_scanning, it is never the case that state_moving_to_target holds.

The complete list is available at https://github.com/SAGE-Lab/robot-arm-usecase

- □ The formal representation of all requirements is "glued" together.
- The resulting formula is checked with a Model Checker or Theorem Prover.
- □ If the formula is satisfiable, then the system can be realized.
- Otherwise, inconsistency => Impossible to build a system that satisfy all the requirements!

ReqV (with NuSMV as back engine) checked automatically the requirements in about 37 seconds.

Avaliable at <u>https://github.com/SimoV8/ReqV-webapp</u> https://github.com/SimoV8/ReqV-backend

Your Projects		
New Project! This is a short description of my new project Type: snl2fl	Robot-Arm Usecase Short Description Type: snl2fl	Demo This is a demo Type: snl2fl
Edit	Edit	Edit
GA demo CERBERO demo at Haifa Type: snl2fl		
Edit		
New Project		
Copyright © 2017 Simone Vuotto All Rights Reserved		

ReqV	Lo
GA dem	Tasks
Id	Lupload File
939	Globally, it is never the case that joint 1_angle <-170 or joint 1_angle > 170 holds.
940	Globally, it is never the case that joint2_angle <-130 or joint2_angle > 130 holds.
941	Globally, it is never the case that joint3_angle <-130 or joint3_angle > 130 holds.
942	Globally, it is never the case that joint4_angle <-90 or joint4_angle > 90 holds.
943	Globally, it is never the case that joint1_speed > 90 holds.
944	Globally, it is never the case that joint2_speed > 90 holds.
945	Globally, It is never the case that joint3_speed > 90 holds.
946	Globally, it is never the case that joint4_speed > 90 holds.
947	Globally, It is never the case that joint 1_acc > 10 holds.
948	Globally, it is never the case that joint2_acc > 10 holds.
949	Globally, it is never the case that joint3_acc>10 holds.
950	Globally, it is never the case that joint4_acc > 10 holds.
951	Globally, it is never the case that ef_force > 2.5 holds.
952	Globally, it is never the case that proximity_sensor < 0 holds.

ReqV	Logout
GA demo Requirements Tasks	. Translate
Consistency checking 75 requirements Tage Toge Lower_proximity_sensoriji ((_iower_joints_speed_si_equal_joints_speed_si((_iower_joints_speed_l_equal_joints_speed_l_iower_joints_speed_l)) =qual_joints_speed)) (iower_joints_speed_si_equal_joints_speed_si((_iower_joints_speed_l_equal_joints_speed_l_iower_joints_speed_l)) =qual_joints_speed) (iower_joints_speed_si_equal_joints_speed_si((_iower_joints_speed_l_iower_joints_speed_l_iower_joints_speed_l_iower_joints_speed_l_iower_joints_speed_l_iower_joints_speed_l_iower_joints_speed_l_iower_joints_speed_l_iower_joints_speed_l_iower_joints_speed_l_iower_joints_speed_l_iower_joints_speed_l_iower_joints_speed_lionts_speed_l	

ReqV		
GA	demo guirements Tasks	
	► Valid	date 📩 Translate
C 13 Lc	Computing Minimum Unsatisfiable Core of 75 requirements 3-02-2018 08:46:50 ogs:	•
	######################################	0 and Joint2_acc bucket or gle = 0 and
C 13 Lc	3-02-2018 08:46:22 age:	•
	Translating requirements Starting model checking *** This is NUSY 2.60 (completed on Wed Oct 14 15:35:00 2015) *** Enabled addons are: compass *** For more information on NUSMV see <http: nusmv.fbk.eu=""> *** For more information on NUSMV see <http: nusmv.fbk.eu=""></http:></http:>	

ReqV	Lo
GA den	Tasks
	🕹 Upload File
Id	Requirement
939	Globally, it is never the case that joint1_angle < -170 or joint1_angle > 170 holds.
940	Globally, it is never the case that joint2_angle <-130 or joint2_angle > 130 holds.
941	Globally, it is never the case that joint3_angle <-130 or joint3_angle > 130 holds.
942	Globally, it is never the case that joint4_angle <-90 or joint4_angle > 90 holds.
943	Globally, it is never the case that joint1_speed ~ 90 holds.
944	Globally, it is never the case that joint2, speed > 90 holds.
945	Globally, it is never the case that joint3_speed > 90 holds.
946	Globally, it is never the case that joint4_speed > 90 holds.
947	Globally, it is never the case that joint 1_acc > 10 holds.
948	Globally, it is never the case that joint2_acc > 10 holds.
949	Globally, it is never the case that joint3_acc > 10 holds.
950	Globally, it is never the case that joint4_acc > 10 holds.
951	Globally, it is never the case that ef_force > 2.5 holds.
952	Globally, it is never the case that proximity_sensor < 0 holds.

Conclusions

- Enabling the automated (formal) verification of requirements is one of the key aspects towards the development of safety- and securitycritical CPSs.
- The expressiveness of original PSPs is often too restricted for practical applications.
 - \odot Hybrid systems? Probabilistic models? Real-time constraints?
- □ Main issue: scalability!

- PSPs: Dwyer, Matthew B., George S. Avrunin, and James C. Corbett. "Patterns in property specifications for finite-state verification." *Proceedings of the 21st international conference on Software engineering*. ACM, 1999.
- □ LTL: Pnueli, Amir, and Zohar Manna. "The temporal logic of reactive and concurrent systems." *Springer* 16 (1992): 12.
- NuSMV model checker: Cimatti, A., Clarke, E., Giunchiglia, E., Giunchiglia, F., Pistore, M., Roveri, M., ... & Tacchella, A. (2002, July). Nusmv 2: An opensource tool for symbolic model checking. In *International Conference on Computer Aided Verification* (pp. 359-364). Springer.
- Model checking: Baier, Christel, Joost-Pieter Katoen, and Kim Guldstrand Larsen. Principles of model checking. MIT press, 2008.
- PSPs with boolean and constrained numerical signals: Narizzano, M., Pulina, L., Tacchella, A., & Vuotto, S. (2018, April). Consistency of Property Specification Patterns with Boolean and Constrained Numerical Signals. In NASA Formal Methods Symposium (pp. 383-398). Springer, Cham.