

Information and Communication Technologies (ICT)

Programme

Project No: H2020-ICT-2016-1-732105

D3.5: Models of Computation

Lead Beneficiary: INSA

Workpackage: WP3

Date: 08/06/2018

Distribution - Confidentiality: [Public/Confidential]

Abstract:

This documents surveys state-of-the-art Models of Computation (MoC) used for the

design of Cyber-Physical Systems. The MoCs used within the CEBRERO Project are

specified and the planned innovations are presented in the last section of this document.

© 2018 CERBERO Consortium, All Rights Reserved.

Ref. Ares(2018)4047087 - 31/07/2018

H2020-ICT-2016-1-732105 - CERBERO

WP3 – D3.5: Models of Computation

Page 2 of 34

Disclaimer

This document may contain material that is copyright of certain CERBERO beneficiaries,

and may not be reproduced or copied without permission. All CERBERO consortium

partners have agreed to the full publication of this document. The commercial use of any

information contained in this document may require a license from the proprietor of that

information.

The CERBERO Consortium is the following:

Num. Beneficiary name Acronym Country

1 (Coord.) IBM Israel – Science and Technology LTD IBM IL

2 Università degli Studi di Sassari UniSS IT

3 Thales Alenia Space Espana, SA TASE ES

4 Università degli Studi di Cagliari UniCA IT

5
Institut National des Sciences Appliquees de

Rennes
INSA FR

6 Universidad Politecnica de Madrid UPM ES

7 Università della Svizzera Italiana USI CH

8 Abinsula SRL AI IT

9 Ambiesense LTD AS UK

10
Nederlandse Organisatie Voor Toegepast

Natuurwetenschappelijk Ondeerzoek TNO
TNO NL

11 Science and Technology S&T NL

12 Centro Ricerche FIAT CRF IT

For the CERBERO Consortium, please see the http://cerbero-h2020.eu web-site.

Except as otherwise expressly provided, the information in this document is provided by

CERBERO to members "as is" without warranty of any kind, expressed, implied or

statutory, including but not limited to any implied warranties of merchantability, fitness

for a particular purpose and non infringement of third party’s rights.

CERBERO shall not be liable for any direct, indirect, incidental, special or consequential

damages of any kind or nature whatsoever (including, without limitation, any damages

arising from loss of use or lost business, revenue, profits, data or goodwill) arising in

connection with any infringement claims by third parties or the specification, whether in

an action in contract, tort, strict liability, negligence, or any other theory, even if advised

of the possibility of such damages.

The technology disclosed herein may be protected by one or more patents, copyrights,

trademarks and/or trade secrets owned by or licensed to CERBERO Partners. The

partners reserve all rights with respect to such technology and related materials. Any use

of the protected technology and related material beyond the terms of the License without

the prior written consent of CERBERO is prohibited.

http://cerbero-h2020.eu/

H2020-ICT-2016-1-732105 - CERBERO

WP3 – D3.5: Models of Computation

Page 3 of 34

Document Authors

The following list of authors reflects the major contribution to the writing of the

document.

Name(s) Organization Acronym

Karol Desnos INSA

Maxime Pelcat INSA

Julio Oliveira TNO

Carlo Sau UNICA

Luca Pulina UNISS

Eduardo de la Torre UPM

Eduardo Juarez UPM

Pablo Muñoz S&T

Rubén Salvador UPM

Antoine Morvan INSA

Francesca Palumbo UNISS

Michael Masin IBM

The list of authors does not imply any claim of ownership on the Intellectual Properties described

in this document. The authors and the publishers make no expressed or implied warranty of any

kind and assume no responsibilities for errors or omissions. No liability is assumed for incidental

or consequential damages in connection with or arising out of the use of the information

contained in this document.

Document Revision History

Date Ver. Contributor (Beneficiary) Summary of main changes

2017.12.18 0.1 Karol Desnos (INSA) Table of content draft

2018.01.22 0.2 Karol Desnos (INSA) Table of content update

2018.02.12 0.3 Karol Desnos (INSA)

UPM, UNISS, UNICA

Plan list of surveyed MoC by

UPM, UNISS, UNICA

2018.02.20 0.4 Karol Desnos (INSA)

TNO

Plan list of surveyed MoC by

TNO. Paragraph template for

section 5.

H2020-ICT-2016-1-732105 - CERBERO

WP3 – D3.5: Models of Computation

Page 4 of 34

2018.03.08 0.5 Karol Desnos (INSA)

Maxime Pelcat (INSA)

Julio Oliveira (TNO)

Carlo Sau (UNICA)

Luca Pulina (UNISS)

Eduardo de la Torre (UPM)

Eduardo Juarez (UPM)

Pablo Muñoz (S&T)

Completion of section 4 & 5.

