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1. Executive Summary 

This documents surveys state-of-the-art Models of Computations (MoCs) used for the 

design of Cyber-Physical Systems (CPS), and it outlines the main characteristics of 

MoCs used for CPS design by presenting: 

• the properties of their semantics (analyzability, decidability, reconfigurability, 

expressiveness, determinism, ...),  

• the kind of algorithm it supports (data-driven, control-driven, …), 

• the level of abstraction it captures (system-of-systems, system, component, …) 

• the type of implementation it translates into (hardware, software, distributed, …). 

The objective of this document is to give enough information to CPS designers to choose 

the MoC that best suit their needs.  

As an example of this document utility, a study of most suitable MoCs for designing key 

features of the CERBERO use-cases is presented. Based on this study, we identify lacks 

in current MoCs semantics and we define a set of new MoC features needed to support 

the design of CERBERO use-cases, which will be developed during the project. Those 

features will advance state of the art and will allow these MoCs to be more effectively 

adopted in the CPS context. 

1.1. Structure of Document 

Section 2 of this document defines the notions of abstraction and models, which serve as 

a basis to the concept of Models of Computation. Section 3 introduces a set of properties 

of MoCs that are then used in Section 4 to characterize and compare state of the art MoCs 

commonly used for the design of CPSs. Finally, Section 5 presents the expected 

CERBERO innovations in the domain of MoCs for the modeling of CPS. 

1.2. Related Documents 

• D2.7 - CERBERO Technical Requirements 

o D3.5 contributes to satisfy D2.7 requirements. Details are given in 

Section 1.3. 

• D3.4 - KPI Modeling 

o The KPIs can be used to represent the system properties, which can be 

verified and guaranteed with varying degrees of ease depending of the 

selection of the Model of Computation. 

• D3.6 - Cross-layer Modelling Methodology for CPS 

o The models of computation described in this document are used to 

represent one aspect of the CPS, the behavior. This is a key foundation in 

the cross-layer modelling methodology. 

• D5.6 - CERBERO Framework Components 

o D5.6 gives more details on the MoCs supported by the tools that are 

components of the CERBERO framework. 
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1.3. Related CERBERO Requirements 

Deliverable D2.7 of the CERBERO project defines a list of CERBERO Technical 

Requirements (CTRs) the project should achieve. Each of them is referenced with a 

unique identifier ranging from 0001 to 0020. MoC exploration and innovation are carried 

out following the requirements in Table 1-1. 

 

CTR 

id 
CTR Description Link with the D3.5 document on Models of 

Computation 

0001 CERBERO framework SHOULD increase 

the level of abstraction at least by one for 

HW/SW co-design and for System Level 

Design. 

Innovations on MoCs help raising the abstraction 

level for the designer 

0002 CERBERO framework SHOULD 

provide interoperability between cross-

layer tools and semantics at the same 

level of abstraction. 

Formalization of MoCs and homogeneity among 

partners foster tool interoperability 

0007 CERBERO framework SHALL define 

methodology and SHOULD provide 

library of reusable functional and non-

functional KPIs. 

Non-functional KPIs can be influenced in the 

MoCs using proposed Moldable Parameters 

0020 CERBERO framework SHALL provide 

methodology and tools for development of 

adaptive applications. 

Proposed innovations on MoCs improve the 

expressiveness and specify the semantic of PiSDF 

for designing adaptive applications 

Table 1-1: Links to CERBERO Technical Requirement 
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2. Models of computation 

This first section briefly defines the core concepts of abstraction, model, and model of 

computations.  

2.1. Abstraction 

In general, abstraction is a tradeoff between the level of details and the complexity 

adopted when describing or representing a thing (e.g., an idea, a system, a place, an 

object, a phenomenon, etc.). Two distinct representations used to describe the same thing, 

each adopting a different abstraction tradeoff (i.e., amount of details conveyed about it), 

can be compared relatively to each other using so-called levels of abstraction. 

• The lower level of abstraction gives a representation of the thing which is more 

detailed, thus giving a more precise and complete description.  

• The higher level of abstraction gives a representation of the thing where some 

details are voluntarily omitted to decrease the complexity of the description. This 

higher complexity generally translates into a smaller and/or less dense 

representation of the thing. 

