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❑ Model Based Engineering Background

❑ PORTALS

oArchitecture

o Interaction

oScenarios

oDemo

❑ Requirements Formalization and Verification

Outline
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Waterfall Model (from 1950s)

Start of Systems Engineering
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V model (1980s)

Systems Engineering today
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Model Based Engineering (< 10 years)

MBE
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Continuous Model Based Engineering

MBE
CMBE: Models create models
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❑ to create tools to assist requirements engineers in incrementally 
raising the formalization level of system requirements, and

❑ to use formalized requirements to
oprovide feedback on the quality of the requirements (e.g., identifying 

omissions and contradictions), and

o create downstream artifacts (e.g., models, monitors, tests, code)

❑Yishai A. Feldman and Henry Broodney, 2016, “A Cognitive Journey 
for Requirements Engineering”, 26th Annual INCOSE International 
Symposium.

PORTALS – research project
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PORTALS Architecture
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Scenario 1: IBM IoT Safer Workplace

if "an employee" falls then "the system" shall send 
[an abstract entity] "an SMS" (direction) 

"manager" of "the employee's" 

1. Requirement in DOORS

2. Paraphrase by PORTALS

3. Process Model

4. Implementation

in Node-RED
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Engineering Knowledge Base:
ServicesActionsEvents Devices / Systems
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Scenario 2: IoT Pump

if "vibration" of "the pump's" is greater than 100 
Hz (duration) 2 min then "?" shall send [a role 

entity] "a technician" (duration) 24 hr; (direction) 

"the pump" 

1. Requirement in DOORS

2. Paraphrase by PORTALS

3. Process Model

4. Implementation

in Node-RED
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Engineering Knowledge Base:
ServicesActionsEvents Devices / Systems

▪ Pump
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Demo for Scenarios 1 and 2
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❑ The weight of the Doors Management System shall not exceed 500 
kg.

❑ The target mass of the locking system shall not exceed 260 kg.

❑ The target mass of the latching system shall not exceed 250 kg.

❑ The volume of the Doors Management System shall not exceed 
1000 ft3.

❑ The volume of the latching system shall not exceed 30 m3.

❑ The volume of the latching system shall not exceed 35 m3.

Scenario 3: Door Management System 
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Engineering Knowledge Base:
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Requirements Analysis

SERENE Analysis
Conflicting values in 
similar requirements Subsystem budgets 

exceed system budget

Missing budget for a 
subsystem Conflict due to different units 

(cf. Mars Climate Orbiter)
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Requirements Analysis

Conflicting Requirements
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Requirements Analysis

Paraphrased Requirements
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In the context of adaptive CPSs, checking the consistency of 
requirements is an indisputable, yet challenging task.

❑Requirements written in natural language call for time-consuming 
and error-prone manual reviews, BUT

❑ enabling automated consistency verification often requires 
overburdening formalizations. 

Given the increasing pervasiveness of CPSs, their stringent time-to-
market and product budget constraints, practical solutions to enable 
automated verification of requirements are in order.

Requirements Formalization and Verification
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Goal: (Semi) Automatic Translation from Natural Language 
Specification to Formal Specification.

Desiderata: Unambiguous language with high expressiveness, that can 
be automatically translated in some logic and then used for 
verification/validation.

Expressiveness vs Unambiguity!

Formal Specification
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Property Specification Patterns (PSPs) offer a viable path towards this goal.

❑ PSP: collection of parameterizable, high-level, formalism-independent 
specification abstractions, originally developed to capture recurring 
solutions to the needs of requirement engineering.

❑ Each pattern can be directly encoded in a formal specification language, 
such as linear time temporal logic (LTL), computational tree logic (CTL), or 
graphical interval logic (GIL).

❑ Because of their features, PSPs may ease the burden of formalizing 
requirements, yet enable their verification using current state-of-the-art 
automated reasoning tools (e.g., for LTL).

Actually...
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Modal temporal logic with modalities referring to time
o One can encode formulae about the future of paths, e.g., a condition will 

eventually be true, a condition will be true until another fact becomes true, etc.