2018.03.21 0.5r Rubén Salvador (UPM) Review

2018.03.22 0.6 Antoine Morvan (INSA) Process review comments; add

links with D2.7 requirements;

insert and complete MoC

summary table.

2018.03.29 0.6r Francesca Palumbo (UNISS) Final review.

2018.03.29 0.7 Antoine Morvan (INSA) Process review comments.

2018.04.09 1.0 Francesca Palumbo (UNISS)

Antoine Morvan (INSA)

Final modifications.

2018.06.08 1.0r Michael Masin (IBM)

Antoine Morvan (INSA)

Revision from Michael; add

reference on MoA.

H2020-ICT-2016-1-732105 - CERBERO

WP3 – D3.5: Models of Computation

Page 5 of 34

Table of contents

1. Executive Summary ... 6
1.1. Structure of Document ... 6
1.2. Related Documents .. 6
1.3. Related CERBERO Requirements .. 7

2. Models of computation .. 8
2.1. Abstraction ... 8
2.2. Models .. 8
2.3. Models of Computation .. 9

3. Characterization of Models of Computation .. 10
3.1. Properties .. 10
3.2. Additional MoC Comparison Criteria ... 12

4. Surveyed Models of Computation ... 14
4.1. Synchronous Dataflow ... 14
4.2. Parameterized and Interfaced Synchronous Dataflow 16
4.3. Bulk Synchronous ... 17
4.4. Petri Networks ... Error! Bookmark not defined.
4.5. Kahn Process Networks .. 19
4.6. Dataflow Process Network ... 20
4.7. Register Transfer Level ... Error! Bookmark not defined.
4.8. Transition System ... Error! Bookmark not defined.
4.9. Discrete Event System ... 21
4.10. Situated Cognitive Engineering .. 23
4.11. Summary .. 25

5. CERBERO Innovation on Models of Computation for CPS 27
5.1. Dataflow Extension for Persistent State Representation 27
5.2. Non-Functional Properties Modelling in Dataflow ... 28
5.3. Moldable Parameters in Dataflow for Extended Design-Space Exploration 28

6. Conclusions ... 31

7. References ... 32

H2020-ICT-2016-1-732105 - CERBERO

WP3 – D3.5: Models of Computation

Page 6 of 34

1. Executive Summary

This documents surveys state-of-the-art Models of Computations (MoCs) used for the

design of Cyber-Physical Systems (CPS), and it outlines the main characteristics of

MoCs used for CPS design by presenting:

• the properties of their semantics (analyzability, decidability, reconfigurability,

expressiveness, determinism, ...),

• the kind of algorithm it supports (data-driven, control-driven, …),

• the level of abstraction it captures (system-of-systems, system, component, …)

• the type of implementation it translates into (hardware, software, distributed, …).

The objective of this document is to give enough information to CPS designers to choose

the MoC that best suit their needs.

As an example of this document utility, a study of most suitable MoCs for designing key

features of the CERBERO use-cases is presented. Based on this study, we identify lacks

in current MoCs semantics and we define a set of new MoC features needed to support

the design of CERBERO use-cases, which will be developed during the project. Those

features will advance state of the art and will allow these MoCs to be more effectively

adopted in the CPS context.

1.1. Structure of Document

Section 2 of this document defines the notions of abstraction and models, which serve as

a basis to the concept of Models of Computation. Section 3 introduces a set of properties

of MoCs that are then used in Section 4 to characterize and compare state of the art MoCs

commonly used for the design of CPSs. Finally, Section 5 presents the expected

CERBERO innovations in the domain of MoCs for the modeling of CPS.

1.2. Related Documents

• D2.7 - CERBERO Technical Requirements

o D3.5 contributes to satisfy D2.7 requirements. Details are given in

Section 1.3.

• D3.4 - KPI Modeling

o The KPIs can be used to represent the system properties, which can be

verified and guaranteed with varying degrees of ease depending of the

selection of the Model of Computation.

• D3.6 - Cross-layer Modelling Methodology for CPS

o The models of computation described in this document are used to

represent one aspect of the CPS, the behavior. This is a key foundation in

the cross-layer modelling methodology.

• D5.6 - CERBERO Framework Components

o D5.6 gives more details on the MoCs supported by the tools that are

components of the CERBERO framework.

H2020-ICT-2016-1-732105 - CERBERO

WP3 – D3.5: Models of Computation

Page 7 of 34

1.3. Related CERBERO Requirements

Deliverable D2.7 of the CERBERO project defines a list of CERBERO Technical

Requirements (CTRs) the project should achieve. Each of them is referenced with a

unique identifier ranging from 0001 to 0020. MoC exploration and innovation are carried

out following the requirements in Table 1-1.