2.2. Models 

A model is a mathematically grounded representation capturing predictable 

characteristics of a system. More precisely, a model consists of a set of elements that can 

be assembled respecting a set of rules to describe a system. For a valid representation 

built with a model, mathematical equations associated to the elements of the model make 

it possible to predict some characteristics of the modeled system. Models are commonly 

used in all scientific fields to represent evolution of physical, computing, chemical, 

financial, or social systems. 

For example, the symbol in Figure 1 – Bipolar Transistor Symbol and its associated 

equation in Figure 2 - Bipolar Transistor Equation are used to model and predict the 

voltage and current characteristics of a transistor within a model of an analog circuit. 

 

Figure 1 – Bipolar Transistor Symbol 

 

Figure 2 - Bipolar Transistor Equation 

In the context of cyber-physical systems (CPSs) engineering, several models adopting 

different levels of abstraction can be used to describe separated or nested aspects of a 

system. In particular the Models of Architecture (MoA) [Pelcat 2018] are used to 

describe the computing platform, often heterogeneous, including communication 

channels and memories. The application to be executed is modeled orthogonally using 

Models of Computation (MoC). More details on the use of heterogeneous models to 

describe a CPS are presented in D3.6. 
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2.3. Models of Computation 

A Model of Computation (MoC) is a set of operational elements that can be composed to 

describe the behavior of an application. The set of operational elements of a MoC and the 

set of relations that can be used to link these elements are called the semantics of a MoC.  

As presented in [Savage 1998], MoCs can be seen as an interface between the computer 

science and the mathematical domains. A MoC specifies a set of rules that control how 

systems described with the MoC are executed. Each element of the semantics of a MoC 

can be associated to a set of properties, such as timing properties or resource 

requirements. These rules and properties provide the theoretical framework that can be 

used to formally analyze the characteristics of applications described with a MoC. For 

example, using a mathematical analysis, it may be possible to prove that an application 

described with a given MoC will never get stuck in an unwanted state or that it will 

always run in a bounded execution time. Section 3 of this document describes a set of 

properties that are commonly supported by existing MoCs, which are themselves 

described in Section 4. A more extensive introduction to CPS modelling with MoCs can 

be found in [Lee 2017]. 
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3. Characterization of Models of Computation 

Since the introduction of modern computing systems in mid-1900s, a plethora of MoCs 

have been proposed by the scientific community. Very often, a new MoC is introduced to 

allow the specification of applications or systems that exhibit a set of characteristics 

whose specification was impossible or difficult to achieve with previously existing 

MoCs. 

When designing a system, it is important to identify its required and desired properties. 

Once these have been identified, the designer can select the MoC whose semantics will 

make it easier to express, verify and guarantee those properties by construction. 

The objective of this section is to give a definition of the properties used to characterize 

and compare the MoCs presented in Section 4. 

3.1. Properties 

This section lists a set of commonly used properties utilized to compare the system 

characteristics supported by different MoCs. 

Analyzability 

The analyzability of a MoC evaluates the availability of analysis and synthesis algorithms 

that can be used to characterize applications modeled with this MoC. For example, in the 

synchronous dataflow MoC, analysis algorithms can be applied at compile-time to 

compute the worst-case latency or the maximum memory requirements of a design. 

Conciseness 

The conciseness (or succinctness) of a MoC captures its ability to express complex 

system behaviors with a limited description size. This relative property is useful for 

comparing MoCs with equivalent expressiveness. Indeed, conciseness is often a desired 

feature for system developers as the design of an identical application with two MoCs (of 

identical expressiveness) will lead to a smaller design with the more concise MoC. 

Compositionality 

A modular MoC is compositional if the analyzable properties of a module described with 

this MoC are independent from the internal specification of the submodules that compose 

it [Ostroff 1995]. For example, in a compositional MoC, if each submodule used in the 

design is (independently) deadlock free, then the whole design combining these 

submodules will be deadlock-free by construction. 

Decidability 

A MoC is decidable if the schedulability of applications described with this model can be 

proved statically (i.e. at compile time) [Bhattacharyya 2006]. Hence, using a decidable 

MoC makes it possible to guarantee at compile-time that a system will never reach a 

deadlock state and that its execution will require a finite amount of memory. A non-

decidable MoC does not mean that applications will not be schedulable, only that their 

schedulability can only be verified “on the fly” at runtime. Decidability is often obtained 

as a trade-off for a limited expressiveness of the MoC. 
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Determinism 

A MoC is deterministic if the output of an algorithm only depends on its inputs, but not 

on external factors such as time or randomness. If determinism is a desired feature for 

most control and streaming applications, non-determinism may also be needed to 

describe applications reacting to unpredictable inputs. 