Syntax:

❑ LTL is built up from a finite set of propositional variables AP, the logical 
operators ¬ and ∨, and the temporal modal operators X (next) and U 
(until).

❑ the set of LTL formulas over AP is inductively defined as follows:
o if p ∈ AP then p is an LTL formula;

o if ψ and φ are LTL formulas then ¬ψ, φ ∨ψ, X ψ, and φ U ψ are LTL formulas.

❑Additional temporal operators: G (globally), F (eventually), R (release)

Linear Temporal Logic (LTL)

https://en.wikipedia.org/wiki/Propositional_variable
https://en.wikipedia.org/wiki/Logical_connective
https://en.wikipedia.org/wiki/Temporal_logic
https://en.wikipedia.org/wiki/Modal_operator
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Linear Temporal Logic (LTL) - Semantics
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❑PSPs are meant to describe the essential structure of system's 
behaviours and provide expressions of such behaviors in a range of 
common formalisms.

❑A pattern is comprised of a 

oname;

oan informal statement describing the behaviour captured by the pattern;

oa (structured English) statement that should be used to express requirements.

Property Specification Patterns (PSPs)
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Property Specification Patterns (PSPs)

The LTL mappings corresponding to
different declinations of the
pattern are also given, where
capital letters (P, Q, R, ...) stands
for Boolean states/events.

A complete list of patterns is 
available at 
http://patterns.projects.cs.ksu.edu
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❑ The original formulation of PSPs caters for temporal structure over

Boolean variables: for most practical applications, such 
expressiveness is too restricted.

❑ Example: embedded controller for robotic manipulators (from 
CERBERO use case)
oWith original PSPs, requirements such as "The angle of joint1 shall never be 

greater than 170 degrees" cannot be expressed.

❑ Solution proposed in CERBERO: PSPs with Boolean and Constrained 
Numerical Signals (with sound translation to LTL).

Extending PSPs
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Controller for a Robotic Manipulator
Let consider a set of requirements from the design 
of an embedded controller for a robotic 
manipulator:
• the controller should direct a properly 

initialized robotic arm to look for an object 
placed in a given position and move to such 
position in order to grab the object; 

• once grabbed, the object is to be moved into a 
bucket placed in a given position and released 
without touching the bucket.

• The robot must stop also in the case of an 
unintended collision with other objects or with 
the robot itself.

• collisions can be detected using torque 
estimation from sensors placed in the joints.

The manipulator is a 4 
degrees-of-freedom 
Trossen Robotics WidowX
Arm equipped with a 
gripper
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❑Constrained numerical signals are used to represent requirements 
related to various parameters
oangle, speed, acceleration, and torque of the 4 joints, size of the object picked, 

and force exerted by the end-effector.

❑75 requirements in total.

Requirements

Globally, it is never the case that joint1_angle < -170 or joint1_angle > 170 holds.

…

Globally, it is always the case that if ef_idle holds, then ef_speed = 0 and ef_acc = 0 holds 

as well.

…

After state_init until state_scanning, it is never the case that state_moving_to_target

holds.

The complete list is available at https://github.com/SAGE-Lab/robot-arm-usecase
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❑ The formal representation of all requirements is "glued" together.

❑ The resulting formula is checked with a Model Checker or Theorem 
Prover.

❑ If the formula is satisfiable, then the system can be realized.

❑Otherwise, inconsistency => Impossible to build a system that 
satisfy all the requirements!

Consistency checking
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The ReqV tool

Avaliable at
https://github.com/SimoV8/ReqV-webapp
https://github.com/SimoV8/ReqV-backend

• ReqV (with NuSMV as 
back engine) checked 
automatically the 
requirements in about 37 
seconds.

https://github.com/SimoV8/ReqV-webapp
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The ReqV tool
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The ReqV tool
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The ReqV tool



40

The ReqV tool
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The ReqV tool



42

❑ Enabling the automated (formal) verification of requirements is one 
of the key aspects towards the development of safety- and security-
critical CPSs.

❑ The expressiveness of original PSPs is often too restricted for 
practical applications.

oHybrid systems? Probabilistic models? Real-time constraints?

❑Main issue: scalability!

Conclusions
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