
Information and Communication Technologies (ICT)

Programme

Project N
o
: H2020-ICT-2016-1-732105

D5.4: CERBERO Holistic Methodology

and Integration Interfaces

Lead Beneficiary: AI

Work package: WP5

Date:

Distribution - Confidentiality: [Public]

Abstract: This is a report on integration activities with emphasis on cross-layer

cross abstraction levels integration methodology as well as operational interfaces

among tools. Here presented is a definition of CERBERO holistic design

framework, integration roadmap in addition to elaboration on available and

planned interfaces. This release of the deliverable is the first of three releases, of

which the second and last, D5.5 and D5.1 respectively, will be the outcome of

Ref. Ares(2017)4952419 - 10/10/2017

H2020-ICT-2016-1-732105 - CERBERO

WP5 – D5.4: CERBERO Holistic Methodology and Integration Interfaces

Page 2 of 42

iterative development (Deliverable 5.4), throughout the lifetime of the CERBERO

project.

© 2017 CERBERO Consortium, All Rights Reserved.

H2020-ICT-2016-1-732105 - CERBERO

WP5 – D5.4: CERBERO Holistic Methodology and Integration Interfaces

Page 3 of 42

Disclaimer

This document may contain material that is copyright of certain CERBERO beneficiaries,

and may not be reproduced or copied without permission. All CERBERO consortium

partners have agreed to the full publication of this document. The commercial use of any

information contained in this document may require a license from the proprietor of that

information.

The CERBERO Consortium is the following:

Num. Beneficiary name Acronym Country

1 (Coord.) IBM Israel – Science and Technology LTD IBM IL

2 Università degli Studi di Sassari UniSS IT

3 Thales Alenia Space Espana, SA TASE ES

4 Università degli Studi di Cagliari UniCA IT

5
Institut National des Sciences Appliquees de

Rennes
INSA FR

6 Universidad Politecnica de Madrid UPM ES

7 Università della Svizzera italiana USI CH

8 Abinsula SRL AI IT

9 Ambiesense LTD AS UK

10
Nederlandse Organisatie Voor Toegepast

Natuurwetenschappelijk Ondeerzoek TNO
TNO NL

11 Science and Technology S&T NL

12 Centro Ricerche FIAT CRF IT

For the CERBERO Consortium, please see the http://cerbero-h2020.eu web-site.

Except as otherwise expressly provided, the information in this document is provided by

CERBERO to members "as is" without warranty of any kind, expressed, implied or

statutory, including but not limited to any implied warranties of merchantability, fitness

for a particular purpose and non-infringement of third party’s rights.

CERBERO shall not be liable for any direct, indirect, incidental, special or consequential

damages of any kind or nature whatsoever (including, without limitation, any damages

arising from loss of use or lost business, revenue, profits, data or goodwill) arising in

connection with any infringement claims by third parties or the specification, whether in

an action in contract, tort, strict liability, negligence, or any other theory, even if advised

of the possibility of such damages.

The technology disclosed herein may be protected by one or more patents, copyrights,

trademarks and/or trade secrets owned by or licensed to CERBERO Partners. The

partners reserve all rights with respect to such technology and related materials. Any use

of the protected technology and related material beyond the terms of the License without

the prior written consent of CERBERO is prohibited.

http://cerbero-h2020.eu/

H2020-ICT-2016-1-732105 - CERBERO

WP5 – D5.4: CERBERO Holistic Methodology and Integration Interfaces

Page 4 of 42

Document Authors

The following list of authors reflects the major contribution to the writing of the

document.

Name(s) Organization Acronym

Gasser Ayad AI

Michael Masin IBM

Francesca Palumbo UNISS

Karol Desnos INSA

The list of authors does not imply any claim of ownership on the Intellectual Properties described

in this document. The authors and the publishers make no expressed or implied warranty of any

kind and assume no responsibilities for errors or omissions. No liability is assumed for incidental

or consequential damages in connection with or arising out of the use of the information

contained in this document.

Document Revision History

Date Ver. Contributor (Beneficiary) Summary of main changes

 v0.1 AI First draft

 v0.2 AI Second draft

19/09/2017 v0.3 AI, IBM, UNISS Third draft

08/10/2017 v0.4 AI, UNISS Fourth draft

H2020-ICT-2016-1-732105 - CERBERO

WP5 – D5.4: CERBERO Holistic Methodology and Integration Interfaces

Page 5 of 42

Table of Contents

1. Executive Summary ... 6
1.1. Structure of Document ... 6
1.2. Related Documents .. 6

2. Introduction ... 7
2.1. Modeling for Systems Engineering .. 7
2.2. Systems Integration from CERBERO Perspective .. 8

3. State of the Art ... 10
3.1. Usage of Formal Semantics ... 10
3.2. Viewpoint modeling .. 11
3.3. MARTE and PiSDF .. 12

4. CERBERO Integration Methodology .. 13
4.1. Tool Suite ... 13
4.2. System Design and Operational Framework .. 13
4.3. Simplified Ontology-based Integration with Intermediate Representation 16
4.4. Empirical Approach to Cross-Layer Integration .. 18
4.5. Mapping of Model Properties to Analysis Metrics .. 18
4.6. OS Qualified as a Toolchain Host.. 21

5. Internal Interfaces .. 22
5.1. RDF/JSON Intermediate Representation for Data Serialization 22
5.2. Ontology Data Serialization with JSON .. 23

6. Software Packaging Plan .. 27
6.1. Virtualization .. 27
6.2. Containerization .. 28

7. Relevant Works of Tool Integration ... 29
7.1. Integrating PREESM with ARTICO3... 29
7.2. Integrating MDC with HLS Tools .. 29

8. Appendix A. Brainstorming on CERBERO Tools and Technologies. 31
8.1. AOW ... 31
8.2. DYNAA .. 32
8.3. Verification Technologies .. 34
8.4. PREESM .. 35
8.5. PAPIFY / PAPIFY-VIEWER ... 36
8.6. SPIDER .. 37
8.7. ARTICo

3 .. 37
8.8. Multi-Dataflow Composer (MDC)... 38
8.9. MECA .. 39

9. References ... 41

H2020-ICT-2016-1-732105 - CERBERO

WP5 – D5.4: CERBERO Holistic Methodology and Integration Interfaces

Page 6 of 42

1. Executive Summary

This is a report on integration activities with emphasis on interfaces among tools. This is

the first release that will define CERBERO methodology and will be updated at the

beginning of Phase II of the project (Iterative development scheme of the project),

according to possible technical requirements updates. Hence the second release, D5.5, is

released at M21. Final reporting on integration activities and the complete framework

characteristics and interfaces are included in D5.1 delivered at M32. Please note that this

non-chronological order of the deliverable is due to a recent amendment.

1.1. Structure of Document

The document starts by an introduction to modeling of CPSs and vision of CERBERO

integration. Then it delves into state of the art of CPS component specification and design

space exploration (DSE). Then the report discusses CERBERO design framework

integration approach with required interfaces between the myriad of tools across all

layers of the toolchain (model, application, runtime, and hardware layers). The report

mentions a number of successful integration endeavors by some of the consortium

members, and finally sheds some light on how CERBERO integrated framework is

intended to be demonstrated.

1.2. Related Documents

D2.6: CERBERO Technical Requirements

H2020-ICT-2016-1-732105 - CERBERO

WP5 – D5.4: CERBERO Holistic Methodology and Integration Interfaces

Page 7 of 42

2. Introduction

Cyber-Physical Systems (CPS) are engineered systems comprising interacting physical

and computational components. In CPS, computation and communication are deeply

embedded in and interacting with physical processes to add new capabilities and

characteristics to physical systems.

In this report, we investigate how the various system components could be integrated into

a holistic operational framework respecting the requirements imposed by the overall

system and seeking a new foundation for CPS design, integration and operation. The goal

of the project is to deliver a model-based, heterogeneous and robust solution that is going

to be customizable (upon scenario needs) and generalizable (to different scenarios).

2.1. Modeling for Systems Engineering

Systems Engineering (SE) dictates the design process associated with the development of

large-scale products through defining systems and subsystems requirements, their

architecture, and critical parameters. With recent increase in product complexity and

business competition, mere intuition of system design engineers has proven insufficient

for finding feasible, safe, reliable and affordable designs
[1]

. Hence modeling started to

emerge to overcome these shortcomings and provide well-thought-out plan for a solid

design and smooth implementation and refinement.

In the context of systems engineering, models are created to deal with complexity. In

doing so they allow us to understand an area of interest or concern and provide

unambiguous communication amongst interested parties, models are leveraged in nearly

all stages of the development process. During analysis, models provide an abstract

representation of the desired solution, e.g. in terms of dynamic behavior diagrams such as

sequence diagrams and state machines. In the design phase, the software architecture

could be abstracted through UML component structure diagrams and class diagrams. In

addition, ports and interfaces facilitate modeling of data flows between components.

From these models code can be partially generated in the implementation phase.

Moreover, many models can be used at several levels of specification of the system. For

example Finite State Machines are useful at system, and component levels, both for HW

and SW. For testing purposes, models are used to generate test cases. To sum it up,

Model-Based Systems Engineering (MBSE) or, more generically, Model-Driven

Engineering (MDE) has models as the primary data source. Model Driven Development

uses the activities associated with modelling to drive the whole development process
[16]

.