Expressiveness 

The expressiveness, of a MoC evaluates the complexity of application behaviors that can 

be described with this MoC. For example, the expressivity of the Dataflow Process 

Network (DPN) MoC has been proven to be equivalent to a Turing machine. The 

specialization of a MoC restricts the expressivity of this MoC to increase its 

analyzability, or to give it new properties such as determinism or decidability. 

Expressivity is often mistaken for conciseness. For example, the Cyclo-Static Dataflow 

(CSDF) MoC is often said to be more expressive than the Synchronous Dataflow MoC 

but meaning instead that it has a better conciseness. 

Modularity 

In a modular (or hierarchical) MoC, a system description can be broken into several 

independent modules. The modules that are combined to create a system can be (re-)used 

either in different systems specification or instantiated several times in the same. The 

modules themselves can be described using the same MoC as the top-level system 

description or can encapsulate other compatible MoCs. 

Parallelism 

In a parallel MoC, several independent elements of a system description may “activate” 

concurrently and independently from each other, each causing a change in the current 

state of the system. In a sequential (i.e. non-parallel MoC), all changes of the system state 

can be broken down to a sequence of actions triggered one after another, according to the 

system semantics.  

Reconfigurability 

A MoC is reconfigurable if the behavior of entire parts of a system description can be 

modified dynamically, to fulfill future execution goals for a foreseeable amount of time. 

Reconfiguration is used to dynamically adapt the behavior of a system to its environment, 

notably by enabling or disabling parts of the system, by modifying its functional behavior 

(e.g. its computations, QoS, …), or by modifying its non-functional properties (e.g. 

exposed parallelism, energy consumption, …).  

Predictability 

The predictability property is related to the reconfigurability property of a MoC. This 

property evaluates the amount of time between a reconfiguration of a part of the system, 

and the beginning of activity in the reconfigured part. The more predictable a MoC is, the 

more the time that can be used by a runtime manager to react and perform an 

optimization of the reconfigured part before using it.  
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3.2. Additional MoC Comparison Criteria 

This section introduces a few other criteria that can be used to compare MoCs. These 

comparison criteria denote different classes of applications that a MoC can be used to 

represent. Unlike the properties presented in the Section 3.1, which capture properties 

supported (or not) by MoCs, this section introduces more subjective comparison criteria. 

Indeed, if some MoCs seem more suitable to implement a given class of applications, 

using them to implement another class may still be possible, but less practical or less 

common. 

Algorithms Computation Classification 

Algorithms described with a MoC can be classified into several classes depending on the 

type of involved computation: 

• Stream-based: A continuous stream of data is steadily processed and produced 

by the described algorithm. The amount and nature of the computation do not 

vary depending on the data. 

• Data-driven: The amount and nature of the computation do not vary depending 

on the data. Contrary to stream-based algorithms, data does not necessarily arrive 

continuously. 

• Control Driven: The amount and nature of the computation depend on the 

processed data. 

• Event Driven: Computations are triggered by events on the frontier of the system 

(i.e. by sensors, users, communication network, …).  

Captured Algorithms Granularities 

MoCs with different levels of abstractions are inherently suitable for representing 

behaviors of diverse granularities: 

• Function: The modeled algorithm captures computations that are building blocks 

used to assemble an algorithm with a higher granularity. 

• Component: The modeled algorithm serves a well-specified purpose with clear 

input and output interfaces and constraints. 

• System: The modeled algorithm represents a collection of components with 

diverse objectives but running locally on a unique computing system. 

• System-of-systems: The modeled algorithm consists of several independent 

“systems”, each existing and evolving independently from the others but 

exchanging information among them through communication channels. 

Implementation Types 

A MoC is a theoretical representation used to describe the behavior of an application. 

Implementing a MoC consists in translating this theoretical behavior into an “executable” 

description. Different types of implementations can be more or less suitable to implement 

each MoC: 

• Hardware: Algorithms described with this type of MoC can be efficiently 

translated into logical gates, signals, and registers on an ASIC or an FPGA. 
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• Software: Algorithms described with this type of MoC can be efficiently 

translated into a sequence of instructions executed on a processor that manipulates 

data stored in a memory space. 