CTR

id
CTR Description Link with the D3.5 document on Models of

Computation

0001 CERBERO framework SHOULD increase

the level of abstraction at least by one for

HW/SW co-design and for System Level

Design.

Innovations on MoCs help raising the abstraction

level for the designer

0002 CERBERO framework SHOULD

provide interoperability between cross-

layer tools and semantics at the same

level of abstraction.

Formalization of MoCs and homogeneity among

partners foster tool interoperability

0007 CERBERO framework SHALL define

methodology and SHOULD provide

library of reusable functional and non-

functional KPIs.

Non-functional KPIs can be influenced in the

MoCs using proposed Moldable Parameters

0020 CERBERO framework SHALL provide

methodology and tools for development of

adaptive applications.

Proposed innovations on MoCs improve the

expressiveness and specify the semantic of PiSDF

for designing adaptive applications

Table 1-1: Links to CERBERO Technical Requirement

H2020-ICT-2016-1-732105 - CERBERO

WP3 – D3.5: Models of Computation

Page 8 of 34

2. Models of computation

This first section briefly defines the core concepts of abstraction, model, and model of

computations.

2.1. Abstraction

In general, abstraction is a tradeoff between the level of details and the complexity

adopted when describing or representing a thing (e.g., an idea, a system, a place, an

object, a phenomenon, etc.). Two distinct representations used to describe the same thing,

each adopting a different abstraction tradeoff (i.e., amount of details conveyed about it),

can be compared relatively to each other using so-called levels of abstraction.

• The lower level of abstraction gives a representation of the thing which is more

detailed, thus giving a more precise and complete description.

• The higher level of abstraction gives a representation of the thing where some

details are voluntarily omitted to decrease the complexity of the description. This

higher complexity generally translates into a smaller and/or less dense

representation of the thing.

2.2. Models

A model is a mathematically grounded representation capturing predictable

characteristics of a system. More precisely, a model consists of a set of elements that can

be assembled respecting a set of rules to describe a system. For a valid representation

built with a model, mathematical equations associated to the elements of the model make

it possible to predict some characteristics of the modeled system. Models are commonly

used in all scientific fields to represent evolution of physical, computing, chemical,

financial, or social systems.

For example, the symbol in Figure 1 – Bipolar Transistor Symbol and its associated

equation in Figure 2 - Bipolar Transistor Equation are used to model and predict the

voltage and current characteristics of a transistor within a model of an analog circuit.

Figure 1 – Bipolar Transistor Symbol

Figure 2 - Bipolar Transistor Equation

In the context of cyber-physical systems (CPSs) engineering, several models adopting

different levels of abstraction can be used to describe separated or nested aspects of a

system. In particular the Models of Architecture (MoA) [Pelcat 2018] are used to

describe the computing platform, often heterogeneous, including communication

channels and memories. The application to be executed is modeled orthogonally using

Models of Computation (MoC). More details on the use of heterogeneous models to

describe a CPS are presented in D3.6.

H2020-ICT-2016-1-732105 - CERBERO

WP3 – D3.5: Models of Computation

Page 9 of 34

2.3. Models of Computation

A Model of Computation (MoC) is a set of operational elements that can be composed to

describe the behavior of an application. The set of operational elements of a MoC and the

set of relations that can be used to link these elements are called the semantics of a MoC.

As presented in [Savage 1998], MoCs can be seen as an interface between the computer

science and the mathematical domains. A MoC specifies a set of rules that control how

systems described with the MoC are executed. Each element of the semantics of a MoC

can be associated to a set of properties, such as timing properties or resource

requirements. These rules and properties provide the theoretical framework that can be

used to formally analyze the characteristics of applications described with a MoC. For

example, using a mathematical analysis, it may be possible to prove that an application

described with a given MoC will never get stuck in an unwanted state or that it will

always run in a bounded execution time. Section 3 of this document describes a set of

properties that are commonly supported by existing MoCs, which are themselves

described in Section 4. A more extensive introduction to CPS modelling with MoCs can

be found in [Lee 2017].

H2020-ICT-2016-1-732105 - CERBERO

WP3 – D3.5: Models of Computation

Page 10 of 34

3. Characterization of Models of Computation

Since the introduction of modern computing systems in mid-1900s, a plethora of MoCs

have been proposed by the scientific community. Very often, a new MoC is introduced to

allow the specification of applications or systems that exhibit a set of characteristics

whose specification was impossible or difficult to achieve with previously existing

MoCs.

When designing a system, it is important to identify its required and desired properties.

Once these have been identified, the designer can select the MoC whose semantics will

make it easier to express, verify and guarantee those properties by construction.

The objective of this section is to give a definition of the properties used to characterize

and compare the MoCs presented in Section 4.

3.1. Properties

This section lists a set of commonly used properties utilized to compare the system

characteristics supported by different MoCs.