From that perspective, specialized modeling tools come into play to increase

productivity. There is a plethora of specification languages such as SysML (a UML

extension), AADL, and modeling tools such as Excel, IBM Rhapsody, PTC Artisan

Studio, Sparx Enterprise Architect, domain specific tools (e.g. medical, avionics,

automotive, marine, space, etc.), and simulation environments such as Simulink and

Modelica
[1]

. The Functional Mock-up Interface (FMI) standard facilitates the exchange of

H2020-ICT-2016-1-732105 - CERBERO

WP5 – D5.4: CERBERO Holistic Methodology and Integration Interfaces

Page 8 of 42

simulation models between suppliers and OEMs. FMI adopts a tool-independent

approach for both model exchange and co-simulation of dynamic models using a

combination of xml-files and compiled C-code
[15]

. Its success could be attributed, at least

partially, to a minimalistic API allowing high flexibility for tool providers.

There are also black box tools integration tools that help with reducing complexity,

improving efficiency and cutting development time. modeFRONTIER - by ESTECO -

provides an innovative optimization environment with modular, profiled-based access.

ESTECO's integration platform for multi-objective and multi-disciplinary optimization

offers a seamless coupling with third party engineering tools, enables the automation of

the design simulation process and facilitates analytic decision making. ModelCenter

Integrate - by Phonix Integration - allows users to automate any modeling and simulation

tool from any vendor, integrate these tools together to create repeatable simulation

workflows, set simulation parameters, and automatically execute the workflow. Hence

ModelCenter Integrate increases productivity by enabling users to execute significantly

more simulations with less time and resources.

The benefits of using models in systems engineering are manifold: Building models is

usually easier than building the actual system as a whole from ground up. Modeling helps

to capture, structure, and understand the system and to reveal, early enough, possible

problems and potential bugs lurking at every stage of the system design and

implementation. It has proven more appropriate for high-stakes and increasingly complex

applications such as reconfigurable and adaptive cyber physical systems. Last but not

least, integration per se is not a scientific activity, it is rather an engineering problem full

of accidental issues (i.e. tools adopting different languages, running on different

platforms, vendor specific components, etc.) CERBERO is no exception; therefore, we

decided to adopt a model-based, semantically oriented, approach.

2.2. Systems Integration from CERBERO Perspective

Systems integration is a process whereby a cohesive system is created from components

that were not specifically designed to work together. Components of an integrated system

are often systems in their own right. And integration aims at interconnecting these

components together in a layered fashion in order to provide a useful exchange of

information, data and/or control between these sub-systems and assuring that the

integrated system meets requirements and performs according to user expectations.

To facilitate systems interconnection, an interface is defined and created as a point of

interaction between communicating systems. Interfacing may also mean using a common

message format, or intermediate representation, to provide kind of a unified

communication paradigm across the system entirely, or partially. Translation would be

required from the interface of one component to the intermediate representation, or vice

versa.

Generally, integration is done considering subsystems as black-boxes, hence creating a

middleware to “glue” together these disparate subsystems without them needing to know

anything about each other. We support the “open world” assumption, where each tool

should assume that all objects may have more properties than it knows about. Inspired by

FMI standard, we are looking for as simple formalism as possible to exchange objects

H2020-ICT-2016-1-732105 - CERBERO

WP5 – D5.4: CERBERO Holistic Methodology and Integration Interfaces

Page 9 of 42

with properties that tools recognize with middleware support for simple property

mappings when it is semantically clear.

A recommended integration process adopts an iterative – that is, continuous or constantly

evolving - integration model rather than a static or fixed model. Hence, it is essential to

create a holistic and customizable framework for subsystem integration as these

subsystems and tools undergo continuous development. For tracking of integration

progress, the integrated system must be verified and validated periodically against system

and user requirements toward a mature integration framework for the overall platform or

toolchain.

H2020-ICT-2016-1-732105 - CERBERO

WP5 – D5.4: CERBERO Holistic Methodology and Integration Interfaces

Page 10 of 42

3. State of the Art

Systems Engineering governs the design process associated with the development of

large-scale products through defining systems and subsystems requirements, their

architecture, and critical parameters. Recent increase in product complexity and business

competition dictates the necessity for finding feasible, safe, reliable and affordable

designs. Consequently, three techniques have become popular in helping handle the

complexity: layering design process into several levels of abstraction, separation of

concerns, and using computerized tools for automation of modeling, optimization and

analysis.

Embedded systems are commonly subject to data intensive processing applications where

huge amounts of data are handled in a regular way by means of repetitive computations.

These applications deal with intensive or massive parallelism either on the data level or

on the task level. High-level analysis of data-intensive applications becomes a complex

task necessitating a refinement step toward low levels of abstraction specifying both

computation and communication costs in the system.

The following works address the challenge of abstracting system design in a layered

fashion that maintains computation and communication specifications of the system and

facilitates analysis and optimization hence provides a competitive business edge for the

end cyber physical system.

3.1. Usage of Formal Semantics

Model-Based Engineering of Cyber-Physical Systems (CPS) needs correct-by-

construction design methodologies, hence CPS specification languages require

mathematically rigorous, unambiguous, and sound specifications of their syntax and

corresponding model semantics. Cyber-physical systems are software-integrated physical

systems often used in safety-critical and mission critical applications, for example in

automotive, avionics, chemical plants, or medical applications. In these applications

sound, unambiguous and formally specified modeling languages can help developing

reliable and correct solutions.

Traditional systems engineering is based on causal modeling (e.g., Simulink), in which

components are functional and a well-defined causal dependency exists between the

inputs and outputs. It is known that such a causal modeling paradigm is imperfect for

physical systems and CPS modeling since physical laws are inherently acausal.

Recently, acausal modeling has gained traction and several languages have been

introduced for acausal modeling (e.g., Modelica, bond graphs)
[17]

. Every time a new

specification language is introduced, there is a natural demand to extend it to support as

many features as possible. Unfortunately, this often leads to enormously large and

generic languages, which have many interpretations and variants without a clear,

unambiguous semantics. Because of the size of these languages, there is not much hope

for complete formalization of their semantics.

H2020-ICT-2016-1-732105 - CERBERO

WP5 – D5.4: CERBERO Holistic Methodology and Integration Interfaces

Page 11 of 42

A fundamental problem is that generic languages provides support for many more

features than a specific problem needs, still they often lack support for some essential

functions that would be otherwise needed. Thus, in most cases it is more feasible to use

Domain Specific Modeling Languages (DSML)
[18][19]

, which are designed to support

exactly the necessary functions. Additionally, because DSMLs are usually significantly

smaller than generic languages, their formal specification is feasible.

The work in [2] discusses the challenges to develop the formal semantics of a CPS-

specific modeling language called Cyber-Physical Modeling Language (CyPhyML). The

paper formalizes the structural semantics of CyPhyML by means of constraint rules, and

the behavioral semantics by defining a semantic mapping to a language for differential

algebraic equations. The specification language is based on an executable subset of first-

order logic, which facilitates model conformance checking, model checking and model

synthesis.

3.2. Viewpoint modeling

Viewpoint modeling is an effective approach for analyzing and designing complex

systems. Splitting various elements and corresponding constraints into different

perspectives of interests, enables separation of concerns such as domains of expertise,

levels of abstraction, and stages in lifecycle. Specifically, in Systems Engineering

different viewpoints could include functional requirements, physical architecture, safety,

geometry, timing, scenarios, etc. The first development and refinement step is referred to

as Engineering Modeling, and the second optimization and analysis step is referred to as

Design Space Exploration (DSE). Consequentially, there are no automatic tools for

holistic DSE based on libraries of previously developed and tested Analysis Viewpoints.

Despite partial inter-dependences, models are usually developed independently by

different parties, using different tools and languages. However, the essence of Systems

Engineering requires repetitive integration of many viewpoints in order to find feasible

designs and to make good architectural decisions, e.g., in each mapping between

consecutive levels of abstraction and in each design space exploration. This integration

into one consistent model becomes a significant challenge from both modeling and

information management perspectives.

The work in [1] suggests: (1) a unique modular algebraic viewpoint representation robust

to design evolution and suitable for generation of the integrated optimization/analysis

models, and (2) an underlying ontology-based approach for consistent integration of local

viewpoint concepts into the unified design space model. The paper shows also an

example of an optimization model with different combinations of partially interdependent

Analysis Viewpoints. Using the proposed modeling and information management

approach the underlying viewpoints’ equations can be applied without modification,

making the approach pluggable.

H2020-ICT-2016-1-732105 - CERBERO

WP5 – D5.4: CERBERO Holistic Methodology and Integration Interfaces

Page 12 of 42

3.3. MARTE and PiSDF

At the present time, embedded systems are commonly dedicated to data intensive

processing applications where huge amounts of data are handled in a regular way by

means of repetitive computations. These applications deal with intensive or massive

parallelism. Indeed, parallel applications can implement two levels of parallelism: data

parallelism and task parallelism. High-level analysis of data-intensive applications

becomes a complex task necessitating a refinement step toward low levels of abstraction

specifying both computation and communication costs in the system. Accurate

performance numbers can be reached at the cost of very detailed modeling. On the other

hand, a moderate effort for modeling leads to a high-level evaluation task, but the

accuracy is lost.