• Distributed: Algorithms described with this type of MoC can be efficiently 

implemented by splitting them into several parts executed on separate Hardware 

or Software components, each storing a part of the system state and executing a 

part of the computations in parallel. 

• Heterogeneous: Algorithms described with this type of MoC can be efficiently 

translated into a mix of hardware and software implementations. 
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4. Surveyed Models of Computation 

Using key characteristics of MoCs defined in Section 3, this section briefly introduces 

state-of-the-art Models of Computations used to specify Cyber-Physical Systems. 

Starting from MoC for hardware description, we increase the level of abstraction and 

expressiveness of models up to the system requirements level.  

4.1. Register Transfer Level  

MoC brief description 

The Register Transfer Level (RTL) models are intended for detailing the behavior and the 

structure of hardware. Hardware Description Languages (HDLs), such as VHDL or 

Verilog are mature and standardized languages that support this model of computation. 

They are parallel languages with modular representations (structure decomposition) and 

explicit parallelism at behavioral level. This, combined with the event-driven 

characteristics that are used to reflect the behavior of the system at clock cycle level, 

make these models very precise though too low-level for simulating large systems or 

systems of systems. 

They can be used as design-entry level specification for relatively small to medium size 

hardware modules. Also, with the availability of High Level Synthesis (HLS) tools and 

the profusion of back-end tools to produce RTL from higher abstraction levels or other 

MoCs, this language is being relegated as a requirement for HW fabrication, but not as a 

conventional entry point. 

RTL synthesizers are tools that transform RTL into netlists of logic gates. They are 

mature, commercially available, in cases customer dependent tools that take an RTL 

specification as an entry point and produce a netlist or, even further, a bitstream to be 

downloaded into reconfigurable devices such as FPGAs. 

MoC properties  

This model is the best representative for HW targets. They are modular and composable 
(with hierarchical description of components) due to the capability of modelling 

structure, as well as analyzable because of their property for describing behavior or 

functionality. The event-driven specification at clock-cycle level makes it predictable and 

deterministic (except for some rarely used constructs that are not common for synthesis—

oriented products). RTL-level in HDLs contains the synthesizable constructs, while 

HDLs at higher levels of abstraction (not time-specific) are not considered RTL 

Relationship with other MoCs  

HLS tools provide transformations from C/C++/System-C/OpenCL specifications as well 

as for several dataflow-oriented MoCs, provided the availability of back-end tools that 

transform these models into RTL.  

MoC Usage 

RTL is clearly targeted for HW fabrics. These fabrics are useful to accelerate 

performance while providing reasonable energy consumption when dealing with data 

intensive applications. In the context of heterogeneous computing, more control-intensive 
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tasks will be more likely to be used in SW, while compute intensive tasks will be favored 

towards HW implementations.  

MoC Support 

HDLs supporting RTL are very mature and so they account with basic tools such as 

synthesizers, simulators, physical mapping tools (i.e. the layout for an ASIC or the 

bitstream for an FPGA). They also account with accurate models for estimating power 

consumption, as well as some indirect reliability indicators such as code coverage tools, 

assertion-based verification, etc. In CERBERO, HW-oriented targets ARTICo3 and MDC 

will rely on RTL and conventional synthesis to obtain a suitable bitstream, while JIT 

composition will rely on pre-synthesized blocks (represented as bitstreams) that, by 

composing them dynamically will produce a module with a required new functionality. 

4.2. Synchronous Dataflow 

MoC brief description 

The Synchronous Dataflow [Lee 1987] MoC models an application as a directed graph of 

computational entities, called actors, that exchange data through a network of First-In 

First-Out queues (FIFOs). Each time an actor is executed, or fired, it consumes and 

produces a fixed quantum of data, called data token, on the FIFOs to which it is 

connected. An example of SDF graph is given in Figure 3 - Example of Synchronous 

Dataflow Graph. 

 
Figure 3 - Example of Synchronous Dataflow Graph 

MoC properties  

Synchronous Dataflow is a parallel and decidable MoC that exhibits one of the greatest 

degrees of analyzability among dataflow MoCs. Coupled with the determinism of the 

MoC, its analyzability  makes it possible to prove algorithms deadlock freeness and 

boundedness at compile time and is often used to guarantee real-time properties (e.g. 

throughput, latency, worst-case execution time) of applications modeled with it. This 

great analyzability comes at the expense of a limited expressiveness of the MoC, because 

of the absence of any reconfiguration semantics in the MoC. The original MoC described 

in [Lee 1987] is not modular.  

