

Exploiting Dataflows for Reconfigurable Hardware Accelerators

Francesca Palumbo¹, Claudio Rubattu^{1,2}, Carlo Sau³, Tiziana Fanni³, Luigi Raffo³

¹University of Sassari, PolComIng – Information Engineering Group ²University of Rennes, INSA Group

³University of Cagliari, Diee – Microelectronics and Bioengineering Group

Rennes, 12-14 December 2017

Who and Where

Who and Where

Outline

- The origins of our dataflow to hardware studies: the RPCT Project
 - Context
 - Target Technologies
 - Project Development
- The MDC tool
 - Approach
 - Baseline Functionality and Extensions
- Contexts of application
 - Neural Signal Decoding
 - HEVC Interpolation Filters
- Final Remarks

Outline

- The origins of our dataflow to hardware studies: the RPCT Project
 - Context
 - Target Technologies
 - Project Development
- The MDC tool
 - Approach
 - Baseline Functionality and Extensions
- Contexts of application
 - Neural Signal Decoding
 - HEVC Interpolation Filters
- Final Remarks

Modern Embedded Systems

Embedded Systems (*real-time* computing systems with a dedicated functionality) are pervasive (*98%* of computers are embedded) and may present *sensing* and *actuating* capabilities.

Modern Embedded Systems

Embedded Systems (*real-time* computing systems with a dedicated functionality) are pervasive (*98%* of computers are embedded) and may present *sensing* and *actuating* capabilities.

	Safety	Security	Certif.	Distrib.	IMH	Seamless	MPSoC	Energy
Automotive	х	х	х	х	х	х	х	
Aerospace	x	х	х	х	х		х	х
Healthcare	x	x	x	х	x	x	x	x
Consumer					x	x	x	

Complex functionalities.

IDC - Design of Future ES

Multimedia Domain

HIGH PERFORMANCES

real time, portability, long battery life

UP-TO-DATE SOLUTIONS

last audio/video codecs, file formats...

MORE INTEGRATED FEATURES

MP3, Camera, Video, GPS...

MARKET DEMAND

convenient form factor, affordable price, fashion

Target & Technological Challenges

- DATAFLOW MODEL OF COMPUTATION
 - Modularity and parallelism → EASIER INTEGRATION AND FAVOURED RE-USABILITY
- COARSE-GRAINED RECONFIGURABILITY
 - − Flexibility and resource sharing → MULTI-APPLICATION PORTABLE DEVICES

The RPCT project (2012-2015) has been funded by Sardinian Regional Government (L.R. 7/2007, CRP-18324). http://sites.unica.it/rpct/

Target & Technological Challenges

- DATAFLOW MODEL OF COMPUTATION
 - Modularity and parallelism → EASIER INTEGRATION AND FAVOURED RE-USABILITY
- COARSE-GRAINED RECONFIGURABILITY
 - − Flexibility and resource sharing → MULTI-APPLICATION PORTABLE DEVICES

Reconfigurable Platform Composer Tool Project

Automated **DESIGN FLOW** are fundamental to guarantee **SHORTER TIME-TO-MARKET**. Dealing with **APPLICATION SPECIFIC MULTI-CONTEXT** systems, in particular for **KERNEL ACCELERATORS**, state of the art still lacks in providing a broadly accepted solution.

The RPCT project (2012-2015) has been funded by Sardinian Regional Government (L.R. 7/2007, CRP-18324). http://sites.unica.it/rpct/

Reasons for Coarser-Grain

Reasons for Coarser-Grain

	Fine Grained	Coarse Grained
	bit-level	word-level
Flexibility	\odot	
Speed	e	\odot
Memory	8	e

- Coarse Grained (CG):
 - both in ASIC and FPGA
 - 1 clock cycle switching, with dedicated switching blocks.
- Fine Grained (FG):
 - FPGA only
 - switching requires a new bitstream

Framework Development

Framework Development

Framework Evaluation

Framework Evaluation

Outline

- The origins of our dataflow to hardware studies: the RPCT Project
 - Context
 - Target Technologies
 - Project Development
- The MDC tool
 - Approach
 - Baseline Functionality and Extensions
- Contexts of application
 - Neural Signal Decoding
 - HEVC Interpolation Filters
- Final Remarks