The work in [3] proposes a new approach that takes advantage of Model-Driven

Engineering (MDE) foundations and Modeling and Analysis of Real-Time and

Embedded Systems (MARTE) profile. The paper defines a transformation to a new level

of abstraction that alleviates the exploration and analysis tasks of real-time data-intensive

processing applications. This level is based on a novel extension of the famous

Synchronous Data Flow (SDF) Model-of-Computation (MoC), the Parameterized and

Interfaced Synchronous Dataflow (PiSDF) model. PiSDF facilitates the specification, and

especially the analysis of data-intensive applications as it gathers a lot of features

including hierarchy, configurability and dynamism. This MoC introduces analysis

techniques facilitating the design space exploration task. Then, a high-level analysis of

the data-parallel application is performed using the PREESM rapid prototyping tool.

H2020-ICT-2016-1-732105 - CERBERO

WP5 – D5.4: CERBERO Holistic Methodology and Integration Interfaces

Page 13 of 42

4. CERBERO Integration Methodology

4.1. Tool Suite

As a first step toward building CERBERO toolchain, IBM and AI in collaboration with

the entire consortium have surveyed and agreed upon an array of tools that are either

state-of-the-art or already exist within the consortium as fully mature technologies. This

survey helped to collect and consolidate information about functionality of each tool,

setup requirements, documentation availability, maturity/readiness level, licensing, and

usability domains, and would serve as a reference point for integration efforts. These

tools cover the entire stack of a CPS: system model layer, application layer, OS or

runtime layer, and hardware abstraction layer. This survey analysis resulted in Appendix

A, which elaborates on all tools in full detail. Collaboration between consortium

members on tools is meant to steer WP5 efforts toward defining a feasible CERBERO

integration plan and to specify the interfaces for newly designed tools.

4.2. System Design and Operational Framework

For the model-based design of complex systems, such as CPS and CPSoS, a structured

and well-defined design framework is essential to guarantee high quality products that

fulfill all requirements of the stakeholders and to enable handling the complexity of such

systems by introducing different viewpoints or abstraction layers to model the system

under development. Therefore, an important step to obtain a system implementation is the

Design Space Exploration (DSE), where design decisions are taken based on goals and

requirements defined in previous phases. The set of valid solutions may be restricted by

constraints, which could be derived from previously defined requirements considering

aspects such as functional requirements, physical architecture, safety, geometry, timing,

etc. Valid solutions are rated with respect to defined goals to facilitate a decision toward

choice of a final system implementation. Based on this abstract framework, concrete DSE

methods can be implemented addressing different kinds of DSE problems that are

relevant in industrial practice. In the CERBERO framework we intend to carry out DSE

at different levels, at system level to define the proper distribution among computing

nodes, and within the single node to identify the optimal HW/SW partitioning and

components set-up. The selectedoptimal design resulted from the system level DSE

should be available (i.e., machine readable) for HW/SW co-design to define, partially, its

functional requirements.

CERBERO design framework aims at shifting designers’ work at a higher abstraction

level and earlier in the design process, relieving them from manual and complex HW/SW

tuning phases. It creates and promotes model-based cross-layer optimization, design,

verification and simulation methods that aim at deeply modifying CPS system design

approach, shifting from a V model paradigm to a ladder model paradigm, see Figure 1,

thus slashing the time to market. In the model-based approach all the properties and

system characteristics are tackled concurrently right at the model level at design-time to

allow the cross-optimization of physical components, as well as the cross-configuration

H2020-ICT-2016-1-732105 - CERBERO

WP5 – D5.4: CERBERO Holistic Methodology and Integration Interfaces

Page 14 of 42

of the HW and SW layers. Dealing with CPS and CPSoS poses challenges for the overall

system assessment (dimensioning and characterizing communication channels, profiling

power consumption, etc.) To cope with these challenges, CERBERO features adequate

analysis tools and provide sufficient breakdown of all related layers of the system model

to guarantee continuous validation.

Figure 1: V-Model vs. Ladder System Design Approach

Tool integration is meant to be cross-layer, see Figure 2, in such a way that consistency is

maintained between individual layers (high-level system model, application architecture,

runtime manager, and low-level implementation) through collaborating with respective

partners for development of interfaces or intermediate semantics that map the

functionality of each block or tool in the toolchain and wrap it for integration with other

blocks or tools accordingly. Using intermediate semantics for integration will allow

requirements analysis and verification at the model level. Integration of some HW design

tools, however, is more implementation oriented since interfaces between these tools

have already been coded or currently being developed and tested. Integration will be

based on methods and interfaces in agile cycles performing cross-layer integration and

combining modelling, simulation, verification and code generation activities.

It is essential before attempting the modeling, and hence integration efforts, to plan the

following system characteristics:

- Functional and non-functional requirements.

- Available system libraries, including models that require new developments.

- System structure and composition.

- A unified naming convention for all properties and attributes.

- Open world assumption (more tools, more viewpoints)

Consequentially, constraints and KPIs (such as jitter, delay, latency, KPI, QoS, energy

consumption) are verified before starting integration activities.

H2020-ICT-2016-1-732105 - CERBERO

WP5 – D5.4: CERBERO Holistic Methodology and Integration Interfaces

Page 15 of 42

o

Figure 2: CERBERO Cross-Layer Integration Topology

Integration also involves gap analysis in order to discover gaps and overlaps and reveal

points of interoperability. Understanding the opportunities for integration or gap-filling

informs holistic tradeoff decisions about integrating systems and capabilities
 [8]

.

Execution of CERBERO integration methodology adopts a Continuous Engineering

approach that guarantees reuse of design time models for generating novel and more

accurate design and operational models up to the runtime environment. In this deliverable

we describe an initial integration methodology. Semantic model based integration

supports cross-layer and cross-levels of abstraction modeling, usually dealing with

system integration and system modeling. In this case we leverage on ontologies “passing”

relevant properties among layers and levels of abstraction. On the other hand, each layer

(that can handle more than one model) has its own tools that usually much more

 Existing Interface

 Planned Semantic Interface

 Planned Simulation Interface

VT

AOW DyNAA

PAPI

SPIDER JADE

ARTICO
3
 MDC

Intermediate Representation

C++ LLVM

System Model (Uml/Sysml)

Application Architecture

Runtime
Manager/Engine

Low-Level Implementation
(Hardware Abstraction)

PREESM

MECA
End-user interaction

VHDL/VERILOG

H2020-ICT-2016-1-732105 - CERBERO

WP5 – D5.4: CERBERO Holistic Methodology and Integration Interfaces

Page 16 of 42

compatible among each other and that should pass information by means of the same

ontologies focusing on fast execution (important, e.g., for simulation).

We implement a simplified version of ontology based on things with properties: each tool

will look for relevant properties of intermediate models, constraints or KPIs from other

tools (potentially in other layers / levels of abstraction); while the framework supports

mapping model properties to tools/analysis namespace properties and provides shared

directories for model exchange. The methodology will be further co-refined together with

project advance in cross-layer integration framework combining modeling, DSE,

simulation, verification and code generation capabilities of CERBERO tools. Two

iterations are planned during the total duration of the project, see Figure 3, delivering a

“beta” and a “final” version of CERBERO integration strategies and internal interfaces.

Figure 3: Iterative Development Scheme of CERBERO Integration Framework

4.3. Simplified Ontology-based Integration with Intermediate

Representation

As mentioned earlier, integration is traditionally a complex engineering problem. It is

characterized by several different accidental issues, as usage of different modeling

paradigm or languages, that make the creation of the infrastructure particularly effort

hungry. This is particularly true in the CPS environment where you need to combine

together components suitable for the different aspects of the CPS. These motivations led

designer to opt for semantic integration of tools, and ontology-based integration is

particularly suitable, in our opinion, to the case.

The term “ontology” derives from ancient Greek “ontos”, which means “being” and

logos, which means, “discourse”. Ontology -- or roughly the "science of stuff" and how it

is represented -- used to be a rather obscure branch of philosophy. It still is in some cases,

but it is also an important and growing area of computer science and the web of things

(WoT). Then, ontology has assumed other relevant meanings, such as:

 “A formal, shared and explicit representation of a domain concept.”

H2020-ICT-2016-1-732105 - CERBERO

WP5 – D5.4: CERBERO Holistic Methodology and Integration Interfaces

Page 17 of 42

or:

“A method for formally representing knowledge as a set of concepts within a domain,

using a shared vocabulary to denote the types, properties and interrelationships of those

concepts.”

or:

“A formal way to describe taxonomies and classification networks, essentially defining

the structure of knowledge for various domains.”

Ontology-based data integration involves the use of ontology(s) to effectively combine

data or information from multiple heterogeneous sources. So we are starting CERBERO

integration efforts by creating some kind of ontology, by which we mean a collection of

terms that identify the real things and relationships that are relevant to CERBERO-

supported domains and industry-driven requirements. Maintaining an ontology design

facilitates keeping track of the terms and ensures integration efforts quickly get up to

speed.

CERBERO features heterogeneous technologies and tools. As discussed above, we

retained the idea that model-2-model transformation would not necessarily be the main

mean of communication between tools (also, the feasibility of having fully automated

model to model transformations from system of system level down to hardware is

unlikely). Instead, each tool will manage its own model(s), and the intermediate

representation will be used to exchange “cross-layers” and “cross-models” information

between tools.