Relationship with other MoCs  

The SDF MoC belongs to the family of dataflow models of computation. As one of the 

dataflow MoCs with the most restrictive semantics, SDF behavior can be expressed in 

most dataflow models. 
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As demonstrated in [Klikpo 2016], the MoC implemented in Labview® is equivalent to 

the SDF MoC. 

There exist several dataflow MoCs with an equivalent expressiveness with the SDF MoC: 

• The Cyclo-Static Dataflow [Bilsen 1996] and Affine Dataflow [Bouakaz 2012] 

MoCs which have a greater conciseness than the SDF MoC while retaining all its 

analyzability, by specifying sequences of production and consumption rates 

instead of scalar values. 

• The Interface-Based SDF [Piat 2009] and Deterministic SDF with Shared FIFO 

[Tripakis 2013] MoCs which are two modular and compositional extensions of 

the SDF MoC. 

MoC Usage 

Synchronous Dataflow is mainly used to describe stream-based and data-driven 
algorithms, mostly at function and component levels. The SDF MoC is suitable for all 

kinds of implementations. 

MoC Support 

The SDF MoC is natively supported in the following tools: Ptolemy II [Davis 1999], 

SDF3 [Stuijk 2006], PREESM [Pelcat 2014], MDC [Palumbo 2017], LIDE [Shen 2011].  

4.3. Parameterized and Interfaced Synchronous Dataflow 

MoC brief description 

The Parameterized and Interfaced Synchronous Dataflow (PiSDF) is the result of 

applying the Parameterized and Interfaced dataflow Meta-Modeling methodology 

[Desnos 2013] to the SDF MoC. PiSDF adds parameterization and interfaced hierarchy to 

the SDF MoC. The PiSDF MoC models an application as a directed graph. Besides actors 

and FIFOs (see section 4.1), parameters, hierarchical interfaces and parameter 

dependencies can also be vertices of the graph.  

Parameters are employed to configure and modify dataflow specifications. Parameters 

can influence (1) the functionality of an actor, (2) the production/consumption rates of 

actor ports, (3) the value of another parameter and (4) a delay of a FIFO. Hierarchical 

interfaces convey data tokens or parameter values between levels of hierarchy. 

Hierarchical interfaced actors, or simply, hierarchical actors, are univocally linked to 

PiSDF subgraphs. Parameter dependencies propagate parameter values to other elements 

of the graph. 

Actors, hierarchical or non-hierarchical, can have two types of ports: data ports and 

configuration ports. Data ports exchange data and configuration ports parameters. 

Parameters are connected to configuration ports through parameter dependencies. Both 

types of ports can be declared as input or output ports. An actor with an output 

configuration port is named a configuration actor. Firing of configuration actors 

dynamically produces values that set configurable parameters. The firing is only 

permitted at specific instants of time during a graph execution. 

There are two types of parameters in a PiSDF MoC: configurable parameters and locally 

static parameters. Configurable parameters can be modified in each graph iteration, i.e. at 

run-time. Locally static parameters can only be modified at design-time. Parameter 
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values passed through input configuration interfaces of hierarchical actors always become 

locally static parameters of hierarchical (sub)graphs. 

Output configuration ports are always connected to configurable parameters. A change in 

a configurable parameter is the result of a change in either an output configuration port of 

an actor or another configurable parameter the former depends upon.  

MoC properties  

PiSDF inherits the properties of SDF (see section 4.1) and adds the modularity and 

reconfigurability properties, with the advantage of keeping the analyzability of SDF. As 

the reconfiguration semantics is included into PiSDF, its expressiveness is greater than 

that of SDF. Besides modularity, reconfigurability is extremely handy in the context of 

cyber-physical systems, which is why in the CERBERO project we intend to use and 

extend PiSDF (see Section 5). 

Relationship with other MoCs  

The PiSDF MoC is related to the Interface-Based SDF [Piat 2009], from which it inherits 

the compositional hierarchy mechanism. The PiSDF MoC has the same expressiveness, 

but a better conciseness, as the Parameterized SDF MoC [Bhattacharya 2001] 

MoC Usage 

PiSDF is mainly used to describe stream-based, data-driven and control-driven 

algorithms (with a reduced number of configurable parameters in practice), mostly at 

functional and component levels. The PiSDF MoC is suitable for implementations in 

heterogeneous systems [Heulot 2014]. 