Design Suite & Targeted Challenges

Baseline: Dataflow to HW

Baseline: Dataflow to HW

MDC Front-End: Multi-Dataflow Generator

GRAPHS $G_i = (V_i, E_i)$ a_{11} b_{11} G_1 a_{12} C_{11} a_{21} b_{21} G_2 a_{22} C_{21} a_{23}

LABELING $\pi_i : V_i \rightarrow T$

 $\pi_i:V_i \ {\boldsymbol{\rightarrow}} {\boldsymbol{\mathsf{T}}}$

PROBLEM STATEMENT: find a **Reconfigurable Graph G** (V,E) with the minimum costs (**min|V|** and **min |E|**)

PROBLEM STATEMENT: find a **Reconfigurable Graph G** (V,E) with the minimum costs (**min|V|** and **min |E|**) fossible colution:

feasible solution:

 $\forall T \in \mathbf{T}, V^{T} = \{v : \pi(v) = T\} \qquad \rightarrow \qquad |V^{T}| = \max |V_{i}^{T}|, V_{i}^{T} = \{v_{i} : \pi_{i}(v_{i}) = T\}$

PROBLEM STATEMENT: find a **Reconfigurable Graph G** (V,E) with the minimum costs (**min|V|** and **min |E|**)

feasible solution:

$$\forall T \in \mathbf{T}, V^{\mathsf{T}} = \{ \mathsf{v} : \pi(\mathsf{v}) = \mathsf{T} \} \qquad \rightarrow \qquad |V^{\mathsf{T}}| = \max |V_i^{\mathsf{T}}|, V_i^{\mathsf{T}} = \{ \mathsf{v}_i : \pi_i(\mathsf{v}_i) = \mathsf{T} \}$$

optimal solution:

feasible solution with min|E|

PROBLEM STATEMENT: find a **Reconfigurable Graph G** (V,E) with the minimum costs (**min|V|** and **min |E|**)

NP-complete problem: N. Moreano, et al., "*Datapath merging and interconnection sharing for reconfigurable architectures*", Symp. On *System Synthesis, 2002.*

MDC Back-End: Platform Composer

Integration within MPEG-RVC

Integration within MPEG-RVC

Structural Profiler

What are the topological characteristics impacting on the CGR substrate?

1. Number of merged dataflow specifications

 $\alpha + \beta | \gamma$

What are the topological characteristics impacting on the CGR substrate? 1. Number of merged dataflow specifications

What are the topological characteristics impacting on the CGR substrate?

What are the topological characteristics impacting on the CGR substrate?

MSs = Merged dataflow Specifications (example with N=7)

γ

F

В

HARDWARE ACCELERATOR/CO-PROCESSOR

HARDWARE ACCELERATOR/CO-PROCESSOR

User Interface

Name: coprocessor_1911	
Compilation settings Compilation options C Mapping Common	
Backend:	
Select a backend: MDC 🔻	
Ditution Ditutio Ditution Ditution Ditution Ditution Ditution Ditution Ditu	
Options:	
List of Networks to be Compiled and Merged	
Number of Networks: 3	Input Dataflow Spacifications
	input Datanow Specifications
XDF List of Files: test.Addition, test.Multiplication, test.Subtraction Add	
Merging Algorithm	
EMPIRIC -	
Generate RVC-CAL multi-dataflow	
CAL type	
STATIC -	
Generate HDL multi-dataflow	
Preferred HDL protocol	
RVC -	
Specify a Custom Hardware Communication Protocol	Specify the Extension to be
Compute Logic Regions	
Import Buffer Size File List	used (if any)
Import Clock Domain File List	useu (II ally).
Generate Coprocessor Template Interface Layer (beta)	
Type of Template Interface Layer	
MEMORY-MAPPED -	
Enable Profiling	

Outline

- The origins of our dataflow to hardware studies: the RPCT Project
 - Context
 - Target Technologies
 - Project Development
- The MDC tool
 - Approach
 - Baseline Functionality and Extensions
- Contexts of application
 - Neural Signal Decoding
 - HEVC Interpolation Filters
- Final Remarks

What kinds of applications can be combined with MDC?

What kinds of applications can be combined with MDC?

1. Different applications with common computational operations: it is achieved by considering applications from the same application field or small actor granularities.