The intermediate format is therefore necessary to achieve the mediation between the

application's class model conceptualization and the common domain ontology

conceptualization, since objects in the original format cannot be handled directly in the

framework
[8]

. In CERBERO, the exchange format will follow the Resource Description

Framework (RDF)-like meta-model underlying common ontology.

CERBERO proposes an application layer solution for interoperability. The key idea is to

utilize semantics provided by existing specifications and dynamically wrap them in a

middleware fashion into semantic services in such a way that automates interoperability

without any modifications to existing standards, devices, or technologies, while providing

to the framework user an intuitive semantic interface with services that can be obtained

by executing all CERBERO technologies. In particular, a semantic layer is proposed for

simple mapping of KPIs to model properties (i.e., connecting name spaces) as a semantic

service; we may conventionally call that middleware the “Service Layer.”

CERBERO's integrated framework aims at a one model for the entire platform. That is, a

single model with several different fields and properties that are detail-rich. Each tool and

/or analysis viewpoint will recognize some properties, enrich others and ignore the rest,

allowing (partial) transformation of otherwise inconsistent or incompatible models or

semantics.

A property is defined by a set of properties, such as an ID or a name, a type, a value, and

(if applicable) a measurement unit. A property can be simple (flat), or object (composite

of sub-properties). And since information available at system level are relevant at lower

levels, properties in a model structure are inter-linked in such a way that allows

navigation from one property in the system to another across different layers. Some links

between properties may carry decisions. Ontology helps with revealing meaning and

H2020-ICT-2016-1-732105 - CERBERO

WP5 – D5.4: CERBERO Holistic Methodology and Integration Interfaces

Page 18 of 42

relations of each property from the whole graph by referring to a property by its name.

All properties relevant to the model are present in Ontology. Ontologies can be either

simplified (i.e. system model features only a subset of all properties of the real system),

or full ontology where all properties in the system model are presented in the ontology.

The system-level of abstraction is capable of having a complete view of the system

infrastructure. However, system level is not fully or directly aware of the “internals” of

the underlying more detailed levels. Underlying levels can communicate/report to the

system level through backward annotations. At system level, a clue is needed about the

underlying layers. Such a clue can be obtained through design space exploration of

features of the underlying HW architectures, such as nominal values of speed and power

consumption per core, number of cores, etc.

Properties have to be exported in some form of intermediate representation, such as XML

or JSON. A parser is to be built to read properties and sub-properties. This intermediate

representation or semantics is used in to define the cross-layer interfaces for the

CERBERO integration framework. Interfaces are to be developed iteratively, that is, in

agile cycles so as to reach full maturity by the end of the CERBERO project.

To sum it up, intermediate representation or schema is the file or message format that one

level of abstraction, layer or tool is going to produce and the other is going to consume. It

may not necessarily be human understandable/comprehensible, but it’s necessarily

interpretable from one level/layer to another. We need to extend class-based

representation (i.e. the system-level model on IBM Rhapsody or DynAA) to the property-

based intermediate representation (e.g. in XML format as with DynAA, or JSON format

as with the SEMI tool of IBM). In addition, feedback can be communicated to the

originating level/layer to facilitates self-adaptivity and reconfigurability.

4.4. Empirical Approach to Cross-Layer Integration

In this case study each tool from a subsequent layer will look for relevant properties of

intermediate models from tools of the preceding abstraction layer. Model properties

would be mapped to namespace properties. Properties are exchanged through a

mechanism for sharing or information, following generations conventions of KPIs.

From the modeling perspective, paper [9] presents a toolchain integration methodology

for abstracting existing legacy IPs modules into SysML components. During the

abstraction flow, it is possible to set the level of detail to be maintained in SysML, such

as hierarchical structure and data types of the legacy modules, in order to allow designers

to choose the level of abstraction to be preserved in the SysML model. The methodology

aims at producing SysML models with both structural and behavioral information.

4.5. Mapping of Model Properties to Analysis Metrics

Any metrics library consists of three main parts: attributes, constraints, and filters
[13]

.

This library is mapped to the system and/or application high-level models in

UML/SysML using a mapping UI in the modeling environment, such as IBM Rational

Rhapsody
[14]

.

H2020-ICT-2016-1-732105 - CERBERO

WP5 – D5.4: CERBERO Holistic Methodology and Integration Interfaces

Page 19 of 42

Attributes

Here we give an example to illustrate the attribute set. In figure 6 below, the attribute set

itsUnPlanCostElements is a set of parts having at least following attributes:

MaitenanceUnPlanCost, MTTF (only elements with MTTF > 0 included), and subSysId.

Attributes of metric can be mapped to any attributes in the model via UI, as appears in

figure 7.

Figure 6: Metric Attribute Set.

Figure 7: Mapping of Metric Attributes to Model Attributes

Hence, attribute set in the metric represent a set of the parts in the model. All parts having

specific attributes and/or stereotypes in the model (after mapping) are members of

attribute set

Currently all attributes in the attribute set must be mapped to attribute or stereotype in the

model. Potential elements of the set can be additionally filtered depending on attribute

values. To do this – attach SysML constraint to attribute set, as we will see shortly.

Constraints

A set constraint is constraint calculated (or valid) for elements of attributes set. It must

have incoming set flows from attribute sets connected via set constraint parameters, and

must have incoming attribute flows from attributes of attribute set connected via

constraint parameters. Calculated attributes must rather have outgoing attribute flows.

Figure 8 shows a set constraint.

H2020-ICT-2016-1-732105 - CERBERO

WP5 – D5.4: CERBERO Holistic Methodology and Integration Interfaces

Page 20 of 42

Figure 8: Set Constraint.

Filters

A set filter is constraint which define filter of one set based on values of elements of

other sets . Outgoing set flow points to filtered attribute set. Here a constraint defines a

filtering criteria based on attributes of filtered set. As appears below:

Figure 9: Set Filter.

Mapping UI

To apply metric to the model, one should create matching profile. In Rhapsody there

exists two types of metric profiles, namely assignment and constraint. For assignment

profiles one also should set priority to define order of calculations. Each metric can be

applied many times to the same model. A metric attribute can be mapped to model

attribute, a stereotype, or to different model attributes for different blocks, as appears in

Figure 10 below.

H2020-ICT-2016-1-732105 - CERBERO

WP5 – D5.4: CERBERO Holistic Methodology and Integration Interfaces

Page 21 of 42

Figure 10: Attribute Mapping, Metric Profiles, and Metric Profile Properties

4.6. OS Qualified as a Toolchain Host

CERBERO array of tools and technologies widely support both Windows and Linux.

However, Windows has been qualified by the consortium as the host operating system of

choice for the project since it has a larger market share and is more familiar with respect

to Linux, more feature-complete, enjoys commercial support, and is not subject to the

disintegrity imposed by a wide range of different Linux distributions that are only

maintained by their respective communities.

H2020-ICT-2016-1-732105 - CERBERO

WP5 – D5.4: CERBERO Holistic Methodology and Integration Interfaces

Page 22 of 42

5. Internal Interfaces

Cyber Physical Systems (CPSs) are an evolution of embedded systems and are based on a

tight combination of collaborating computational elements (i.e. micro computing units or

embedded systems interconnected by a communication system) that control physical

entities. Therefore, in CPS all types of smart equipment (i.e. sensors, actuators, devices,

machines, robots) are interconnected creating a smart community with data capture and

action capability from/to the physical world.

A CPS-based architecture for manufacturing is made of smart but independent

manufacturing components without any knowledge of the role they have to play together

in the real application. Ontologies can supply such kind of knowledge, playing a very

crucial role in CPS design.

Ontology in computer terms is concerned with meaning of and relationship between

entities. It derives its importance from its ability to organize raw or unstructured data by

semantics (i.e. meaning, such as classes, properties or attributes, and relationships), rather

than merely by strings or keywords, thus facilitating more efficient data operations

(storing, querying, sending and receiving). An ontology is often referred to as a

“schema”.

Ontologies are typically far more flexible than class representations and hierarchies as

they are meant to represent information coming from all sorts of heterogeneous data

sources. Class hierarchies on the other hand are meant to be fairly static and rely on far

less diverse and more structured sources of data.

Therefore, CERBERO consortium postulates simplified ontologies as the right tool to

implement cross-layer information sharing and data flow in order to implement internal

interfaces and hence realize the CERBERO holistic integration methodology. As

discussed above, by simplified ontology we mean using things with properties where all

analysis viewpoints are defined by a set of properties and all objects that hold them.

5.1. RDF/JSON Intermediate Representation for Data Serialization

Successful tool integration necessitates that system model data to be serialized or

rendered into a particular, preferably standard, format or syntax that can be parsed later

on and transformed into another format as per need of subsequent layers.

JSON representation of a set of RDF triples as a series of nested data structures has

become increasingly popular as a data serialization format thanks to its more lightweight

structure compared to XML, making it a useful format for data exchange in a way that

requires less bandwidth than a bulky XML document. JSON-LD is a JSON-based format

that stands for JavaScript Object Notation for Linked Data. Structured data expressed in

JSON-LD uses the familiar JSON structure but has been especially developed for

expressing information using structured data (or, linked data) vocabularies - such as

schema.org. There are several valid formats for representing RDF data. JSON-LD is one

of these formats. Other serialization formats exist for RDF, such as RDF/XML,

H2020-ICT-2016-1-732105 - CERBERO

WP5 – D5.4: CERBERO Holistic Methodology and Integration Interfaces

Page 23 of 42

OWL/XML, Turtle, TriG, and N3. In other words, an RDF document is a document that

encodes an RDF graph or RDF data set in a concrete RDF syntax, such as JSON-LD, to

enable the exchange of RDF data between systems. JSON-LD format is lightweight and

is easy for humans to grasp.