Analyzability

The analyzability of a MoC evaluates the availability of analysis and synthesis algorithms

that can be used to characterize applications modeled with this MoC. For example, in the

synchronous dataflow MoC, analysis algorithms can be applied at compile-time to

compute the worst-case latency or the maximum memory requirements of a design.

Conciseness

The conciseness (or succinctness) of a MoC captures its ability to express complex

system behaviors with a limited description size. This relative property is useful for

comparing MoCs with equivalent expressiveness. Indeed, conciseness is often a desired

feature for system developers as the design of an identical application with two MoCs (of

identical expressiveness) will lead to a smaller design with the more concise MoC.

Compositionality

A modular MoC is compositional if the analyzable properties of a module described with

this MoC are independent from the internal specification of the submodules that compose

it [Ostroff 1995]. For example, in a compositional MoC, if each submodule used in the

design is (independently) deadlock free, then the whole design combining these

submodules will be deadlock-free by construction.

Decidability

A MoC is decidable if the schedulability of applications described with this model can be

proved statically (i.e. at compile time) [Bhattacharyya 2006]. Hence, using a decidable

MoC makes it possible to guarantee at compile-time that a system will never reach a

deadlock state and that its execution will require a finite amount of memory. A non-

decidable MoC does not mean that applications will not be schedulable, only that their

schedulability can only be verified “on the fly” at runtime. Decidability is often obtained

as a trade-off for a limited expressiveness of the MoC.

H2020-ICT-2016-1-732105 - CERBERO

WP3 – D3.5: Models of Computation

Page 11 of 34

Determinism

A MoC is deterministic if the output of an algorithm only depends on its inputs, but not

on external factors such as time or randomness. If determinism is a desired feature for

most control and streaming applications, non-determinism may also be needed to

describe applications reacting to unpredictable inputs.

Expressiveness

The expressiveness, of a MoC evaluates the complexity of application behaviors that can

be described with this MoC. For example, the expressivity of the Dataflow Process

Network (DPN) MoC has been proven to be equivalent to a Turing machine. The

specialization of a MoC restricts the expressivity of this MoC to increase its

analyzability, or to give it new properties such as determinism or decidability.

Expressivity is often mistaken for conciseness. For example, the Cyclo-Static Dataflow

(CSDF) MoC is often said to be more expressive than the Synchronous Dataflow MoC

but meaning instead that it has a better conciseness.

Modularity

In a modular (or hierarchical) MoC, a system description can be broken into several

independent modules. The modules that are combined to create a system can be (re-)used

either in different systems specification or instantiated several times in the same. The

modules themselves can be described using the same MoC as the top-level system

description or can encapsulate other compatible MoCs.

Parallelism

In a parallel MoC, several independent elements of a system description may “activate”

concurrently and independently from each other, each causing a change in the current

state of the system. In a sequential (i.e. non-parallel MoC), all changes of the system state

can be broken down to a sequence of actions triggered one after another, according to the

system semantics.

Reconfigurability

A MoC is reconfigurable if the behavior of entire parts of a system description can be

modified dynamically, to fulfill future execution goals for a foreseeable amount of time.

Reconfiguration is used to dynamically adapt the behavior of a system to its environment,

notably by enabling or disabling parts of the system, by modifying its functional behavior

(e.g. its computations, QoS, …), or by modifying its non-functional properties (e.g.

exposed parallelism, energy consumption, …).

Predictability

The predictability property is related to the reconfigurability property of a MoC. This

property evaluates the amount of time between a reconfiguration of a part of the system,

and the beginning of activity in the reconfigured part. The more predictable a MoC is, the

more the time that can be used by a runtime manager to react and perform an

optimization of the reconfigured part before using it.

H2020-ICT-2016-1-732105 - CERBERO

WP3 – D3.5: Models of Computation

Page 12 of 34

3.2. Additional MoC Comparison Criteria

This section introduces a few other criteria that can be used to compare MoCs. These

comparison criteria denote different classes of applications that a MoC can be used to

represent. Unlike the properties presented in the Section 3.1, which capture properties

supported (or not) by MoCs, this section introduces more subjective comparison criteria.

Indeed, if some MoCs seem more suitable to implement a given class of applications,

using them to implement another class may still be possible, but less practical or less

common.

Algorithms Computation Classification

Algorithms described with a MoC can be classified into several classes depending on the

type of involved computation:

• Stream-based: A continuous stream of data is steadily processed and produced

by the described algorithm. The amount and nature of the computation do not

vary depending on the data.

• Data-driven: The amount and nature of the computation do not vary depending

on the data. Contrary to stream-based algorithms, data does not necessarily arrive

continuously.

• Control Driven: The amount and nature of the computation depend on the

processed data.