What kinds of applications can be combined with MDC?

 Different applications with common computational operations: it is achieved by considering applications from the same application field or small actor granularities.

 Different working points of the same applications obtained through several strategies (e.g. actor parallelization, actor variants, granularity modification, approximate computing, ...)

What kinds of applications can be combined with MDC?

1. Different applications with common computational operations: it is achieved by considering applications from the same application field or small actor granularities.

EXAMPLE: Neural Signal Decoding

 Different working points of the same applications obtained through several strategies (e.g. actor parallelization, actor variants, granularity modification, approximate computing, ...)

EXAMPLE: HEVC interpolation filters

Neural Signal Decoding Resource Optimization

Implantable Devices: strict area & power requirements

Neural Signal Decoding Resource Optimization

Implantable Devices: strict area & power requirements

Neural Signal Decoding:

- Fast
- Low Area
- Low Power

D. Pani, et al., «Real-time processing of tflife neural signals on embedded dsp platforms: A case study» *Neural Engineering*, 2011.

Neural Signal Decoding Resource Optimization

DDR

SDRAM

Ethernet

Controller

UARTLITE

doutA wnrA addrA

OUTPUT: MEMORY

those constraints.

	# actors	#sbox
12 networks (dec_filter, Thr, rec_filter, NEO, idx_max_abs, Avg, sqr_sum, weight_mul, dot_prod, idx_max, sync_avg, sync_wavg)	46	0
MDC network	14	86

	# actors	#sbox
12 networks (dec_filter, Thr, rec_filter, NEO, idx_max_abs, Avg, sqr_sum, weight_mul, dot_prod, idx_max, sync_avg, sync_wavg)	46	0
MDC network	14	86

	# actors	#sbox
12 networks (dec_filter, Thr, rec_filter, NEO, idx_max_abs, Avg, sqr_sum, weight_mul, dot_prod, idx_max, sync_avg, sync_wavg)	46	0
MDC network	14	86

- Approximate Computing: trading a controlled quality degradation (# taps) for an increased energy efficiency
- **Software Implementation**: Erwan Raffin, et al., "Low power HEVC software decoder for mobile devices", JRTIP 12(2): 495-507 (2016)

- Approximate Computing: trading a controlled quality degradation (# taps) for an increased energy efficiency
- **Software Implementation**: Erwan Raffin, et al., "Low power HEVC software decoder for mobile devices", JRTIP 12(2): 495-507 (2016)

design @200 MHz Xilinx XC7Z020	LUT	FF	BRAM	DSP	Fmax [MHz]	tap	dP (Vivado) [mW]	dE [لبا]	time per block [cycles]	# interpolated pixels in a fixed time
legacy_luma	212	37	4	16	213	8	11	0.248	460	57957
	582 (+175%)	85 (+130%)		16 (+0%)	200 (-6%)	8	12 (+9%)	0.270 <mark>(+9%)</mark>	460 (+0%)	57957 (+0%)
reconf_luma			4 (+0%)			7	11 (+0%)	0.245 (-1%)	395 (-14%)	59033 (+2%)
(vs legacy %)						5	10 (-9%)	0.217 (-12%)	265 (-42%)	61191 (+6%)
						3	10 (-9%)	0.211 (-15%)	135 (-71%)	63357 (+9%)
legacy_chroma	163	33	2	8	217	4	9	0.053	107	14753
	383 (+135%)				200 (-12%)	4	9 (+0%)	0.053 (+0%)	107 (+0%)	14753 (+0%)
reconf_chroma (vs legacy %)		65 (+97%)	2 (+0%)	8 (+0%)		3	8 (-11%)	0.045 (-13%)	73 (-32%)	15293 (+4%)
		((1070)			2	6 (-33%)	0.033 (- 37%)	39 (-64%)	15835 (+7%)

C. Sau et al. << Challenging the Best HEVC Fractional Pixel FPGA Interpolators with Reconfigurable and Multi-frequency Approximate Computing.>> IEEE Embedded Systems Letters, 9 (3), pp. 65-68, 2017, ISSN: 1943-0663.