JSON-LD is available in a number of popular programming environments. Each

implementation of JSON-LD is fully conforming to the official JSON-LD specification,

and is available at www.json-ld.org. The specification is already deployed in production

by major companies and has recently received the official W3C Standard status.

As RDF ontologies can be efficiently expressed in JSON, CERBERO consortium adopts

JSON and JSON-based extensions for data intermediate representation and cross-layer

interfacing. JSON is compatible with IBM semantic middleware (SEMI). Thorough

investigation is currently taking place to assure that JSON as format for serializing and

transmitting structured data would fulfill the integration needs of CERBERO. D5.5 - the

next version of this deliverable - would feature well-defined CERBERO interfaces.

5.2. Ontology Data Serialization with JSON

Many software packages are now available for creating ontologies, among which are:

 Stanford University's Protégé, a free, open-source ontology editor.

 TopBraid Composer from TopQuadrant.

 Generally any text editor.

Apart from RDF/XML, RDF ontologies can also be expressed in human readable

formats, most notably JSON.

Before delving into a full example of a JSON-represented ontology, here below is a quick

recall of the most relevant terminology:

JSON: is a lightweight format for data exchange (as XML, but less verbose yet more

human-readable). [By "Data" we mean is the set of classes and attributes that will be

shared by tools and technologies that interoperate within the CERBERO framework.]

JSON-Schema: a JSON document according to which the ontology is defined. [For

example, if there are required or mandatory attributes, if they are of number datatype, if

they can be null, etc.] In XML equivalence, that would correspond to an XML schema or

a Document Type Definition (DTD).

Ontology: formally defines a common set of terms used to describe and represent a

domain (according to the JSON-Schema).

Instance of Ontology: a specific element of an ontology.

https://www.w3.org/TR/rdf11-concepts/#dfn-rdf-graph
http://www.json-ld.org/
http://www.w3.org/TR/json-ld/
http://protege.stanford.edu/
http://www.topquadrant.com/products/TB_Composer.html

H2020-ICT-2016-1-732105 - CERBERO

WP5 – D5.4: CERBERO Holistic Methodology and Integration Interfaces

Page 24 of 42

Template: a preloaded JSON schema that can be used and expanded by the user to create

their ontologies.

Context: a list of templates that simplifies the ontology presentation preserving its

contents.

Here we provide a simple Ontology such as representing a temperature sensor that stores

an identifier, timestamp, measurement, unit and GPS coordinates. An instance of this

ontology may look like:

"SensorTemperature": {

 "identifier":"ST-TA3231-1",

 "timestamp": {

 "$date": "2014-01-27T11:14:00Z"

 },

"measurement":25.1,

"unit":"C",

"geometry": {

 "type": "Point",

 "coordinates": [90, -10.1]

}

}

Following is a JSON Schema that describes the Ontology:

 "$schema":"http://json-schema.org/draft-04/schema#",

 "title":"SensorTemperature Schema",

 "type":"object",

 "required": ["SensorTemperature"],

 "properties": {

 "_id": {

 "type":"object",

 "$ref":"#/identifier"

 },

 "SensorTemperature": {

 "type":"string",

 "$ref":"#/data"

 },

 "additionalProperties": false,

 "identifier": {

 "title":"id",

 "description":"ID for sensor temperature",

 "type":"object",

 "properties": {

 "$oid": {

 "type":"string"

H2020-ICT-2016-1-732105 - CERBERO

WP5 – D5.4: CERBERO Holistic Methodology and Integration Interfaces

Page 25 of 42

 }

 },

 "additionalProperties": false

 },

 "data": {

 "title":"data",

 "description":"Info about sensor temperature",

 "type":"object",

 "required": ["identifier","timestamp",

 "measurement","unit","geometry"],

 "properties": {

 "identificador": {

 "type":"string"

 },

 "timestamp": {

 "type":"object",

 "required": ["$date"],

 "properties": {

 "$date": {

 "type":"string",

 "format":"date-time"

 }

 },

 "additionalProperties": false

 },

 "measurement": {

 "type":"number"

 },

 "unit": {

 "type":"string"

 },

 "geometry": {

 "$ref":"#/gps"

 },

 "additionalProperties": false

 },

 "gps": {

 "title":"gps",

 "description":"Gps SensorTemperatura",

 "type":"object",

 "required": ["coordinates","type"],

 "properties": {

 "coordinates": {

 "type":"array",

 "items": [

 {

 "type":"number",

H2020-ICT-2016-1-732105 - CERBERO

WP5 – D5.4: CERBERO Holistic Methodology and Integration Interfaces

Page 26 of 42

 “maximum”:180,

 “mininum”:-180

 },

 {

 "type":"number",

 “maximum”:180,

 “mininum”:-180

 }

],

 "minItems":2,

 "maxItems":2

 },

 "type": {

 "type":"string",

 "enum": ["Point"]

 }

 "additionalProperties": false

 }

H2020-ICT-2016-1-732105 - CERBERO

WP5 – D5.4: CERBERO Holistic Methodology and Integration Interfaces

Page 27 of 42

6. Software Packaging Plan

Software packaging for CERBERO integration demos will move in either one of two

possible directions: virtualization or containerization. Both directions are currently being

assessed. Both technologies generally serve the same purposes of portability, isolation,

reusability, effective use of the hardware, better DevOps and continuous deployment and

testing. However, they are quite different in terms of how they are implemented. Figure

11 illustrates how a virtual machine compares to an application container.

Figure 11: Schematic Comparison of Virtual Machines (left) and Containers (right)

Each approach has its advantages and drawbacks. Below we discuss each approach from

CERBERO perspective:

6.1. Virtualization

A virtual machine has a full OS with its own memory management installed with the

associated overhead of virtual device drivers. In a virtual machine, valuable resources are

emulated for the guest OS and hypervisor, which makes it possible to run many instances

of one or more operating systems in parallel on a single machine (or host). Every guest

OS runs as an individual entity from the host system.

Currently two virtual machines are being maintained and updated in the context of

CERBERO project integration and demonstration activities. A Windows virtual machine

hosts the Windows-based tools, namely IBM AOW and Dynaa, and a Linux virtual

machine hosts Linux-based tools including Preesm and Xilinx Vivado.

H2020-ICT-2016-1-732105 - CERBERO

WP5 – D5.4: CERBERO Holistic Methodology and Integration Interfaces

Page 28 of 42

6.2. Containerization

Docker is the world’s leading software container platform. Developers use Docker to

eliminate “works on my machine” problems when collaborating on code with co-

workers. Operators use Docker to run and manage apps side-by-side in isolated

containers to get better compute density. Enterprises use Docker to build agile software

delivery pipelines to ship new features faster, more securely and with confidence for both

Linux and Windows Server apps.

Each tool provider would provide a docker container - that is, a virtual environment with

their respective tools installed and technologies or frameworks set up. That is considered

a better alternative to sharing just one machine on which all tools and technologies are to

be present. All tool providers can work in parallel preparing their respective containers,

hence we would slash the overall time preparing the work environment, and also avoid

any possible inter-operability problems/conflicts due to Docker powerful application

isolation capability.

H2020-ICT-2016-1-732105 - CERBERO

WP5 – D5.4: CERBERO Holistic Methodology and Integration Interfaces

Page 29 of 42

7. Relevant Works of Tool Integration

7.1. Integrating PREESM with ARTICO3

PREESM (a rapid prototyping and multi-core code generation and scheduling tool by

INSA), and SDSoC (a hardware accelerators generation tool by Xilinx) have been

integrated in collaboration between INSA and UPM for the ReCoSoC conference. Work

is titled “Analysis of a Heterogeneous Multi-Core, Multi-HW-Accelerator-Based System

Designed Using PREESM and SDSoC”
[10]

.

A design flow that combines, on one side, PREESM as a dataflow-based prototyping

framework and on the other side Xilinx SDSoC as a HLS-based framework to

automatically generate and manage hardware accelerators has been developed. This

design flow leverages the automatic, static task scheduling obtained from PREESM with

asynchronous invocations that trigger the parallel execution of multiple hardware

accelerators from some of their associated sequential software threads. An image

processing application is used as a proof of concept, showing the interoperability

possibilities of both tools, the level of design automation achieved and, for the resulting

computing architecture, the good performance scalability according to the number of

accelerators and SW threads.

Hence, this design flow provides developers with transparent deployment capabilities to

efficiently execute different applications on complex devices such as multi-core devices

featuring CPUs, GPUs and large FPGAs, such as Xilinx Zynq-7000 or Zynq UltraScale+

MPSoC architectures that are now prevalent in the market. This work serves as a proof-

of-concept for implementation-based integration and paves the way for target HW

infrastructure integration (between PREESM actors and ARTICo3 HW accelerators) to

fulfill part of integration objectives of the CERBERO project.

7.2. Integrating MDC with HLS Tools

Coarse-Grained Reconfigurable systems may sound particularly appealing in the

definition of modern runtime adaptive computing systems. Nevertheless, their design is

complex and effort-hungry, which exacerbate the already present design productivity gap

[11]. Therefore, high-level synthesis and automated design environment sound

particularly useful, though very often limited by given platform- or vendor-specific tools.