• Event Driven: Computations are triggered by events on the frontier of the system

(i.e. by sensors, users, communication network, …).

Captured Algorithms Granularities

MoCs with different levels of abstractions are inherently suitable for representing

behaviors of diverse granularities:

• Function: The modeled algorithm captures computations that are building blocks

used to assemble an algorithm with a higher granularity.

• Component: The modeled algorithm serves a well-specified purpose with clear

input and output interfaces and constraints.

• System: The modeled algorithm represents a collection of components with

diverse objectives but running locally on a unique computing system.

• System-of-systems: The modeled algorithm consists of several independent

“systems”, each existing and evolving independently from the others but

exchanging information among them through communication channels.

Implementation Types

A MoC is a theoretical representation used to describe the behavior of an application.

Implementing a MoC consists in translating this theoretical behavior into an “executable”

description. Different types of implementations can be more or less suitable to implement

each MoC:

• Hardware: Algorithms described with this type of MoC can be efficiently

translated into logical gates, signals, and registers on an ASIC or an FPGA.

H2020-ICT-2016-1-732105 - CERBERO

WP3 – D3.5: Models of Computation

Page 13 of 34

• Software: Algorithms described with this type of MoC can be efficiently

translated into a sequence of instructions executed on a processor that manipulates

data stored in a memory space.

• Distributed: Algorithms described with this type of MoC can be efficiently

implemented by splitting them into several parts executed on separate Hardware

or Software components, each storing a part of the system state and executing a

part of the computations in parallel.

• Heterogeneous: Algorithms described with this type of MoC can be efficiently

translated into a mix of hardware and software implementations.

H2020-ICT-2016-1-732105 - CERBERO

WP3 – D3.5: Models of Computation

Page 14 of 34

4. Surveyed Models of Computation

Using key characteristics of MoCs defined in Section 3, this section briefly introduces

state-of-the-art Models of Computations used to specify Cyber-Physical Systems.

Starting from MoC for hardware description, we increase the level of abstraction and

expressiveness of models up to the system requirements level.

4.1. Register Transfer Level

MoC brief description

The Register Transfer Level (RTL) models are intended for detailing the behavior and the

structure of hardware. Hardware Description Languages (HDLs), such as VHDL or

Verilog are mature and standardized languages that support this model of computation.

They are parallel languages with modular representations (structure decomposition) and

explicit parallelism at behavioral level. This, combined with the event-driven

characteristics that are used to reflect the behavior of the system at clock cycle level,

make these models very precise though too low-level for simulating large systems or

systems of systems.

They can be used as design-entry level specification for relatively small to medium size

hardware modules. Also, with the availability of High Level Synthesis (HLS) tools and

the profusion of back-end tools to produce RTL from higher abstraction levels or other

MoCs, this language is being relegated as a requirement for HW fabrication, but not as a

conventional entry point.

RTL synthesizers are tools that transform RTL into netlists of logic gates. They are

mature, commercially available, in cases customer dependent tools that take an RTL

specification as an entry point and produce a netlist or, even further, a bitstream to be

downloaded into reconfigurable devices such as FPGAs.

MoC properties

This model is the best representative for HW targets. They are modular and composable
(with hierarchical description of components) due to the capability of modelling

structure, as well as analyzable because of their property for describing behavior or

functionality. The event-driven specification at clock-cycle level makes it predictable and

deterministic (except for some rarely used constructs that are not common for synthesis—

oriented products). RTL-level in HDLs contains the synthesizable constructs, while

HDLs at higher levels of abstraction (not time-specific) are not considered RTL

Relationship with other MoCs

HLS tools provide transformations from C/C++/System-C/OpenCL specifications as well

as for several dataflow-oriented MoCs, provided the availability of back-end tools that

transform these models into RTL.

MoC Usage

RTL is clearly targeted for HW fabrics. These fabrics are useful to accelerate

performance while providing reasonable energy consumption when dealing with data

intensive applications. In the context of heterogeneous computing, more control-intensive

H2020-ICT-2016-1-732105 - CERBERO

WP3 – D3.5: Models of Computation

Page 15 of 34

tasks will be more likely to be used in SW, while compute intensive tasks will be favored

towards HW implementations.

MoC Support

HDLs supporting RTL are very mature and so they account with basic tools such as

synthesizers, simulators, physical mapping tools (i.e. the layout for an ASIC or the

bitstream for an FPGA). They also account with accurate models for estimating power

consumption, as well as some indirect reliability indicators such as code coverage tools,

assertion-based verification, etc. In CERBERO, HW-oriented targets ARTICo3 and MDC

will rely on RTL and conventional synthesis to obtain a suitable bitstream, while JIT

composition will rely on pre-synthesized blocks (represented as bitstreams) that, by

composing them dynamically will produce a module with a required new functionality.