MoC Support 

The SDF MoC is natively supported in the tool PREESM [Pelcat 2014], and the Spider 

runtime [Heulot 2014] is used to support the reconfiguration of graphs during execution. 

The tools MDC [Palumbo 2017] and ARTICo³ will support this MoC and integrate with 

PREESM and Spider. The objective is to offer new scheduling and mapping choices to 

the runtime manager when dealing with reconfigurable hardware, i.e. hardware and 

software implementations for an actor. The decisions will be driven by on-the-fly 

readings of performance indicators using the Performance API (PAPI). 

4.4. Bulk Synchronous  

MoC brief description 

The Bulk Synchronous Parallel (BSP) MoC has been introduced by Valiant in 

[Valiant 1990]. This MoC is well suited to some types of highly parallel architectures 

such as GPU architectures, which makes it a very popular MoC. Figure 4 - Example of a 

Bulk Synchronous Model shows an example of an application representation using the 

BSP MoC. 
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Figure 4 - Example of a Bulk Synchronous Model 

BSP divides an application into several phases called supersteps. A BSP computation is 

composed of a set of components (we will call them agents). Each agent has its own 

memory. An agent can access the memory of another agent through a remote access 

(message) via a so-called router. The computation execution happens in a series of 

supersteps consisting of processing efforts, remote accesses and a global synchronization. 

MoC properties  

Bulk Synchronous Parallel is a decidable MoC which fosters execution parallelism. 

However, the processing of each core is modeled independently and statically divided 

into supersteps. Consequently, the conciseness, expressiveness and reconfigurability are 

limited. The size of supersteps offers a tradeoff between synchronization overhead and 

potential parallelism. BSP also provides a time performance evaluation for a superstep, 

giving the MoC some properties of a Model of Architecture (MoA) [Pelcat 2018]. 

Relationship with other MoCs  

With respect to dataflow MoCs, including modularity and compositionality and well 

suited for application specification, BSP may be used as an intermediate representation 

for generating code for a parallel platform, limiting the backend complexity to a simpler 

support of a superstep at the cost of regular global synchronizations. As an example of a 

recent BSP study, Kapre et al. [Kapre 2017] discuss the pros and cons of using BSP 

versus SDF over OpenCL pipes on an FPGA. 

MoC Usage 

The BSP MoC can be used in PREESM or other SDF-based tools for both stream 

processing and batch processing. It needs a relatively large parallelism in the platform to 

be relevant. 

MoC Support 

• Bulk synchronous parallel ML [Loulergue 2005]. 
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4.5. Kahn Process Networks 

MoC brief description 

Process Networks – also called Kahn Process Networks (KPN) after G. Kahn who first 

introduced them in his thesis [Kahn 1974] – is a MoC for describing signal processing 

systems where infinite streams of data are incrementally transformed by processes 

executing in sequence or parallel. 

Process Networks are directed graphs where nodes represent computing processes and 

arcs are infinite message queues that connect these processes. Writing to a channel is 

non-blocking but reading is blocking. It cannot be waiting for data on one or another 

input channel. 

It was proposed for modeling distributed systems but has proven its convenience for 

modeling signal processing systems as well. As pointed out by Edward Lee in [Lee 

1995], this MoC does not require multitasking or parallelism and usually neither infinite 

queues; it is in fact usually more efficient than comparable methods in functional 

languages. 

MoC properties  

Processes in a KPN produce data elements that are placed in a communication channel 

and consumed by the destination process. Communication channels are the only way 

processes may exchange information. KPN systems are deterministic because the history 

of tokens produced/consumed does not depend on execution order. As discussed by 

[Parks 1995], it is not possible to tell in a finite time whether an arbitrary Process 

Network will halt in its streaming of data. Such behavior is related to two properties: 

termination and boundness. These properties are undecidable in finite time for the 

general case but, under some restrictions, we can study and classify PN before execution. 

Also, they are compositional. 

Relationship with other MoCs  

KPNs are a generalization of the Dataflow models described in section 4.1.  