In CERBERO, we are attempting to decouple as much as possible our technologies from

specific vendors. Hence, we are in the process of integrating a target-agnostic

dataflow-based design environment for coarse-grained reconfigurable platforms.

Targeting this need, embedded system developers have invested a lot of effort in the

development of advanced methodologies and tools for system design and test. The trend

is the following. First, to leverage on model-based design methodologies, increasing the

level of abstraction and re-using as much as possible IPs. Second, to adopt automated

design flows to relieve designers from the burden of going deep down with the embedded

system definition. High-Level Synthesis (HLS) tools are hailed as one of the most

promising solutions to cope with the design productivity gap. Different tools and

methodologies have been proposed by academy and industry, mainly differing for the

H2020-ICT-2016-1-732105 - CERBERO

WP5 – D5.4: CERBERO Holistic Methodology and Integration Interfaces

Page 30 of 42

adopted high-level model/language and/or targeted hardware. C code is the most

commonly adopted high-level representation, together with its object-oriented (C++) and

system-oriented (SystemC) versions. These representations are supported by the main

commercial tools, such as Vivado HLS from Xilinx
[12]

. FPGA company tools (Vivado

HLS and HLS Compiler) are typically limited to the vendor specific devices. Due to their

modularity and abstraction capabilities, dataflow models of computation (MoCs) have

also been adopted as high-level representations for HLS.

We are currently working on a platform-agnostic design flow for heterogeneous coarse-

grained configurable (CGR) systems. Designers are requested to provide only the

dataflow models of the applications/kernels to be implemented on the reconfigurable

substrate. Those models are automatically analyzed and combined in a unique optimal

reconfigurable multi-dataflow specification, which is then instantiated in hardware. The

environment is built upon the combination of a dataflow-based design suite for CGR

systems, MDC, and a platform-agnostic dataflow-to-hardware synthesizer (aka dataflow

language), CAPH. The actors of that specification are synthesized using CAPH and the

CGR platform in deployed by MDC. Designers do not have to deal with resource

minimization, HDL definition and reconfiguration management. As a status quo, there

are no other integrated environment capable of providing the same support in a

completely platform-agnostic way.

H2020-ICT-2016-1-732105 - CERBERO

WP5 – D5.4: CERBERO Holistic Methodology and Integration Interfaces

Page 31 of 42

8. Appendix A. Brainstorming on CERBERO Tools and

Technologies.

In the context of defining CERBERO integration framework and operational interfaces,

CERBERO consortium have conducted an internal survey of all relevant tools developed

and owned by the partners. Proposed tools for application architecture and runtime

development widely support Eclipse IDE and are already available as Eclipse plugins.

High-level systems modelling and simulation are to be carried out under IBM AOW and

TNO Dynaa. All proposed tools - apart from AOW and MECA - support both Microsoft

Windows OS as well as various Linux distributions running on mainstream hardware

architectures, and require C/C++, Python, or Java as programming languages.

Proposed tools vary in their level of maturity, though they currently assume TRL "3" as

an overall minimum, which would allow CERBERO to progress smoothly focusing on

tool interfacing and integration to fulfill the target use cases covered in WP2. Some of the

tools are fully developed and already released while others are the outcome of completed

EU research projects. CERBERO tools are available for free distribution under varying

licensing schemes. Following is a breakdown of the survey outcome into details of each

tool.

8.1. AOW

Architecture Optimization Workbench (AOW) is a tool for System of System (SoS) and

System level multi-objective multi-view cross-level design using Mathematical

Programming techniques. Currently, AOW allows models of metrics, views and levels

using algebraic mixed-integer linear equations and inequalities. In CERBERO AOW will

be extended to models using linear differential equations and inequalities as well. Using

AOW, system (or SoS) designers can simultaneously find the optimal system (or SoS)

architecture and control, including routing and reconfiguration decisions. In control

domain, AOW will focus on Robust Optimization, Markov Decision Process (MDP) and

Partially Observable MDP (POMDP).

Inputs:

* SysML or UPDM models of functional requirements, topology of physical architecture,

geometry, potential mappings from functional to physical and allocations of physical to

geometry

* Excel catalogs and inventories of components, geometry, mappings and allocations

* Library of metrics and goals

* Optimization configuration, aliases

Outputs: Set of Pareto-optimal designs (textual, graphical outputs and detailed SysML

models) and control policies.

Solver: Cplex

Possible contributions to UCs

H2020-ICT-2016-1-732105 - CERBERO

WP5 – D5.4: CERBERO Holistic Methodology and Integration Interfaces

Page 32 of 42

1. Self-healing system for planetary exploration

Reconfiguration controller using MDP or POMDP, optimal arm routing.

2. Smart traveling for electric vehicles

Routing decisions for most scenarios taking into account transportation network

congestion, road and battery physical conditions (e.g., elevation of roads, discharging of

batteries, etc.).

3. Ocean monitoring

Battery re-configuration, routing/navigation of vessels taking into account ocean and

battery physical conditions.

8.2. DYNAA

DynAA (Dynamic Adaptive Multi Sensor Networks Architecture) is a system analysis and design

tool based on a fully fledged DEVS simulator. The DynAA simulation engine combines features

from system simulators (such as Matlab Simulink and Modellica) and network simulators (such

as NS3 and OMNet++). With DynAA, the designer can model complex systems and simulate the

interaction between its components in different scenarios and/or with different system parameter

settings. During simulation, DynAA records system states which can later be visualized or

quantified. In this way, DynAA offers insight in the key performance indicators of an application

(model) and on its evolution through time – and as such facilitates early design and architecture

decision making.

The DynAA tool provides:

1) Semi-integrated cross-layer modelling of computing and network components. DynAA

has its own modeling language, similar to sysML, but emphasizing the functional view,

the physical view, the communication view, and the mapping view. Models can be saved

in XML format for integration with other tools or code generation.

2) The DynAA modelling language includes special modelling constructors for large and

distributed system and modelling of reconfigurable aspects. For example, the DynAA

language has:

a. cardinality constructs that allows to describe and parameterize the number of

component instances in the system.

b. Network topological constructs that allows to describe how components are

connected and how the network evolves when new components are added or

removed

c. Reconfiguration handle constructors that allows to explicitly indicates which

components or model aspects are modified during adaptation/reconfiguration of

the system.

The features above make DynAA specially interesting for modelling and simulationg

self-adaptive signal processing systems.

3) Models written in the DynAA modelling language can be transformed by code generators

(also available) into Matlab code for simulation purposes in the DynAA simulator.

DynAA simulations can be controlled within a closed loop with an optimizer (e.g. using

local/global hill climbing search, genetic algorithms, monte carlo, or grid-search). At each loop

iteration, the DynAA model is automatically parameterized with a specific set of settings

for which simulation produces KPI indicators. This loop allows an effective design space

exploration. Such feature also makes DynAA an effective design tool, as it can go beyond

analysis and search optimal solution within a parameter space.

H2020-ICT-2016-1-732105 - CERBERO

WP5 – D5.4: CERBERO Holistic Methodology and Integration Interfaces

Page 33 of 42

TNO offers the DynAA modelling language and part of the tool chain, which was developed

within the DEMANES project as a base and starting point for the CERBERO modelling and

development approach.

Inputs for DynAA:

1) Models for the components of the system in the DynAA modeling

language, similar to sysML, but emphasizing the functional view, the physical view,

and the mapping view. Input models are able to fully model all three CERBERO

layers: functional, physical, and communication, as well as the function-to-physical

relationships.

2) For the code generation, models in XML file. Simulation code can be

directly written in Java or Matlab as well, in this case no code generation takes place.

3) Modelling with graphical user interface is possible, by means of using a

commercial software (MetaEdit+), but appropriate licensing is needed

4) The automated optimization loop (design space exploration) needs a

parameter space file describing the design space, and key performance indicator cost

functions written in Matlab or Java.

Outputs for DynAA:

1) Simulations in DynAA produce logfiles with historical track of system states

(configurable for each system model). Such logfiles can be used to visualize and

quantify key performance indicators for the system development. Also,

correctness of operation can be used as a first validation trial.

2) When combined with the optimizer loop, DynAA automatically searches the

design parameter space and indicates the best parameter setting according to a

custom performance function.

DynAA will be used to simulate the models in the Smart Travelling for Electric Vehicles use case

and will be further enriched with more formal models of computation and extended to support

new system properties. Moreover, it will cope with system-in-the-loop simulation.

Possible contribution to use cases

1. Self-healing system for planetary exploration

Potential contributed that should be evaluated later:

1) DynAA could be used to simulate several different self-healing strategies in

the early design phase.

2) DynaAA could also be used on evaluating the performance of the path planner

under different scenarios, such as problems in sensor data.

2. Smart traveling for electric vehicles

DynAA can be used to run simulation modules in parallel with the SCANR

simulation environment already used by CRF. Here the SCANR system is viewed as a

system-in-the-loop and DynAA need to simulate its modules in real time. DynAA can

also be used to model simulation modules and possibly generate part of the code needed

to implement specific simulation modules. Finally, DynAA could be used to provide

mechanism to run simulation (faster than real time) for different alternatives to calculate

predictions and generate advice to the driver (needed in more complex use case

scenarios). The generated advice could potentially also be used to automatically modify

H2020-ICT-2016-1-732105 - CERBERO

WP5 – D5.4: CERBERO Holistic Methodology and Integration Interfaces

Page 34 of 42

the behavior of the system (vehicle), as is done in autonomous driving. In the foreseen

use case the advice will initially only be used to inform the driver.