4.2. Synchronous Dataflow

MoC brief description

The Synchronous Dataflow [Lee 1987] MoC models an application as a directed graph of

computational entities, called actors, that exchange data through a network of First-In

First-Out queues (FIFOs). Each time an actor is executed, or fired, it consumes and

produces a fixed quantum of data, called data token, on the FIFOs to which it is

connected. An example of SDF graph is given in Figure 3 - Example of Synchronous

Dataflow Graph.

Figure 3 - Example of Synchronous Dataflow Graph

MoC properties

Synchronous Dataflow is a parallel and decidable MoC that exhibits one of the greatest

degrees of analyzability among dataflow MoCs. Coupled with the determinism of the

MoC, its analyzability makes it possible to prove algorithms deadlock freeness and

boundedness at compile time and is often used to guarantee real-time properties (e.g.

throughput, latency, worst-case execution time) of applications modeled with it. This

great analyzability comes at the expense of a limited expressiveness of the MoC, because

of the absence of any reconfiguration semantics in the MoC. The original MoC described

in [Lee 1987] is not modular.

Relationship with other MoCs

The SDF MoC belongs to the family of dataflow models of computation. As one of the

dataflow MoCs with the most restrictive semantics, SDF behavior can be expressed in

most dataflow models.

H2020-ICT-2016-1-732105 - CERBERO

WP3 – D3.5: Models of Computation

Page 16 of 34

As demonstrated in [Klikpo 2016], the MoC implemented in Labview® is equivalent to

the SDF MoC.

There exist several dataflow MoCs with an equivalent expressiveness with the SDF MoC:

• The Cyclo-Static Dataflow [Bilsen 1996] and Affine Dataflow [Bouakaz 2012]

MoCs which have a greater conciseness than the SDF MoC while retaining all its

analyzability, by specifying sequences of production and consumption rates

instead of scalar values.

• The Interface-Based SDF [Piat 2009] and Deterministic SDF with Shared FIFO

[Tripakis 2013] MoCs which are two modular and compositional extensions of

the SDF MoC.

MoC Usage

Synchronous Dataflow is mainly used to describe stream-based and data-driven
algorithms, mostly at function and component levels. The SDF MoC is suitable for all

kinds of implementations.

MoC Support

The SDF MoC is natively supported in the following tools: Ptolemy II [Davis 1999],

SDF3 [Stuijk 2006], PREESM [Pelcat 2014], MDC [Palumbo 2017], LIDE [Shen 2011].

4.3. Parameterized and Interfaced Synchronous Dataflow

MoC brief description

The Parameterized and Interfaced Synchronous Dataflow (PiSDF) is the result of

applying the Parameterized and Interfaced dataflow Meta-Modeling methodology

[Desnos 2013] to the SDF MoC. PiSDF adds parameterization and interfaced hierarchy to

the SDF MoC. The PiSDF MoC models an application as a directed graph. Besides actors

and FIFOs (see section 4.1), parameters, hierarchical interfaces and parameter

dependencies can also be vertices of the graph.

Parameters are employed to configure and modify dataflow specifications. Parameters

can influence (1) the functionality of an actor, (2) the production/consumption rates of

actor ports, (3) the value of another parameter and (4) a delay of a FIFO. Hierarchical

interfaces convey data tokens or parameter values between levels of hierarchy.

Hierarchical interfaced actors, or simply, hierarchical actors, are univocally linked to

PiSDF subgraphs. Parameter dependencies propagate parameter values to other elements

of the graph.

Actors, hierarchical or non-hierarchical, can have two types of ports: data ports and

configuration ports. Data ports exchange data and configuration ports parameters.

Parameters are connected to configuration ports through parameter dependencies. Both

types of ports can be declared as input or output ports. An actor with an output

configuration port is named a configuration actor. Firing of configuration actors

dynamically produces values that set configurable parameters. The firing is only

permitted at specific instants of time during a graph execution.

There are two types of parameters in a PiSDF MoC: configurable parameters and locally

static parameters. Configurable parameters can be modified in each graph iteration, i.e. at

run-time. Locally static parameters can only be modified at design-time. Parameter

H2020-ICT-2016-1-732105 - CERBERO

WP3 – D3.5: Models of Computation

Page 17 of 34

values passed through input configuration interfaces of hierarchical actors always become

locally static parameters of hierarchical (sub)graphs.

Output configuration ports are always connected to configurable parameters. A change in

a configurable parameter is the result of a change in either an output configuration port of

an actor or another configurable parameter the former depends upon.