design @200 MHz Xilinx XC7Z020	LUT	FF	BRAM	DSP	Fmax [MHz]	tap	dP (Vivado) [mW]	dE [لبا]	time per block [cycles]	# interpolated pixels in a fixed time
legacy_luma	212	37	4	16	213	8	11	0.248	460	57957
						8	12 (+9%)	0.270 (+9%)	460 (+0%)	57957 (+0%)
reconf_luma	582	85	4	16	200	7	11 (+0%)	0.245 (-1%)	395 (-14%)	59033 (+2%)
(vs legacy %)	(+175%)	(+130%)	(+0%)	(+0%)	(-6%)	5	10 (-9%)	0.217 (-12%)	265 (-42%)	61191 (+6%)
						3	10 (-9%)	0.211 (-15%)	135 (-71%)	63357 (+9%)
legacy_chroma	163	33	2	8	217	4	9	0.053	107	14753
						4	9 (+0%)	0.053 (+0%)	107 (+0%)	14753 (+0%)
reconf_chroma (vs.legacy %)	chroma 383 65 2 8	200 (-12%)	3	8 (-11%)	0.045 (-13%)	73 (-32%)	15293 (+4%)			
(vs icgacy /u)	(=36/6)	(2770)	(376)	(3/0)	(== /)	2	6 (-33%)	0.033 (- 37%)	39 (-64%)	15835 (+7%)

C. Sau et al. << Challenging the Best HEVC Fractional Pixel FPGA Interpolators with Reconfigurable and Multi-frequency Approximate Computing.>> IEEE Embedded Systems Letters, 9 (3), pp. 65-68, 2017, ISSN: 1943-0663.

design @200 MHz Xilinx XC7Z020	LUT	FF	BRAM	DSP	Fmax [MHz]	tap	dP (Vivado) [mW]	dE [لب]	time per block [cycles]	# interpolated pixels in a fixed time
legacy_luma	212	37	4	16	213	8	11	0.248	460	57957
						8	12 (+9%)	0.270 <mark>(+9%)</mark>	460 (+0%)	57957 (+0%)
reconf_luma	reconf_luma (vs legacy %) 582 85 4 16 (+175%) (+130%) (+0%) (+0%)	200	7	11 (+0%)	0.245 (-1%)	395 (-14%)	59033 (+2%)			
(vs legacy %)		(+130%)	(+0%)	(+0%)	(-6%)	5	10 (-9%)	0.217 (-12%)	265 (-42%)	61191 (+6%)
						3	10 (-9%)	0.211 (-15%)	135 (-71%)	63357 (+9%)
legacy_chroma	163	33	2	8	217	4	9	0.053	107	14753
reconf_chroma (vs legacy %)					200	4	9 (+0%)	0.053 (+0%)	107 (+0%)	14753 (+0%)
	383 (+1 35%)	65 (+97%)	2 (+0%)	8 (+0%)		3	8 (-11%)	0.045 (-13%)	73 (-32%)	15293 (+4%)
		((),-)			2	6 (-33%)	0.033 (-37%)	39 (-64%)	15835 (+7%)

C. Sau et al. << Challenging the Best HEVC Fractional Pixel FPGA Interpolators with Reconfigurable and Multi-frequency Approximate Computing.>> IEEE Embedded Systems Letters, 9 (3), pp. 65-68, 2017, ISSN: 1943-0663.

design @200 MHz Xilinx XC7Z020	LUT	FF	BRAM	DSP	Fmax [MHz]	tap	dP (Vivado) [mW]	dE [لىم]	time per block [cycles]	# interpolated pixels in a fixed time
legacy_luma	212	37	4	16	213	8	11	0.248	460	57957
						8	12 (+9%)	0.270 <mark>(+9%)</mark>	460 (+0%)	57957 (+0%)
reconf_luma	582	85	4	16	200	7	11 (+0%)	0.245 (-1%)	395 (-14%)	59033 (+2%)
(vs legacy %)	(+175%)	(+130%)	(+0%)	(+0%)	(-6%)	5	10 (-9%)	0.217 (-12%)	265 (-42%)	61191 (+6%)
						3	10 (-9%)	0.211 (-15%)	135 (-71%)	63357 (+9%)
legacy_chroma	163	33	2	8	217	4	9	0.053	107	14753
					\frown	4	9 (+0%)	0.053 (+0%)	107 (+0%)	14753 (+0%)
reconf_chroma (vs legacy %)	383 (+1 35%)	65 (+97%)	2 (+0%)	8 (+0%)	200 (- 12%)	3	8 (-11%)	0.045 (-13%)	73 (-32%)	15293 (+4%)
						2	6 (-33%)	0.033 (-37%)	39 (-64%)	15835 (+7%)