3. Ocean monitoring

Suggestions:

1) DynAA can be used to simulate different resource allocations, for example,

variants of the system where data processing is done local in the unmanned

vehicles or done remotely in a base station far from the unmanned vehicle.

2) If the unmanned vehicles have to communicate among themselves under

water, DynAA can be used to analyse their communication performance:

a. when different communication technologies are used (WiFi,

Bluetooth, USB, etc. (?));

b. when different communication protocols technologies are used (e.g.

gossiping, broadcast, etc…);

c. under different scenarios that affect the communication medium. For

that, models of the communication channels under water (noise,

attenuation, reflection) can be modelled in DynAA

3) DynAA can be used to estimate the energy performance and battery lifetime

under different system workloads and communication.

8.3. Verification Technologies

Verification Technologies (VT) will be involved in the implementation of several

features of the CERBERO framework, in particular (i) cross-layer and multi-objective

features; (ii) model learning and adaptation from data; and (iii), management of

functional and non-functional requirements and their formulation in formal properties.

With respect to CERBERO cross-layer and multi-objective features, quantitative

verification techniques will be integrated in order to provide correct-by-construction

design. Quantitative verification techniques that will be implemented in VT can fill the

gap and iterate with AOW and DynAA in order to verify and correct the models when

needed. An important requirement for VT is support for initial creation of verification

models with following update and maintenance based on changes in user requirements.

AOW models and levels of abstraction. State-of-the-art model checkers will be integrated

(and extended, if it will be the case) to formally verify properties related to functional and

non-functional requirements in probabilistic and real-time models.

Concerning model learning and adaptation from data, VT will be used for formal

verifying learning algorithms and adaptive learning agents. To support reconfiguration

and adaptiveness, it will be developed new techniques aimed to cope with adaptation and

automated repair, i.e., once a behaviour unsatisfies a requirement, the agent should be

fixed without manual inspections.

Regarding the management of functional and non-functional requirements, VT can be

used to verify several different properties that span from generic requirements (e.g.,

security, energy, dependability) to highly application-specific (e.g., the availability of

H2020-ICT-2016-1-732105 - CERBERO

WP5 – D5.4: CERBERO Holistic Methodology and Integration Interfaces

Page 35 of 42

charging points on electric vehicle network, etc.). The idea is to leverage Natural

Language Processing techniques and domain ontologies to automatically extract

requirements expressed in natural language and map them in Probabilistic Computational

Tree Logic.

Possible contributions to UCs

1. Self-healing system for planetary exploration

Verification of arm trajectory with respect to properties regarding the generation of

collision free motion paths.

Verification of properties related to forward and inverse kinematic models.

2. Smart traveling for electric vehicles

Management and verification of functional and non-functional requirements described in

Section 4.2 of D2.1a

3. Ocean monitoring

In scenario “Marine robot propulsion and transport”, management and verification of

requirements related to “reconfiguration of battery module in runtime”.

8.4. PREESM

The main features of PREESM are:

1) A fully automated mapping of computational tasks (actors) to multiple processing

cores with the objective of optimizing statically the execution latency and the load

balancing of cores.

2) A state-of-the-art and fully automated memory optimization of the generated

application memory footprint.

 The supported Model of Computation of PREESM is the PiSDF dataflow MoC. It offers

a balance between predictability and application adaptivity to modified parameters. The

automated mapping is based on a set of heuristics and coarse-grain simulation methods.

 Possible contributions to UCs:

1. Self-healing system for planetary exploration

Hardware/software co-prototyping for self-healing system with hardware reconfiguration,

automating tasks currently manually performed.

 2. Smart traveling for electric vehicles

Support of computationally intensive real-time tasks of the driving simulator with a

mapping to specialized processors or hardware/software platforms.

 3. Ocean monitoring

Modeling and prototyping an environment-aware video compression for the rovers.

Inputs: heterogeneous MPSoC-level modelling.

* PiSDF Dataflow model of functionalities.

H2020-ICT-2016-1-732105 - CERBERO

WP5 – D5.4: CERBERO Holistic Methodology and Integration Interfaces

Page 36 of 42

* Model of target components + means of communication (S-LAM Model of

Architecture).

* Model of deployment constraints and some “physical” info.

 Output:

* System Simulation.

* Metrics: Predicted values for optimization.

* Code generation for MPSoC.

 Structure: Java, based on Eclipse

Planned developments in PREESM / SPIDER: 1) add modeling and DSE for non-

functional requirements, 2) connect to HW tools on one hand and to system level tools on

another hand with required extensions in DSE, 3) potentially, extend Spider to low

frequency event based scenarios. There is a direct connection to the Space use case, for

Smart Traveling it depends if these tools will be used for the implementation, in Ocean

Monitoring there is a potential of connecting all CERBERO tools, more details are

required.

8.5. PAPIFY / PAPIFY-VIEWER

Papify is an instrumentation tool based on the Performance Application Programming

Interface (PAPI) library to monitor data-flow specifications in run-time. Papify can

monitor different type of events which can be related directly or indirectly to

performance metrics and energy consumption measurements.

Papify-viewer is a visualization tool for events, once a data-flow specification has been

papified. Events are shown either in a per-actor or a per-partition basis.

Possible contributions to UCs

1. Self-healing system for planetary exploration

Papify and papify-viewer can provide the instrumentation and visualization

required to monitor the self-healing system for performance and energy consumption in a

heterogeneous platform. The feedback provided by papify might be employed to make

system reconfiguration decisions at run-time based on the selected key performance

metrics.

2. Smart traveling for electric vehicles

Papify and papify-viewer can provide the instrumentation and visualization

required to monitor the involved cyber-physical systems for the actual implementation of

the distributed smart travelling system over a network. The feedback provided by papify

might be employed to make system reconfiguration decisions at run-time.

3. Ocean monitoring

Papify and papify-viewer can provide the instrumentation and visualization

required to monitor a heterogeneous platform which implements vision-based algorithms.

The feedback provided by papify might be employed to make system reconfiguration

decisions at run-time to trade-off quality of experience (QoE) and energy consumption.

H2020-ICT-2016-1-732105 - CERBERO

WP5 – D5.4: CERBERO Holistic Methodology and Integration Interfaces

Page 37 of 42

8.6. SPIDER

Spider performs the mapping of a real-time application at run-time and adaptively

depending on application parameters and available cores. Spider optimizes the

application latency and supports the PiSDF application representations developped in

PREESM. Spider complements PREESM with dynamic application mapping.

 Possible contributions to UCs:

1. Self-healing system for planetary exploration

Management of hardware/software reconfiguration based on the health state of the

robotic arm.

 2. Smart traveling for electric vehicles

Adaptive execution of the real-time tasks of the simulator with a mapping to specialized

processors or hardware/software platforms

 3. Ocean monitoring

Adapting to energy availability the video compression module for the rovers.

Inputs:

* heterogeneous MPSoC-level modelling

* PiSDF Dataflow model of functionalities,

* Model of deployment constraints and some “physical” information.

Output: System

* Execution and profiling,

* Runtime management of MPSoC resources.

 Structure: C++, Based on Linux.

8.7. ARTICo
3

ARTICo
3
 is a hardware-based computing architecture for high-performance embedded

scenarios. It is able to provide dynamic and adaptable behavior in terms of computing

performance, energy consumption, and fault tolerance, by using Dynamic and Partial

Reconfiguration (DPR) of FPGAs to load one or several copies of one or several

hardware accelerators.

Possible contributions to UCs

1. Self-healing system for planetary exploration

ARTICo
3
 can provide the required levels of fault tolerance to the aerospace

scenario. In addition, and since ARTICo
3
 features a self-monitoring infrastructure, the

system can autonomously recover from unexpected faults in the hardware accelerators,

by first detecting them and then performing either DPR to mitigate transient errors or task

migration (to another reconfigurable region using DPR or even to a software processor)

to mitigate permanent faults.

H2020-ICT-2016-1-732105 - CERBERO

WP5 – D5.4: CERBERO Holistic Methodology and Integration Interfaces

Page 38 of 42

2. Ocean monitoring

 ARTICo
3
 can provide different levels of computing performance and energy

consumption for hardware-based implementations of the vision-based algorithms

described in this use case. In-node processing can be performed on video streams of

changing resolution (e.g. from VGA up to 4k) to provide the required Quality of Service

(QoS) while at the same time extending battery life in the autonomous system.

8.8. Multi-Dataflow Composer (MDC)

Tool purpose:

Dataflow to Hardware tool. MDC is capable of automatic deployment of Coarse-Grained

Reconfigurable accelerators. It is composed of two subparts.

 The Multi-Dataflow Generator (MDG) - Given an input set of dataflow

specifications (functionalities to be executed in hardware), MDG applies datapath

merging techniques in order to derive unique high-level specifications of the

multi-purpose acceleration. At this stage, dataflow-level optimization can be

performed to define constraints-optimal implementations.