MoC properties

PiSDF inherits the properties of SDF (see section 4.1) and adds the modularity and

reconfigurability properties, with the advantage of keeping the analyzability of SDF. As

the reconfiguration semantics is included into PiSDF, its expressiveness is greater than

that of SDF. Besides modularity, reconfigurability is extremely handy in the context of

cyber-physical systems, which is why in the CERBERO project we intend to use and

extend PiSDF (see Section 5).

Relationship with other MoCs

The PiSDF MoC is related to the Interface-Based SDF [Piat 2009], from which it inherits

the compositional hierarchy mechanism. The PiSDF MoC has the same expressiveness,

but a better conciseness, as the Parameterized SDF MoC [Bhattacharya 2001]

MoC Usage

PiSDF is mainly used to describe stream-based, data-driven and control-driven

algorithms (with a reduced number of configurable parameters in practice), mostly at

functional and component levels. The PiSDF MoC is suitable for implementations in

heterogeneous systems [Heulot 2014].

MoC Support

The SDF MoC is natively supported in the tool PREESM [Pelcat 2014], and the Spider

runtime [Heulot 2014] is used to support the reconfiguration of graphs during execution.

The tools MDC [Palumbo 2017] and ARTICo³ will support this MoC and integrate with

PREESM and Spider. The objective is to offer new scheduling and mapping choices to

the runtime manager when dealing with reconfigurable hardware, i.e. hardware and

software implementations for an actor. The decisions will be driven by on-the-fly

readings of performance indicators using the Performance API (PAPI).

4.4. Bulk Synchronous

MoC brief description

The Bulk Synchronous Parallel (BSP) MoC has been introduced by Valiant in

[Valiant 1990]. This MoC is well suited to some types of highly parallel architectures

such as GPU architectures, which makes it a very popular MoC. Figure 4 - Example of a

Bulk Synchronous Model shows an example of an application representation using the

BSP MoC.

H2020-ICT-2016-1-732105 - CERBERO

WP3 – D3.5: Models of Computation

Page 18 of 34

Figure 4 - Example of a Bulk Synchronous Model

BSP divides an application into several phases called supersteps. A BSP computation is

composed of a set of components (we will call them agents). Each agent has its own

memory. An agent can access the memory of another agent through a remote access

(message) via a so-called router. The computation execution happens in a series of

supersteps consisting of processing efforts, remote accesses and a global synchronization.

MoC properties

Bulk Synchronous Parallel is a decidable MoC which fosters execution parallelism.

However, the processing of each core is modeled independently and statically divided

into supersteps. Consequently, the conciseness, expressiveness and reconfigurability are

limited. The size of supersteps offers a tradeoff between synchronization overhead and

potential parallelism. BSP also provides a time performance evaluation for a superstep,

giving the MoC some properties of a Model of Architecture (MoA) [Pelcat 2018].

Relationship with other MoCs

With respect to dataflow MoCs, including modularity and compositionality and well

suited for application specification, BSP may be used as an intermediate representation

for generating code for a parallel platform, limiting the backend complexity to a simpler

support of a superstep at the cost of regular global synchronizations. As an example of a

recent BSP study, Kapre et al. [Kapre 2017] discuss the pros and cons of using BSP

versus SDF over OpenCL pipes on an FPGA.

MoC Usage

The BSP MoC can be used in PREESM or other SDF-based tools for both stream

processing and batch processing. It needs a relatively large parallelism in the platform to

be relevant.

MoC Support

• Bulk synchronous parallel ML [Loulergue 2005].

H2020-ICT-2016-1-732105 - CERBERO

WP3 – D3.5: Models of Computation

Page 19 of 34

4.5. Kahn Process Networks

MoC brief description

Process Networks – also called Kahn Process Networks (KPN) after G. Kahn who first

introduced them in his thesis [Kahn 1974] – is a MoC for describing signal processing

systems where infinite streams of data are incrementally transformed by processes

executing in sequence or parallel.

Process Networks are directed graphs where nodes represent computing processes and

arcs are infinite message queues that connect these processes. Writing to a channel is

non-blocking but reading is blocking. It cannot be waiting for data on one or another

input channel.

It was proposed for modeling distributed systems but has proven its convenience for

modeling signal processing systems as well. As pointed out by Edward Lee in [Lee

1995], this MoC does not require multitasking or parallelism and usually neither infinite

queues; it is in fact usually more efficient than comparable methods in functional

languages.

MoC properties

Processes in a KPN produce data elements that are placed in a communication channel

and consumed by the destination process. Communication channels are the only way

processes may exchange information. KPN systems are deterministic because the history

of tokens produced/consumed does not depend on execution order. As discussed by

[Parks 1995], it is not possible to tell in a finite time whether an arbitrary Process

Network will halt in its streaming of data. Such behavior is related to two properties:

termination and boundness. These properties are undecidable in finite time for the

general case but, under some restrictions, we can study and classify PN before execution.

Also, they are compositional.

