

Analysis of a Heterogeneous Multi-Core, Multi-HW-Accelerator-Based System Designed Using PREESM and SDSoC

Leonardo Suriano, Alfonso Rodriguez, Karol Desnos, Maxime Pelcat, Eduardo de la Torre

Universidad Politécnica de Madrid

Introduction

Embedded World

...and many others

Heterogeneous devices

SW + HW productivity GAP

GOAL

5

Main Contribution

Rapid prototyping of software applications enabling:

- deadlock-free code generation using **PiSDF MoC**
- custom hardware acceleration and generation

Video Processing Application

Actors Specification

Exposed parallelism

Equivalent single-rate graph where each edge has equal production and consumption rates of token.

Actors scheduled

Heterogeneous System

Zynq-7000 family

ReCoSoC

11

High Level Synthesis and SDSoC

From PREESM to SDSoC

Results

4 hardware accelerators

≃5,25 ms

Asynchronous calls

Results

1 THREAD – 8 SLICES – 4 ACCELERATORS				
HW freq. [MHz]	142.86	166.67	200	
SDSoC HW handling	115 fps	125 fps	135 fps	
Manual handling	200 fps	205 fps	207 fps	

2 THREAD – 8 SLICES – 4 ACCELERATORS				
HW freq. [MHz]	142.86	166.67	200	
SDSoC HW handling	150 fps	160 fps	171 fps	
Manual handling	211 fps	218 fps	222 fps	

ReCoSoC

July 12-14, 2017

Comparison

ReCoSoC

Conclusion and future work

Integration of existing tools for deadlock-free code generation and hardware acceleration

Manual strategy of hardware calls can improve performance by asynchronous hardware invocations

PREESM evolution:

automatic generation of code for hardware generation

Integration with ARTICo3 for parallel processing speed up, flexibility, resource multiplexing in time, fault tolerance, energy efficient execution

done

on going

Thank you for your attention

ReCoSoC

July 12-14, 2017