 The Platform Composer (PC) – Given a multi-dataflow description, the HW

blocks capable of implementing its actors and the communication protocol to be

implemented among them, PC deploys a multi-functional hardware accelerator.

You can derive pure RTL description of the accelerator datapath or a whole

Xilinx Vivado compliant peripheral.

Features:

* Beneficial in highly constrained scenarios, MDC allows:

 static mapping of different specifications over the same reconfigurable coarse-

grained substrate

 both area and power saving if input specifications have a common subset of

actors.

* MDC is RVC-CAL compliant and is integrated with other MPEG-RVC tools capable

of analysing (e.g. Orcc), optimizing (e.g. Turnus) and synthesizing (e.g. Xronos) dataflow

networks.

* The automated flow at the moment supports Dataflow Process Network models but, in

theory, any kind of dataflow MoC is compliant with the proposed approach.

Inputs:

* RVC-CAL compliant dataflow models (Dataflow Process Network) of the

functionalities to be accelerated.

* RTL descriptions of the actors (either manually or automatically derived).

* Xml file with the communication protocol to be implemented among the actors

Output:

H2020-ICT-2016-1-732105 - CERBERO

WP5 – D5.4: CERBERO Holistic Methodology and Integration Interfaces

Page 39 of 42

* Dataflow specification of the multi-functional network.

 * RTL description of the multi-functional hardware accelerator including a

configuration Look-Up Table that, according to the required functionality ID, is

capable of programming the switching elements in charge of the substrate

programmability.

Possible contributions to UCs

1. Self-healing system for planetary exploration

MDC can allow effective power saving. In particular, ARTICo
3
 is capable of

implementing different functionalities over different architecture slots, MDC would allow

a sort of slot merging to enable different functionalities over the same slot. Therefore, we

foresee the possibility of combining MDC with ARTICo
3

to offer both effective power

reduction on top of fault management in the aerospace scenario. Moreover, the coarse

grained reconfigurable approach at the base of MDC may allow to automatically tune

conflicting requirements (as specified below for the Ocean Monitoring case) quicker than

adopting finer grained approaches.

2. Ocean monitoring

 The Ocean Monitoring use case has planned to deliver an embedded system for

acquisition, encoding and transmission of environmental images. This system is meant to

continuously monitor F (e.g. decoding quality) and NF (e.g. remaining battery level)

requirements. The coarse grained reconfigurable approach at the base of MDC may allow

to automatically tune the encoding quality according to the remnant battery level thanks

to approximation techniques.

8.9. MECA

MECA (Mission Execution Crew Assistant) is a tool that provides decision support for

user of a CPS. It was originally developed for the European Space Agency for use in

(hypothetical) space exploration missions. It facilitates the collaboration between humans

and CPSs by aligning the communication at the right level of abstraction.

In simple terms, MECA gathers all information available, decided what information is

needed to make a decision (discarding superfluous data), and present the options to the

user. This presentation will be ranked based on the user model, which based on previous

decisions by the user and represents the “preferences” of the user.

MECA will only be active in case interaction with the user is needed. In other words, as

long as the system can optimize itself given the (changes in) the mission, the user is not

involved in the decision making process. However, once the conditions of the mission

change so much that the system can no longer find an optimization that satisfies all

mission parameters, the user is prompted to make a decision (effectively changing the

mission parameters such that a solution can be found again).

An example from the EV use case of this could be that two different routes are found that

have identical distance and energy consumption, but one is a rural road and the other a

high way. In this case, there is no clear optimal solution; both possibilities have the same

H2020-ICT-2016-1-732105 - CERBERO

WP5 – D5.4: CERBERO Holistic Methodology and Integration Interfaces

Page 40 of 42

solution in terms of mission parameters. In this case MECA may, for example, suggest

the rural road option, based on the fact that the uses tends to prefer these kinds of roads.

In CERBERO, MECA will be further developed from a tool designed specifically for

space exploration missions, into a generic tool that can be used for user decision support

in general, and will be applied to one or more use cases.

Inputs:

* Possible solutions for optimization of the current scenario: For instance, for the EV use

case this will be possible routes the driver can take.

* Additional relevant data: For example, for the EV use case this could be expected

arrival times, points of interest along the route, traffic conditions, etc.

* User model (internal input): MECA will build a user model over time. It will record

decisions made by the user and will in this way build up a model of the users

“preferences”.

Possible contributions to UCs

2. Smart traveling for electric vehicles

MECA will be responsible for the interaction between the driver and the car; in other

words the “human in the loop”. MECA will only be triggered if the conditions in the

scenario change in such a way that the system can no longer find a unique optimal

solution and input of the user is needed.

Based on the changes of the state of the car, or the scenario, DynAA will provide several

different alternatives for routing for the driver. MECA will assess these alternatives using

the user model, and suggest the user with the solution that is most likely preferred by the

user.

3. Ocean monitoring

Like, in the scenario above, MECA could be used to provide the operator with a ranked

list of options to alter operations if conditions in a mission change.

This option is still to be discussed.

H2020-ICT-2016-1-732105 - CERBERO

WP5 – D5.4: CERBERO Holistic Methodology and Integration Interfaces

Page 41 of 42

9. References

1) Michael Masin, Lior Limonad, Aviad Sela, David Boaz, Lev Greenberg, Nir Mashkif, Ran

Rinat, “Pluggable Analysis Viewpoints for Design Space Exploration”, Procedia Computer

Science, Volume 16, 2013, Pages 226-235.

2) Gabor Simko, David Lindecker, Tihamer Levendovszky, Sandeep Neema, Janos Sztipanovits,

“Specification of Cyber-Physical Components with Formal Semantics – Integration and

Composition”, Springer, Part of the Lecture Notes in Computer Science book series (LNCS,

volume 8107).

3) Manel Ammar, Mouna Baklouti, Maxime Pelcat, Karol Desnos, Mohammed Abid. “MARTE

to PiSDF transformation for data-intensive applications analysis”, Design & Architectures for

Signal & Image Processing (DASIP), Oct 2014, Madrid, Spain. 2014.

4) CPS Public Working Group Cyber-Physical Systems (CPS) Framework Release

1.0 (https://pages.nist.gov/cpspwg/).

5) Framework for Cyber-Physical Systems, Release 1.0, May 2016, Cyber Physical Systems

Public Working Group.

6) CERBERO website, http://www.cerbero-h2020.eu

7) Smart Cyber-Physical Systems - The EU Framework Programme

 https://ec.europa.eu/programmes/horizon2020/en/h2020-section/smart-cyber-physical-systems

8) Heiko Paulheim, Chapter 9, Ontology-based Application Integration, Springer, Berlin, ISBN

1461414296.

9) Ayad, Gasser; Nittala, Ramakrishna; Lemaire, Romain (2015)
“Automatic runtime customization for variability awareness on multicore platforms.” In: IEEE 9th International

Symposium on Embedded Multicore/Manycore SoCs (MCSoC 2015), Turin, Italy, 23-25 September 2015. pp.

143-150.

10) L. Suriano, A. Rodriguez, K. Desnos, M. Pelcat and E. de la Torre, "Analysis of a heterogeneous multi-core,

multi-hw-accelerator-based system designed using PREESM and SDSoC," 2017 12th International Symposium

on Reconfigurable Communication-centric Systems-on-Chip (ReCoSoC), Madrid, 2017, pp. 1-7.

11) M. Pelcat et al., “Design productivity of a high level synthesis compiler versus HDL”, International Conference

on Embedded Computer Systems: Architectures, Modeling and Simulation (SAMOS), 2016.

12) Xilinx
®

 Vivado
®

 for high-level synthesis,
www.xilinx.com/products/design-tools/vivado/integration/esl-design

13) Evgeny Shindin, “Metrics Library Concepts and Usage”, Haifa Research Lab, IBM Corp., 2014.

14) IBM
®
 Rational

®
 Rhapsody

®
 for model-based systems engineering,

http://www-03.ibm.com/software/products/en/ratirhapfami

15) Functional Mock-up Interface (FMI) Standard,

fmi-standard.org

16) MBSE case study, Internaitonal Council on Systems Engineering, January 2012.

incoseonline.org.uk

17) Presentation of Modelica, Sébastien FURIC, INSA Lyon and LMS Engineering Innovation, France.

http://www.cerbero-h2020.eu/
http://porto.polito.it/2634965/
file:///C:/Users/Francesca/Downloads/www.xilinx.com/products/design-tools/vivado/integration/esl-design
http://www-03.ibm.com/software/products/en/ratirhapfami
file:///D:/data/Box/Box%20Sync/CERBERO/Deliverables/WP5/fmi-standard.org
file:///D:/data/Box/Box%20Sync/CERBERO/Deliverables/WP5/incoseonline.org.uk

H2020-ICT-2016-1-732105 - CERBERO

WP5 – D5.4: CERBERO Holistic Methodology and Integration Interfaces

Page 42 of 42

18) Janne Luoma, Steven Kelly and Juha-Pekka Tolvanen, "Defining Domain-Specific Modeling Languages:

Collected Experiences", MetaCase, Ylistönmäentie 31, FI-40500 Jyväskylä, Finland

19) Domain-Specific Modeling Languages: Moving from Writing Code to Generating It, Steven Kelly, Microsoft,

December 2007. https://msdn.microsoft.com/en-us/library/cc168592.aspx

https://msdn.microsoft.com/en-us/library/cc168592.aspx