Relationship with other MoCs

KPNs are a generalization of the Dataflow models described in section 4.1.

MoC Usage

Process Networks have found many applications in modeling embedded systems as it is

typical for embedded systems to be designed to operate infinitely with limited resources.

MoC Support

Commercial systems like SPW from Alta Group of Cadence, COSSAP from Synopsys,

the DSP Station from Mentor Graphics, Hypersignal from Hyperception or Simulink by

Mathworks and research software tools like Khoros from the University of New Mexico

and Ptolemy from the Univ. of California at Berkeley, are all based on variants of the PN

model. Departing from the original Process Networks by Kahn, several more specific

models have been derived.

In CERBERO, KPNs are the underlying semantics of the communication between tasks

in the DynAA simulation tool of TNO.

H2020-ICT-2016-1-732105 - CERBERO

WP3 – D3.5: Models of Computation

Page 20 of 34

4.6. Dataflow Process Network

MoC brief description

The Dataflow Process Network (DPN) [Lee 1995], also known as Dynamic Dataflow

Model (DDF) is a MoC where data processing nodes, named actors, communicate

through unidirectional unbounded FIFO channels. Actors are provided with a set of firing

rules specifying the amount of data (tokens) required on the input channels to trigger the

processing (fire). The firing of an actor consumes tokens from the input channels and

produces tokens to the output ones. Figure 5 - Example of Dataflow Process Network

Graph depicts an example of a DPN graph.

Figure 5 - Example of Dataflow Process Network Graph

MoC properties

DPN is the most expressive dataflow MoCs: it is Turing-complete, meaning that it can

describe any deterministic or non-deterministic algorithm. This high degree of

expressiveness comes at the price of analyzability, since depending on the specific case, a

DPN could be very hard to analyze (e.g. for graphs modeling non-deterministic

algorithms). Due to its non-deterministic nature, the DPN MoC exhibits also non-
decidability and a restricted parallelism with respect to less expressive MoCs (such as

SDF).

Relationship with other MoCs

Being the most expressive MoC among dataflow ones, a DPN can describe all other more

restrictive dataflow MoCs, such as:

• SDF and PiSDF, obtained by limiting firing rules to one per actor and to fix its

token rates;

• Kahn Process Network (KPN) by removing non-determinism behavior: action

firings must be deterministic (output tokens depend only on input tokens without

side effects) and the set of firing rules for each actor has to be sequential (they can

be tested in a pre-defined order using only blocking reads [Lee 1995]).

DPNs can also be translated or expressed by means of other MoCs with the same or an

enhanced expressiveness, such as a generalized PNs [Dimitrov 2017].

D
a

b
c

e

A a

B b

C c

Ee

Rules{a, b, c}:

R�����A���‚�€�Ž�•�U���4, [T]}
�Z�����A���‚�4, [*], [F]}

[*] = at leastonetoken
�4 �A�����}�v�[�š�������Œ��

[T] = booleantrue
[F] = booleanfalse

H2020-ICT-2016-1-732105 - CERBERO

WP3 – D3.5: Models of Computation

Page 21 of 34

MoC Usage

DPNs are usually adopted for streaming applications with intensive computation, task

parallelism and data locality, such as audio and video coding. The DPN MoC can

describe any kind of application [Lee 1995].

MoC Support

The DPN MoC is supported by several frameworks and tools: Orcc [Yviquel 2013],

CAPH [Serot 2014], MDC [Palumbo 2017], LIDE [Shen 2011].

4.7. Petri Networks

MoC brief description

Petri Nets (PNs) are one of the most important families of discrete event modeling

formalisms. It was firstly introduced in the early 1960s by Carl Adam Petri as a bipartite

weighted directed graph with two types of vertices called places (represented by circles)

and transitions (represented by bars or rectangles). The ‘execution’ of a Petri Net can be

seen as a game whose rules regulate the activation of transitions and transfer of

information tokens between places. We refer to [Giua 2007] for a comprehensive system

theory point of view on Petri Nets.

Figure 6 - Petri Nets semantics.

MoC properties

Petri nets are both a graphical and mathematical formalism, which provide a useful

visual tool both in the design and analysis phase. They build on a concise representation

of systems with a very large state space. Indeed, they do not require representing

explicitly all states of a dynamical system but only an initial one – the rest of the state

space can be determined from the rules that govern the net evolution.

Petri nets are modular and parallel; i.e., if a system is composed of several subsystems

that interact among them, it is possible to represent each subsystem with a simple subnet

and then combine the subnets to obtain a model of the whole system.

The execution of Petri nets is non-deterministic. If multiple transitions are enabled at the

same time in a PN model, any one of them can fire. Also, it is not guaranteed that an

enabled transition fires. An enabled transition can fire immediately or after any amount of