MoC Usage 

Process Networks have found many applications in modeling embedded systems as it is 

typical for embedded systems to be designed to operate infinitely with limited resources. 

MoC Support 

Commercial systems like SPW from Alta Group of Cadence, COSSAP from Synopsys, 

the DSP Station from Mentor Graphics, Hypersignal from Hyperception or Simulink by 

Mathworks and research software tools like Khoros from the University of New Mexico 

and Ptolemy from the Univ. of California at Berkeley, are all based on variants of the PN 

model. Departing from the original Process Networks by Kahn, several more specific 

models have been derived.  

In CERBERO, KPNs are the underlying semantics of the communication between tasks 

in the DynAA simulation tool of TNO. 



H2020-ICT-2016-1-732105 - CERBERO 

WP3 – D3.5: Models of Computation 

Page 20 of 34 

4.6. Dataflow Process Network  

MoC brief description 

The Dataflow Process Network (DPN) [Lee 1995], also known as Dynamic Dataflow 

Model (DDF) is a MoC where data processing nodes, named actors, communicate 

through unidirectional unbounded FIFO channels. Actors are provided with a set of firing 

rules specifying the amount of data (tokens) required on the input channels to trigger the 

processing (fire). The firing of an actor consumes tokens from the input channels and 

produces tokens to the output ones. Figure 5 - Example of Dataflow Process Network 

Graph depicts an example of a DPN graph. 

 
Figure 5 - Example of Dataflow Process Network Graph 

MoC properties  

DPN is the most expressive dataflow MoCs: it is Turing-complete, meaning that it can 

describe any deterministic or non-deterministic algorithm. This high degree of 

expressiveness comes at the price of analyzability, since depending on the specific case, a 

DPN could be very hard to analyze (e.g. for graphs modeling non-deterministic 

algorithms). Due to its non-deterministic nature, the DPN MoC exhibits also non-
decidability and a restricted parallelism with respect to less expressive MoCs (such as 

SDF). 

Relationship with other MoCs  

Being the most expressive MoC among dataflow ones, a DPN can describe all other more 

restrictive dataflow MoCs, such as: 

• SDF and PiSDF, obtained by limiting firing rules to one per actor and to fix its 

token rates; 

• Kahn Process Network (KPN) by removing non-determinism behavior: action 

firings must be deterministic (output tokens depend only on input tokens without 

side effects) and the set of firing rules for each actor has to be sequential (they can 

be tested in a pre-defined order using only blocking reads [Lee 1995]). 

DPNs can also be translated or expressed by means of other MoCs with the same or an 

enhanced expressiveness, such as a generalized PNs [Dimitrov 2017]. 
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MoC Usage 

DPNs are usually adopted for streaming applications with intensive computation, task 

parallelism and data locality, such as audio and video coding. The DPN MoC can 

describe any kind of application [Lee 1995]. 

MoC Support 

The DPN MoC is supported by several frameworks and tools: Orcc [Yviquel 2013], 

CAPH [Serot 2014], MDC [Palumbo 2017], LIDE [Shen 2011]. 

4.7. Petri Networks 

MoC brief description 

Petri Nets (PNs) are one of the most important families of discrete event modeling 

formalisms. It was firstly introduced in the early 1960s by Carl Adam Petri as a bipartite 

weighted directed graph with two types of vertices called places (represented by circles) 

and transitions (represented by bars or rectangles). The ‘execution’ of a Petri Net can be 

seen as a game whose rules regulate the activation of transitions and transfer of 

information tokens between places. We refer to [Giua 2007] for a comprehensive system 

theory point of view on Petri Nets. 

 
Figure 6 - Petri Nets semantics. 

MoC properties  

Petri nets are both a graphical and mathematical formalism, which provide a useful 

visual tool both in the design and analysis phase. They build on a concise representation 

of systems with a very large state space. Indeed, they do not require representing 

explicitly all states of a dynamical system but only an initial one – the rest of the state 

space can be determined from the rules that govern the net evolution. 

Petri nets are modular and parallel; i.e., if a system is composed of several subsystems 

that interact among them, it is possible to represent each subsystem with a simple subnet 

and then combine the subnets to obtain a model of the whole system. 

The execution of Petri nets is non-deterministic. If multiple transitions are enabled at the 

same time in a PN model, any one of them can fire. Also, it is not guaranteed that an 

enabled transition fires. An enabled transition can fire immediately or after any amount of 




