C. Sau et al. << Challenging the Best HEVC Fractional Pixel FPGA Interpolators with Reconfigurable and Multi-frequency Approximate Computing.>> IEEE Embedded Systems Letters, 9 (3), pp. 65-68, 2017, ISSN: 1943-0663.

design @200 MHz Xilinx XC7Z020	LUT	FF	BRAM	DSP	Fmax [MHz]	tap	dP (Vivado) [mW]	dE [لبا]	time per block [cycles]	# interpolated pixels in a fixed time
legacy_luma	212	37	4	16	213	8	11	0.248	460	57957
						8	12 (+9%)	0.270 <mark>(+9%)</mark>	460 (+0%)	57957 (+0%)
reconf_luma	582	85	4	16	200	7	11 (+0%)	0.245 (-1%)	395 (-14%)	59033 (+2%)
(vs legacy %)	(vs legacy %) (+175%) (+130	(+130%)	%) (+0%) (+0%)	(+0%)	(-6%)	5	10 (-9%)	0.217 (-12%)	265 (-42%)	61191 (+6%)
					3	10 (-9%)	0.211 (-15%)	135 (-71%)	63357 (+9%)	
legacy_chroma	163	33	2	8	217	4	9	0.053	107	14753
reconf_chroma (vs legacy %)					200	4	9 (+0%)	0.053 (+0%)	107 (+0%)	14753 (+0%)
	383 (+1 35%)	383 65 (+135%) (+97%)	2 8 (+0%) (+0%	8 (+0%)		3	8 (-11%)	0.045 (-13%)	73 (-32%)	15293 (+4%)
		. ,	. ,	. ,		2	6 (- 33%)	0.033 (-37%)	39 (-64%)	15835 (+7%)

C. Sau et al. << Challenging the Best HEVC Fractional Pixel FPGA Interpolators with Reconfigurable and Multi-frequency Approximate Computing.>> IEEE Embedded Systems Letters, 9 (3), pp. 65-68, 2017, ISSN: 1943-0663.

Outline

• The origins of our dataflow to hardware studies: the RPCT Project

- Context
- Target Technologies
- Project Development
- The MDC tool
 - Approach
 - Baseline Functionality and Extensions
- Contexts of application
 - Neural Signal Decoding
 - HEVC Interpolation Filters
- Final Remarks

Conclusion and Future Plan

Thanks To ...

EU Commission for funding the **CERBERO** (*Cross-layer modEl-based fRamework for multi-oBjective dEsign of Reconfigurable systems in unceRtain hybRid envirOnments*) project as part of the H2020 Programme under grant agreement No 732105.

Coordinator:

Michal Masin (IBM), michaelm@il.ibm.com

Scientific Coordinator:

Francesca Palumbo (UniSS), fpalumbo@uniss.it

Innovation Manager:

Katiuscia Zedda (Abinsula), katiuscia.zedda@abinsula.com

Dissemination-Communication Manager:

Francesco Regazzoni (USI), francesco.regazzoni@usi.ch

Some References

- 1. Sau C, et al., "Challenging the Best HEVC Fractional Pixel FPGA Interpolators With Reconfigurable and Multi-frequency Approximate Computing", IEEE ESL 2017
- 2. Palumbo F., et al., "Power-Awarness in Coarse-Grained Reconfigurable Multi-Functional Architectures: a Dataflow Based Strategy", JSPS 2017
- 3. Sau C., et al., "Automated Design Flow for Multi-Functional Dataflow-Based Platforms", JSPS 2015
- 4. Palumbo F., et al., *"The multi-dataflow composer tool: generation of on-the-fly reconfigurable platforms"*, JRTIP 2014

Exploiting Dataflows for Reconfigurable Hardware Accelerators

Francesca Palumbo, Claudio Rubattu,

Carlo Sau, Tiziana Fanni, Luigi Raffo

Rennes, 12-14 December 2017